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Phys.Rev.Lett.107 031102 (2011) (arXiv:1104.3702)

now a part of joint project with Joanna Ja lmużna, Patryk Mach and Maciej Maliborski
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Anti-de Sitter spacetime in d + 1 dimensions

Anti-de Sitter spacetime is the maximally symmetric solution of the
vacuum Einstein equations

Rαβ −
1

2
gαβR + Λgαβ = 0 ,

with negative cosmological constant Λ < 0.
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Anti-de Sitter spacetime in d + 1 dimensions
Geometrically, AdSd+1 is wrapped around hiperboloid

−
(
X 0
)2

+
d∑

k=1

(
X k
)2 −

(
X d+1

)2
= −`2

embedded in flat, SO(d , 2) invariant space

ds2 = −
(
dX 0

)2
+

d∑
k=1

(
dX k

)2 −
(
dX d+1

)2

Parametrization

X 0 = `

√
1 + (tan x)2 cos t, X d+1 = `

√
1 + (tan x)2 sin t, X k = ` tan x nk

−∞ < t < +∞, 0 ≤ x < π/2,
d∑

k=1

(
nk
)2

= 1,

induces

ds2 =
`2

(cos x)2

[
−dt2 + dx2 + (sin x)2 dΩ2

Sd−1

]
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Anti-de Sitter spacetime in d + 1 dimensions

Induced metric

ds2 =
`2

(cos x)2

[
−dt2 + dx2 + (sin x)2 dΩ2

Sd−1

]
,

−∞ < t < +∞, 0 ≤ x < π/2 .

is the maximally symmetric solution of the vacuum Einstein equations
Rαβ − 1

2 gαβR + Λgαβ = 0 with negative cosmological constant Λ < 0:

Λ = −d(d − 1)/(2`2)

Conformal infinity x = π/2 is the timelike hypersurface I = R× Sd−1

with the boundary metric ds2
I = −dt2 + dΩ2

Sd−1
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Poincaré patch

X 0 − X d = `2/u > 0
X d+1 = `t/z

X i = `x i/z

⇒ X 0 + X d = z

(
1 +

~x2 − t2

z2

)
induced metric:

ds2 =
−dt2 + d~x2 + dz2

z2
,

but in this talk we are concerned with global AdS:

ds2 =
`2

(cos x)2

[
−dt2 + dx2 + (sin x)2 dΩ2

Sd−1

]
,
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Maximally symmetric solutions of vacuum Einstein’s
equations and their stability

Rαβ −
1

2
R gαβ + Λ gαβ = 0 .

A solution (of a dynamical system) is said to be stable if small
perturbations of it at t = 0 remain small for all later times

Λ = 0: Minkowski (trivial, yet most important)
asymptotically stable (Christodoulou&Klainerman 1993),

Λ > 0: de Sitter (important in cosmology - Nobel Prize 2011)
asymptotically stable (Friedrich 1986),

Λ < 0: anti- de Sitter (most popular on arXiv due to AdS/CFT)
Stability of AdS seems unexplored
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Is AdS stable?
A solution (of a dynamical system) is said to be stable if small
perturbations of it at t = 0 remain small for all later times

The question of stability of AdS is open. Surprisingly, with almost
fifteen years of activity on AdS/CFT, this question has been rarely
asked (with a notable exception M. Anderson 2005)

In contrast, Minkowski (Λ = 0) and de Sitter spacetimes (Λ > 0) are
known to be stable (actually asymptotically stable) –
(Christodoulou&Klainerman 1993 and Friedrich 1986)

The key difference between these solutions and AdS: the main
mechanism of stability - dissipation of energy (dispersion in
Minkowski, expansion in de Sitter) - is absent in AdS because AdS is
effectively bounded (for no flux boundary conditions at I it acts as a
perfect cavity)

Note that by positive energy theorems both Minkowski and AdS are
the unique ground states among asymptotically flat/AdS spacetimes
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Model

To deal with the problem of the stability of AdS we start with
spherical symmetry (effectually 1 + 1 dimensional problem)

