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Recap

In the first lecture we saw several notions of hyperbolicity, and that
they are useful in different contexts. The moral of the story was
three-fold:

• Strong hyperbolicity is good enough for the initial value
problem, and is easy to check– there is no excuse not to!

• Symmetric hyperbolicity, or the energy method, is good for
the IBVP, and is the preferred approach whenever it applies.

• The Laplace-Fourier method can be used to analyze
well-posedness of the IBVP for PDEs that are strongly
hyperbolic of constant multiplicity.
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Gauge freedom

In this class we will apply these notions to electromagnetism, and
will see that new complications arise. Model for GR.

• Qualitative difference between the Maxwell equations and
yesterdays is gauge freedom. Work before definitions.

• Dirac’s theory of constrained Hamiltonian systems says there
is a relationship between the gauge freedom and constraints.

• Today: discuss Maxwell, but I want to impress upon you that
the structure we discover in the equations of motion falls out
because of the Hamiltonian form.
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Hamiltonian and equations of motion

Hamiltonian for Electromagnetism,

H =

∫
Ω

1
2

[
(∂ × A)i (∂ × A)i + EiE

i
]
− Φ ∂ iEi dV .

Canonical positions Ai , momenta πi = −E i . Curl is,

(∂ × A)i = εijk∂jAk ,

with εijk the Levi-Cevita tensor. Hamilton’s equations give,

∂tAi = −Ei − ∂iΦ , ∂tE
i =

(
∂ × [∂ × A]

)i
,

Could work with the magnetic field B i = (∂ × A)i , but would lose
the analogy between GR and electromagnetism.
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Constraints I

Momentum constraint: Divergence of the electric field vanishes,

M = −∂iπi = ∂iE
i = 0,

obtained by varying with respect to Φ, the gauge field. Time
derivative of momentum constraint

∂tM = 0.

If start with constraint satisfying data, remain satisfied.

• Numerics? Specify initial data satisfying the constraint, and
integrate up the equations of motion in time.

• Free-evolution: Main method in NR.

• Evolution equations can be treated with methods of last
lecture.
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Constraints II

• With free-evolution, constraint violation is inevitable because
of numerical error.

• Numerical analyst: As we throw more computational power at
the problem can we make errors arbitrarily small?

• Computational physicist: Are there enough computers around?

• Analyze the PDE properties of the system without assuming
constraints satisfied. Computing in the larger phase space
with violations.

• Different approach is to resolve the constraints after every
time-step; constrained-evolution. Elliptic-hyperbolic, can’t be
treated with the methods of last lecture.
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Gauge freedom and the pure gauge system I

EoMs invariant under

Ai → Ai − ∂iψ ,

with ψ some arbitrary scalar function. What is the difference in the
time development with and without applying this to initial data?
Pure gauge field ψ evolves with

∂tψ = ∆[Φ] ,

where ∆[Φ] difference in Φ induced by the gauge change in the
initial data.
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Gauge freedom and the pure gauge system II

Can’t quite start well-posedness analysis; the Hamiltonian does not
determine the field Φ. Gauge choice:

∂tΦ = −µ∂iAi ,

for Φ. Could take Φ apriori function, or satisfy elliptic equation.
How will ∆[Φ], evolve in time? Time derivative of the difference of
the two Φ’s

∂t∆[Φ] = −µ∂ i∂iψ .

Pure gauge system: closed subsystem for the evolution of the
change! Relationship between hyperbolicity of this and the
Maxwell equations? One complication first.
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Expanded phase space

New constraint Z . EoM (somewhat) arbitrary, choose:

∂tZ = ∂iE
i − κZ ,

If constraints Z and the M are initially satisfied then Z stay
satisfied, provided Z doesn’t break M.

• Strange. Why expand with more freedom to be wrong? PDE
properties of problem affected favorably. Well-posedness
imperative.

• What is Z? Roughly canonical momentum of the gauge
field Φ. Normally see that construction only for Lorenz
gauge µ = 1. No reason to restrict like that.
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Fully expanded EoMs

Full EoMs taken to be

∂tAi = −Ei − ∂iΦ , ∂tE
i =

(
∂ × [∂ × A]

)i
+ ∂iZ ,

∂tΦ = −µ [∂iAi + Z ] , ∂tZ = M − κZ .

Think about consequences of choices after well-posedness analysis!
Constraints,

Z = 0 , M = ∂ iEi = 0 .

∂tM = ∂ i∂iZ .

still closed! Free-evolution justified. Hyperbolicity of PG and
Constraint subsystems inherited by full EoMs?
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Strong hyperbolicity I

Use unit vector s i to 2 + 1 decompose the vectors,

∂sAi = si [∂
2
sψ]− siZ+ ⊥A

i [∂sAA] , Ei = siEs+ ⊥A
i EA ,

with projection operator ⊥i
j= δi j − s i sj . Ps splits into blocks.

