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Why numerical relativity

Study of systems with strong and dynamical gravitational fields

Gravitational radiation
Astrophysics, gravitational wave astronomy

Mathematical and theoretical Physics:
Cosmic censorship
Instabilities (Black hole interior, Myers-Perry)

High-energy particle systems:
AdS/CFT correspondence;
Black hole production at the LHC;
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Motivation – AdS/CFT duality

Issues with numerical simulations in
AdS:

AdS is not globally hyperbolic
The boundary plays an active
role

→ Toy model: standard general
relativity in a “box”
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Black holes in a box Witek et al, Phys.Rev.D82:104037

puncture initial data (equal-mass,
non-spinning BHs)
BSSN evolution scheme
impose reflecting boundary
conditions
inspiraling BHB⇒ spinning BH
head-on collision⇒ non-spinning
BH
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Results
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Results
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Motivation – Gravitational waves

Accelerated bodies emit
gravitational radiation
Detected indirectly by
measurements of the Hulse-Taylor
binary system (1993 Nobel Prize)
Interact weakly with matter⇒ carry
unique information about
astronomical phenomena

⇒ New window to the universe

Observations suggest we live in an approximately de Sitter
Universe;

can we make numerical relativity in de Sitter?
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Formalism

Einstein equations

Rµν −
1
2

gµνR + Λgµν = 0

Evolution equations

(∂t − Lβ) γij = −2αKij

(∂t − Lβ) Kij = −Di∂jα + α
(

(3)Rij − 2Ki
kKjk + KijK − Λγij

)
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Results
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Black holes in compact dimensions. . .

arise in gauge/gravity duality and braneworld scenarios;
have a richer phase structure and dynamics than in
flat-space;
analytical tools are capable of handling only a limited class
of idealized scenarios;
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D = 5 black holes on a cylinder

In the absence of black holes, we have M1,3 × S1:

ds2 = −dt2 + dx2 + dy2 + y2dφ2︸ ︷︷ ︸
M1,3

+ dz2︸︷︷︸
S1

z ∈ [−L,L], φ ∈ [0,2π[

φ

z

y



Outline Motivation Black holes in a box Black holes in de Sitter Black holes on a 5D cylinder Final remarks Acknowledgements

Formalism

Most general metric element

ds2 = gµνdxµdxν + λdΩ2
D−4

µ = 0,1,2,3.
D-dimensional vacuum Einstein equations imply

Rµν =
D − 4

2λ

(
∇µ∂νλ−

1
2λ
∂µλ∂νλ

)
∇µ∂µλ = 2(D − 5)− D − 6

2λ
∂µλ∂

µλ
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Formalism

The resulting system is

(∂t − Lβ) γij = −2αKij

(∂t − Lβ) Kij = −Di∂jα + α
(

(3)Rij + KKij − 2KikK k
j

)
− αD − 4

2λ

(
Di∂jλ− 2KijKλ −

1
2λ
∂iλ∂jλ

)
(∂t − Lβ)λ = −2αKλ

1
α

(∂t − Lβ) Kλ = − 1
2α

∂ iλ∂iα + (D − 5) + KKλ +
D − 6
λ

K 2
λ

− D − 6
4λ

∂ iλ∂iλ−
1
2

Dk∂kλ

→ effective 3 + 1 system with source terms



Outline Motivation Black holes in a box Black holes in de Sitter Black holes on a 5D cylinder Final remarks Acknowledgements

Formalism

The resulting system is

(∂t − Lβ) γij = −2αKij

(∂t − Lβ) Kij = −Di∂jα + α
(

(3)Rij + KKij − 2KikK k
j

)
− αD − 4

2λ

(
Di∂jλ− 2KijKλ −

1
2λ
∂iλ∂jλ

)
(∂t − Lβ)λ = −2αKλ

1
α

(∂t − Lβ) Kλ = − 1
2α

∂ iλ∂iα + (D − 5) + KKλ +
D − 6
λ

K 2
λ

− D − 6
4λ

∂ iλ∂iλ−
1
2

Dk∂kλ

→ effective 3 + 1 system with source terms



Outline Motivation Black holes in a box Black holes in de Sitter Black holes on a 5D cylinder Final remarks Acknowledgements

Initial data

Real Space (S1)
z ∈ [−L, L]

z = 0 z = 0

z = L

z = −L

z = 2L

z = −2L

Covering Space (R)
z ∈ [−∞,∞]

Single black hole Head on collision

z = a

z = −a

z = a

z = −a

z = L

z = −L

z = 2L+ a

z = 2L− a

z = −2L+ a
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L = 32 single black hole evolution – constraint violation
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L = 16 head-on collision – trajectory
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Conclusions

BH in a box
Studied stability of rotating BH and gravitational radiation in
boxed spacetime;
Results consistent with expectations for wavepacket of
radiation travelling back and forth

BH in de Sitter
Evolved head-on collision of BHs in asymptotically de Sitter
spacetime and monitored apparent horizons;
ToDo: Study formation of common apparent horizon as
function of initial separation;

5D cylinder
Successfully evolved head-on collision of BHs in a 5D
cylindrical spacetime using dimensional reduction
procedure;
ToDo: deformation of the apparent horizon; radiated
energy; smaller compactification radius;
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The group

http://blackholes.ist.utl.pt/

http://blackholes.ist.utl.pt/
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