Spherically symmetric vacuum solutions are static (Birkhoff’s
theorem) ⇒ we need matter to generate dynamics

Simple matter model: massless scalar field φ in d+1 dimensions

Gαβ + Λ gαβ = 8πG

(
∂αφ∂βφ−

1

2
gαβ∂µφ∂

µφ

)
, Λ = −d(d − 1)/(2`2),

gαβ∇α∇βφ = 0

In the corresponding asymptotically flat (Λ = 0) model Christodoulou
proved the weak cosmic censorship (dispersion for small data and
collapse to a black hole for large data) and Choptuik discovered
critical phenomena at the threshold for black hole formation

Remark: For even d ≥ 4 there is a way to bypass Birkhoff’s theorem
(cohomogeneity-two Bianchi IX ansatz, Bizoń, Chmaj, Schmidt 2005)
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Convenient parametrization of asymptotically AdS spacetimes

ds2 =
`2

(cos x)2

[
−Ae−2δdt2 + A−1dx2 + (sin x)2 dΩ2

Sd−1

]
,

where A and δ are functions of (t, x).

Auxiliary variables Φ = φ′ and Π = A−1eδφ̇ (′ = ∂x , ˙ = ∂t)

Field equations (using units where 8πG = d − 1)

A′ = (1− A)
d − 2 + 2 (sin x)2

(cos x) (sin x)
− (cos x) (sin x) A

(
Φ2 + Π2

)
,

δ′ = − (cos x) (sin x)
(
Φ2 + Π2

)
,

Φ̇ =
(

Ae−δΠ
)′
, Π̇ =

1

(tan x)d−1

[
(tan x)d−1 Ae−δΦ

]′
.

AdS space: φ ≡ 0, A ≡ 1, δ ≡ 0; now we want to perturb AdS solving
the initial-boundary value problem for this system starting with some
small, smooth initial data (φ, φ̇)|t=0
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Boundary conditions
We assume that initial data (φ, φ̇)|t=0 are smooth
Smoothness at the center implies that near x = 0 (Λ irrelevant)

φ(t, x) = f0(t) +O(x2), δ(t, x) = O(x2), A(t, x) = 1 +O(x2)

Smoothness at spatial infinity and conservation of the total mass M
imply that near x = π/2 (using z = π/2− x)

φ(t, x) = f∞(t) zd +O
(

zd+2
)
, δ(t, x) = δ∞(t) +O

(
z2d
)
,

A(t, x) = 1− (M/`d−2)zd +O
(

zd+2
)

Remark: There is no freedom in prescribing boundary data
Local well-posedness (Friedrich 1995, Holzegel&Smulevici 2011)
mass function and asymptotic mass:

m(t, x) = (1− A(t, x)) (` tan x)d−2 (1 + tan2 x
)

M = lim
x→π/2

m(t, x) = `d−2

π/2∫
0

(
AΦ2 + AΠ2

)
(tan x)d−1 dx
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Reminder: asymptotically flat (Λ = 0) self-gravitating
scalar field

Christodoulou (1986-1993): dispersion for small data and collapse to
a black hole for large data (proof of the weak cosmic censorship)

Consider a family of initial data Φ(p) which interpolates between
dispersion and collapse (Choptuik 1993)

There exists a critical value of the parameter p∗ such that
I p < p∗ ⇒ dispersion
I p > p∗ ⇒ black hole

Universal behavior in the near-critical region |p − p∗| � 1
I mBH ∼ (p∗ − p)γ with universal exponent γ
I discretely self-similar attractor with universal period ∆

Critical solution (p = p∗) is a non-generic naked singularity
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Movie

numerical results to be presented are obtained for d = 3,

but qualitatively the same behaviour in any d ≥ 3;

on the other hand the d = 2 case is very special
(Pretorius&Choptuik 2000, Ja lmużna in preparation)
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Critical behavior

Initial data: Φ(0, x) = 0 ,Π(0, x) = ε
[
exp

(
− tan x

σ

)2
]