Read off,

∂t [∂
2
sψ] ' −∂s [∂sΦ] , ∂t [∂sΦ] ' −µ∂s [∂2

sψ] ,

∂tZ ' ∂sEs , ∂tEs ' ∂sZ ,

∂t [∂sAA] ' ∂sEA , ∂tEA ' ∂s [∂sAA] ,

Both PG and C principal symbols inherited! No coincidence. Can
be shown for constrained Hamiltonian systems. Could have
“constraint” variables in gauge.
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Strong hyperbolicity II

Principal symbol of each block,

Ps
G =

(
0 −1
−µ 0

)
, Ps

C =

(
0 1
1 0

)
, Ps

P =

(
0 −1
−1 0

)
.

• PG block has eigenvalues = ±√µ. Weak hyperbolicity
if µ ≥ 0. Strong if µ > 0.

• Others eigenvalues ±1, are diagonalizable.

• Characteristic variables,

[∂sΦ]∓ [∂2
sψ] , Es ± Z , EA ∓ [∂sAA] .

Notebook Maxwell Strong.nb.
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Symmetric hyperbolicity I

• Which gauge conditions result in symmetric hyperbolic
system? Every gauge that is strongly hyperbolic. Special to
Maxwell!

• Given symmetric hyperbolic pure gauge, not known that there
is a symmetric hyperbolic formulation.

• Are strongly, not symmetric hyperbolic formulations worse
than symmetric ones? Sometimes choice that “works” might
be the mathematically weaker one.

• With bigger gauge freedom, could be that choice of useful
pure gauge that is is not symmetric hyperbolic. Expectation is
that we can’t use that gauge to build symmetric formulation.
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Symmetric hyperbolicity II

Fully second order form,

∂2
t Φ ' µγ ij∂i∂jΦ , ∂2

t Ai ' γjk∂j∂kAi +
(

1
µ − 1

)
∂t∂iΦ .

In Lorenz gauge, each variable satisfies wave equation. Principal
part matrix

Ap
i k

j l =


0 0 δpi 0
0 0 0 δpiδ

l
k

µγpj 0 0 0
0 γpjδl k

(
1
µ − 1

)
δpk 0

 ,

Ansatz for energy density ε with

ε = u†jmH
ij kmuik , uik = (∂iΦ , ∂iAk , ∂0Φ , ∂0Ak)† ,
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Symmetric hyperbolicity III

... with parametrized ansatz for H ij km =
h1

11γ
ij 0 0 h1

14γ
ik

0 h1
22γ

ijγkm + 2 h2
22γ

k(iγj)m h1
23 γ

im 0
0 h1

23 γ
jk h1

33 0
h1

14γ
jm 0 0 h1

44γ
km


Imposing Hermiticity of Si H

ij mn Ap
j m

k l sp Sk =
0 h1

14s
l h1

11 + h1
14( 1

µ − 1) 0

h1
23 µ s

n 0 0 h1
22γ

ln + 2h2
22s

lsn

h1
33 µ 0 0 h1

23 s
l

0 h1
44 γ

ln 1
µ

(
h1

44(1− µ) + h1
14 µ

)
sn 0

 ,
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Symmetric hyperbolicity IV

... for every spatial vector s i , gives,

h1
14 = h1

23 , h1
33 = h1

11 , h2
22 = 0 , h1

44 = h2
22 ,

for µ = 1, and otherwise,

h1
14 = h1

23 µ , h1
33 =

h1
11 + (1− µ)h1

23

µ
,

h1
22 = h1

23 µ , h2
22 = 0 , h1

44 = h1
23 µ ,

Last thing: positivity. Lorenz;

h1
11 = 1 , h1

23 = 0 , h1
22 = 1 , h1

22 = 0 ,

does the trick. Generic case positive with h1
23 <

1
2+µ .
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Symmetric hyperbolicity V

Comments:

• Could write down MDBCs that render the IBVP well-posed.
They would still not be satisfactory. Why?

• There are numerical methods, called summation by parts, that
can use the energy to guarantee stability in numerical
approximation.

• See Maxwell Symmetric.nb. Needs xTensor.
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Laplace-Fourier method I

Crucial complication: constraints. Complicates the analysis of the
IBVP. MDBCs will pump constraint violation into the domain.
Require:

• Well-posedness (goes without saying).

• Constraint preservation. Interested in solutions to Maxwell, so
BCs had better respect constraints. In numerics, ok for BCs
to cause violation if converges.

• Radiation and gauge control. BCs should control the physical
radiation in appropriate way.
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Laplace-Fourier method II

Performing the Laplace-Fourier transform gives

s2 Φ̂ = µ [∂2
x − ω2]Φ̂ ,

s2 Âx = [∂2
x − ω2]Âx +

(
1
µ − 1

)
s ∂x Φ̂ ,

s2 Âω̂ = [∂2
x − ω2]Âω̂ +

(
1
µ − 1

)
i ω s Φ̂ ,

s2 Âν̂ = [∂2
x − ω2]Âν̂ ,

vector Âi has been decomposed

Âi = x̂i Âx̂ + ω̂i Âω̂ + ν̂i Âν̂ .

with x̂ i , a unit vector in the x-direction, ω̂i a unit vector in the ωi

direction, and ν̂ i a unit vector orthogonal to both x̂ i and ω̂i .

