# Black hole dynamics in non-asymptotically flat spacetimes

(Work in progress, Phys.Rev.D81:084052, Phys.Rev.D82:104037)

#### M. Zilhão<sup>1</sup> V. Cardoso L. Gualtieri C. Herdeiro A. Nerozzi U. Sperhake H. Witek

<sup>1</sup>Centro de Física do Porto, Faculdade de Ciências da Universidade do Porto

#### 31 August 2011, Numerical Relativity and High Energy Physics, Madeira, Portugal

| Outline Motivatio | n Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|-------------------|------------------------|--------------------------|------------------------------|---------------|-----------------|
|                   |                        |                          |                              |               |                 |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

## Contents



- 2 Black holes in a box
- Black holes in de Sitter
- Black holes on a 5D cylinder

#### 5 Final remarks

| Outline | Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|---------|------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|         |            |                      |                          |                              |               |                 |
|         |            |                      |                          |                              |               |                 |

# Outline



- 2 Black holes in a box
- Black holes in de Sitter
- 4 Black holes on a 5D cylinder
- 5 Final remarks



Outline  $igwedge{}$  Black holes in a box oco black holes in de Sitter black holes on a 5D cylinder oco construction oco cons

## Why numerical relativity

#### Study of systems with strong and dynamical gravitational fields

・ コット (雪) ( 小田) ( コット 日)

- Gravitational radiation
  - Astrophysics, gravitational wave astronomy
- Mathematical and theoretical Physics:
  - Cosmic censorship
  - Instabilities (Black hole interior, Myers-Perry)
- High-energy particle systems:
  - AdS/CFT correspondence;
  - Black hole production at the LHC;

Outline  $igther{Motivation}{ullet}$  Black holes in a box black holes in de Sitter black holes on a 5D cylinder of the sitter black holes on a 5D cylinder of the sitter of the sitter

# Why numerical relativity

#### Study of systems with strong and dynamical gravitational fields

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Gravitational radiation

- Astrophysics, gravitational wave astronomy
- Mathematical and theoretical Physics:
  - Cosmic censorship
  - Instabilities (Black hole interior, Myers-Perry)
- High-energy particle systems:
  - AdS/CFT correspondence;
  - Black hole production at the LHC;

Outline  $igther{Motivation}{ullet}$  Black holes in a box black holes in de Sitter black holes on a 5D cylinder of the sitter black holes on a 5D cylinder of the sitter of the sitter

# Why numerical relativity

#### Study of systems with strong and dynamical gravitational fields

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Gravitational radiation
  - Astrophysics, gravitational wave astronomy
- Mathematical and theoretical Physics:
  - Cosmic censorship
  - Instabilities (Black hole interior, Myers-Perry)
- High-energy particle systems:
  - AdS/CFT correspondence;
  - Black hole production at the LHC;

Outline  $igther{Motivation}{ullet}$  Black holes in a box black holes in de Sitter black holes on a 5D cylinder of the sitter black holes on a 5D cylinder of the sitter of the sitter

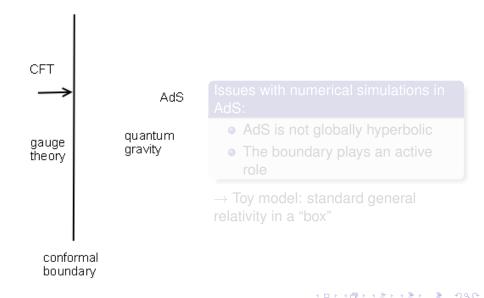
# Why numerical relativity

#### Study of systems with strong and dynamical gravitational fields

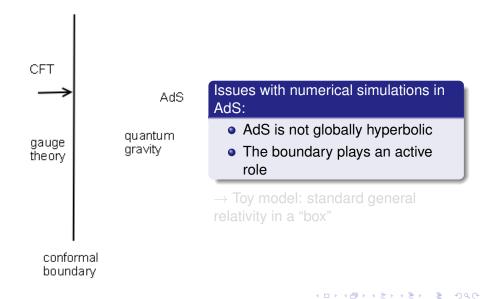
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Gravitational radiation
  - Astrophysics, gravitational wave astronomy
- Mathematical and theoretical Physics:
  - Cosmic censorship
  - Instabilities (Black hole interior, Myers-Perry)
- High-energy particle systems:
  - AdS/CFT correspondence;
  - Black hole production at the LHC;

| Outline | Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|---------|------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|         |            |                      |                          |                              |               |                 |
|         |            |                      |                          |                              |               |                 |


▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

# Outline

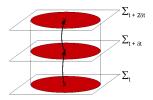


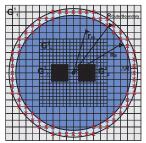

- Black holes in a box
- Black holes in de Sitter
- Black holes on a 5D cylinder
- 5 Final remarks

# Motivation – AdS/CFT duality



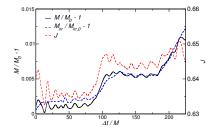
# Motivation – AdS/CFT duality





# Motivation – AdS/CFT duality



## Black holes in a box Witek et al, Phys.Rev.D82:104037


- puncture initial data (equal-mass, non-spinning BHs)
- BSSN evolution scheme
- impose reflecting boundary conditions
- inspiraling BHB  $\Rightarrow$  spinning BH head-on collision  $\Rightarrow$  non-spinning BH