We fix σ = 1/16 and vary ε.
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BH size vs. amplitude

There is a decreasing sequence
of critical amplitudes εn for
which the evolution, after
making n reflections from the
AdS boundary, locally
asymptotes Choptuik’s
solution. In each small right
neighborhood of εn

mBH(ε) ∼ (ε− εn)γ

with γ ' 0.37. It seems that
limn→∞ εn = 0

Remark: The generic endstate of evolution is the Schwarzschild-AdS BH
of mass M (in accord with Holzegel&Smulevici 2011)
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Key evidence for instability
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Key evidence for instability
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Onset of instability at time t = O(ε−2)

Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space NR/HEP2, Lisbon, 2013 14 / 24



Weakly nonlinear perturbations

We seek an approximate solution starting from small initial data

(φ, φ̇)
∣∣∣
t=0

= (εf (x), εg(x))

Perturbation series

φ = εφ1 + ε3φ3 + ...

δ = ε2δ2 + ε4δ4 + ...

1− A = ε2A2 + ε4A4 + ...

where (φ1, φ̇1)
∣∣∣
t=0

= (f (x), g(x)) and (φj , φ̇j)
∣∣∣
t=0

= (0, 0) for j > 1.

Inserting this expansion into the field equations and collecting terms
of the same order in ε, we obtain a hierarchy of linear equations
which can be solved order-by-order.
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First order

Linearized equation (Ishibashi&Wald 2004)

φ̈1 + Lφ1 = 0, L = − 1

tand−1x
∂x

(
tand−1x ∂x

)
The operator L is essentially self-adjoint on L2([0, π/2), tand−1x dx).

Eigenvalues and eigenvectors of L are (j = 0, 1, . . . )

ω2
j = (d + 2j)2, ej(x) = Nj (cos x)d P

d/2−1,d/2
j (cos2x)

⇒ AdS is linearly stable

Linearized solution

φ1(t, x) =
∞∑
j=0

aj cos(ωj t + βj) ej(x)

where amplitudes aj and phases βj are determined by the initial data.
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Second order (back-reaction on the metric)

A′2 +
d − 2 + 2 sin2x

sin x cos x
A2 = sin x cos x

(
φ̇2

1 + φ′1
2
)

δ′2 = − sin x cos x
(
φ̇2

1 + φ′1
2
)

so

A2(t, x) =
(cosx)d

(sin x)d−2

x∫
0

(
φ̇1(t, y)2 + φ′1(t, y)2

)
(tany)d−1 dy

δ2(t, x) = −
x∫

0

(
φ̇1(t, y)2 + φ′1(t, y)2

)
sin y cos y dy

quadratic in φ1!

(1)

It follows that

M =
ε2

2

π/2∫
0

(
φ̇1(t, y)2 + φ′1(t, y)2

)
(tany)d−1 dy +O(ε4)
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Third order
φ̈3 + Lφ3 = S(φ1,A2, δ2) , (?)
where S := 2(A2 + δ2)φ̈1 + (Ȧ2 + δ̇2)φ̇1 + (A′2 + δ′2)φ′1.

Let φ3(t, x) =
∑

j fj(t) ej(x). Projecting Eq.(?) on the basis {ej} we
obtain an infinite set of decoupled forced harmonic oscillators for the
generalized Fourier coefficients fj(t) := (ej |φ3 )

f̈j + ω2
j fj = Sj := (ej |S ) and (fj , ḟj)

∣∣∣
t=0

= 0

If Sj has a part oscilating with a resonant frequency ωj : cosωj t or
sinωj t, it will give rise to a secular term ∼ t sinωj t or ∼ t cosωj t.