David Hilditch Free evolution formulations of electromagnetism



Motivation The vacuum Maxwell equations Well-posedness analysis Summary

Laplace-Fourier method III

Reduce to first order,

∂x Φ̂ = κDΦ̂ , ∂xDΦ̂ = −κ τ ′+µ τ ′−µΦ̂ ,

∂x Âx = κDÂx , ∂xDÂx = −κ τ ′+ τ ′− Âx + κ
(
1− 1

µ

)
s ′DΦ̂ ,

∂x Âω̂ = κDÂω̂ , ∂xDÂω̂ = −κ τ ′+ τ ′− Âω̂ + i ω′κ
(
1− 1

µ

)
s ′ Φ̂ ,

∂x Âν̂ = κDÂν̂ , ∂xDÂν̂ = −κ τ ′+ τ ′− Âν̂ .

with

τ ′± = ±
√
s ′2 + ω′2 τ ′±µ = ±

√
s′2

µ + ω′2,
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Laplace-Fourier method IV

The general L2 solution at x = 0,

Φ̂ = σΦ , DΦ̂ = τ ′−µσΦ ,

Âx = −σZ
τ ′−
−
τ ′−µσΦ

s ′
− i ω′ σAω̂

τ ′−
,

DÂx = −σZ −
τ ′2−µσΦ

s ′
− i ω′ σAω̂ ,

Âω̂ = σAω̂ −
i ω′ σΦ

s ′
,

DÂω̂ = τ ′−σAω̂ −
i ω′ τ ′−µ σΦ

s ′
,

Âν̂ = σAν̂ , DÂν̂ = τ ′−σAν̂ ,

Sum of gauge σΦ, constraint σZ and physical σAω̂ , σAν̂ parts.
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Laplace-Fourier method V

• Gauge field Φ and the constraint Z satisfy wave equations,
the obvious choice is something like a Sommerfeld condition

[∂t −
√
µ∂x ]2Φ =̂ ∂tgΦ , [∂t − ∂x ]Z =̂ ∂tgZ ,

on each. Applications choose gZ = 0.

• Electric and magnetic fields gauge invariant, unambiguously
represent field strength,

[∂t − ∂x ]
(
∂tAA + ∂AΦ− ∂xAA + ∂AAx

)
= ∂tgA .

[φ0 in the terminology of Teukolsky].
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Laplace-Fourier method VI

LF transforming and solving gives, for example:

Φ̂ =
s ′ ĝΦ(

s ′ +
√
s ′2 + µω′2

)2
,

Âx =
i ω′ ĝω̂(

s ′ +
√
s ′2 + ω′2

)2
+

ĝZ

s ′ +
√
s ′2 + ω′2

+

√
s ′2 + µω′2 ĝΦ

√
µ
(
s ′ +

√
s ′2 + µω′2

)2
,

Âω̂ =

√
s ′2 + ω′2 ĝω̂(

s ′ +
√
s ′2 + ω′2

)2
− i ω′ ĝZ(

s ′ +
√
s ′2 + ω′2

)2
− i ω′ ĝΦ(

s ′ +
√
s ′2 + µω′2

)2
,

terms like s ′ +
√
s ′2 + ω′2 are bounded away from zero.

See notebook Maxwell LF.nb.
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Laplace-Fourier method VII

Final comments:

• With Lorenz gauge strong well-posedness can be shown for
constraint preserving boundary conditions using the energy
method with a special symmetrizer,

• Alternatively with the Kreiss-Winicour cascade approach.

• I think this is the first time BS shown for our family of gauges.
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Conclusions

Looked at formulations of Electromagnetism suitable for
free-evolution:

• For every strongly hyperbolic pure gauge, built a formulation
which was itself strongly hyperbolic. Likewise for symmetric
hyperbolicity.

• Used Laplace-Fourier method to investigate boundary stability
with CPBCs.

• To understand the ins-and-outs I recommend that you study
the mathematica notebooks in tandem with the lecture notes.
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Some references

• The Cauchy problem and the initial boundary value problem
in numerical relativity. Stewart. 1998.

• Strongly hyperbolic secondi order Einstein’s evolution
equations. Nagy, Ortiz and Reula. 2004.

• On the well posedness of the BSSN formulation of Einstein’s
field equations. Beyer and Sarbach. 2004.

• Well-posedness of formulations of the Einstein equations with
dynamical lapse and shift conditions. Gundlach and
Mart́ın-Garćıa. 2006.

• Problems which are well-posed in a generalized sense with
applications to the Einstein equations. Kreiss and Winicour.
2007.

• Continuum and discrete Initial-Boundary Value Problems and
Einstein’s Field Equations. Sarbach and Tiglio.
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