S cubic in φ1 ⇒ contains all frequencies | ± ω1 ± ω2 ± ω3|, where
ωk ∈ Ω1 and φ1(t, x) =

∑
k [ωk ∈ Ω1] akcos(ωkt + βk) ek(x) ,

ωk - odd integers ⇒ all frequencies in S potentially resonant!
Not all resonances survive the projection (ej |S ). Some of those,
which do survive can be compensated with frequency shifts in φ1 and
are harmless for stability, but the others put stability in question!
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Example 1: single-mode data (φ, φ̇)|t=0 = (ε e0, 0)

First order φ1(t, x) = cos(ω0t)e0(x), ω0 = 3 (ωj = 3 + 2j)

Third order φ3(t, x) =
∑∞

j=0 fj(t)ej(x), (fj , ḟj)
∣∣∣
t=0

= 0 and

f̈j + ω2
j fj = bj ,0 cos(ω0t) + bj ,3 cos(ω3t).

But b3,3 = 0 (!) and only j = 0 is resonant.

-2
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Π
2 (t
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The j = 0 resonance can be
easily removed by the
two-scale method (slow-time
phase modulation) which gives
φ1 = cos((ω0 + 153

4π ε
2) t) e0(x).

This suggests that there are
non-generic initial data which
may stay close to AdS solution
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Example 2: two-mode data (φ, φ̇)|t=0 = (ε (e0 + e1), 0)
First order φ1(t, x) = cos(ω0t)e0(x) + cos(ω1t)e1(x), ω0 = 3, ω1 = 5

Third order φ3(t, x) =
∑∞

j=0 fj(t)ej(x), (fj , ḟj)
∣∣∣
t=0

= 0 and

f̈j+ω
2
j fj =

∑
k

[ωk ∈ Ω3]bj ,k cos(ωkt), where Ω3 = {|±ω0,1±ω0,1±ω0,1|}

Here Ω3 = {1, 3, 5, 7, 9, 11, 13, 15}, but the resonance (bj ,j 6= 0) only
if ωj ∈ {3, 5, 7}.

10
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Π
2
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ε = 2
1/2

/16

ε = 1/16

ω0 → ω0 + (87/π)ε2,
ω1 → ω1 + (413/π)ε2 shifts
remove the resonances
ωj = 3, 5, but the resonance
ωj = 7 cannot be removed.
Thus we get the secular term
c2(t) ∼ t sin(7t). We expect
this term to be a progenitor of
the onset of exponential
instability.
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Conjectures
Our numerical and formal perturbative computations lead us to:

Conjecture 1

Anti-de Sitter space is unstable against the formation of a black hole
under arbitrarily small generic perturbations

Crucial ingredients: no dissipation, resonant frequencies.
Proof (and a precise formulation) is still left as a challenge.
Note that we do not claim that all perturbed solutions end up as black
holes.

Conjecture 2 ’NR/HEP2

There are (non-linearly) stable periodic solutions in Einstein-AdS-massless
scalar field system. They form stability islands in the ocean of instability

Strong evidence (still not a proof) - tomorrow’s lecture.
Analogous conjecture for vacuum Einstein’s equations by
Dias,Horowitz&Santos (2011), Dias,Horowitz,Marolf&Santos (2012)
(existence of geons).
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Turbulence: transfer of energy from low to high frequencies
Let Πj := (

√
A Π, ej) and Φj := (

√
A Φ, e ′j ). Then

M = `

π/2∫
0

(
AΦ2 + AΠ2

)
(tan x)2 dx =

∞∑
j=0

Ej(t) ,

where Ej := Π2
j + ω−2

j Φ2
j can be interpreted as the j-mode energy.
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Power-law scaling
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Final remarks

Weakly turbulent behavior seems to be common for (non-integrable)
nonlinear wave equations on bounded domains (e.g. NLS on torus,
Colliander&Keel, Staffilani,Takaoka&Tao 2008, Carles&Faou 2010)
and our work shows that Einstein’s equations are not an exception.

For Einstein’s equations the transfer of energy to high frequencies
cannot proceed forever because concentration of energy on smaller
and smaller scales inevitably leads to the formation of a black hole.

The role of negative cosmological constant is purely kinematical, that
is the only role of Λ is to confine the evolution in an effectively
bounded domain. Similar turbulent dynamics has been observed for
small perturbations of Minkowski in a box (Maliborski 2012)
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