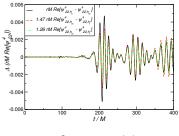


・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

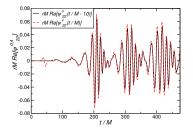
| Outline | Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|---------|------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|         |            | 0000                 |                          |                              |               |                 |
|         |            |                      |                          |                              |               |                 |



Time evolution of the BH mass


Inspiral

- increasing mass and area of AH
- absorption of  $\approx$  15% of radiated energy per cycle


・ロット (雪) (日) (日)

э

| Outline Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|--------------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|                    | 0000                 |                          |                              |               |                 |



Convergence analysis



Real part of the I = m = 2 mode of  $rM\Psi_0$  and  $rM\Psi_4$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Outline Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|--------------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|                    |                      |                          |                              |               |                 |

## Outline



- 2 Black holes in a box
- Black holes in de Sitter
  - 4 Black holes on a 5D cylinder

#### 5 Final remarks

▲□ → ▲□ → ▲目 → ▲目 → ● ● ● ● ●

# Motivation – Gravitational waves

- Accelerated bodies emit gravitational radiation
- Detected indirectly by measurements of the Hulse-Taylor binary system (1993 Nobel Prize)
- Interact weakly with matter ⇒ carry unique information about astronomical phenomena



・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

- → New window to the universe
- Observations suggest we live in an approximately de Sitter Universe;
  - can we make numerical relativity in de Sitter?

# Motivation – Gravitational waves

- Accelerated bodies emit gravitational radiation
- Detected indirectly by measurements of the Hulse-Taylor binary system (1993 Nobel Prize)
- Interact weakly with matter ⇒ carry unique information about astronomical phenomena



・ コット (雪) ( 小田) ( コット 日)

- → New window to the universe
- Observations suggest we live in an approximately de Sitter Universe;
  - can we make numerical relativity in de Sitter?

# Motivation – Gravitational waves

- Accelerated bodies emit gravitational radiation
- Detected indirectly by measurements of the Hulse-Taylor binary system (1993 Nobel Prize)
- Interact weakly with matter ⇒ carry unique information about astronomical phenomena



・ コット (雪) ( 小田) ( コット 日)

- $\Rightarrow$  New window to the universe
- Observations suggest we live in an approximately de Sitter Universe;
  - can we make numerical relativity in de Sitter?

# Motivation – Gravitational waves

- Accelerated bodies emit gravitational radiation
- Detected indirectly by measurements of the Hulse-Taylor binary system (1993 Nobel Prize)
- Interact weakly with matter ⇒ carry unique information about astronomical phenomena



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\bullet \ \Rightarrow$  New window to the universe
- Observations suggest we live in an approximately de Sitter Universe;
  - can we make numerical relativity in de Sitter?

# Motivation – Gravitational waves

- Accelerated bodies emit gravitational radiation
- Detected indirectly by measurements of the Hulse-Taylor binary system (1993 Nobel Prize)
- Interact weakly with matter ⇒ carry unique information about astronomical phenomena



- $\bullet \ \Rightarrow$  New window to the universe
- Observations suggest we live in an approximately de Sitter Universe;
  - can we make numerical relativity in de Sitter?

| Outline | Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|---------|------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|         |            |                      | 000                      |                              |               |                 |
|         |            |                      |                          |                              |               |                 |

# Formalism

#### Einstein equations

$$R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R+\Lambda g_{\mu\nu}=0$$

#### Evolution equations

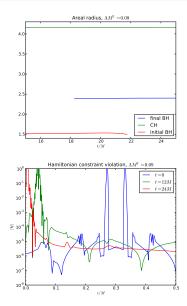
$$(\partial_t - \mathcal{L}_\beta) \gamma_{ij} = -2\alpha K_{ij} (\partial_t - \mathcal{L}_\beta) K_{ij} = -D_i \partial_j \alpha + \alpha \left( {}^{(3)}R_{ij} - 2K_i{}^k K_{jk} + K_{ij}K - \Lambda \gamma_{ij} \right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

| Outline Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|--------------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|                    |                      | 000                      |                              |               |                 |

# Formalism

#### Einstein equations

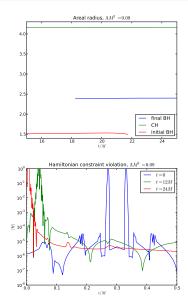

$$R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R+\Lambda g_{\mu\nu}=0$$

#### **Evolution equations**

$$\begin{aligned} \left(\partial_t - \mathcal{L}_{\beta}\right)\gamma_{ij} &= -2\alpha K_{ij} \\ \left(\partial_t - \mathcal{L}_{\beta}\right)K_{ij} &= -D_i\partial_j\alpha + \alpha \left( {}^{(3)}R_{ij} - 2K_i{}^kK_{jk} + K_{ij}K - \Lambda\gamma_{ij} \right) \end{aligned}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

| Outline | Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|---------|------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|         |            |                      | 000                      |                              |               |                 |

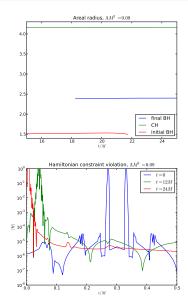



- Evolution is stable and the constraints are preserved;
- Successfully monitor the apparent horizons;

ヘロト 人間 とくほとくほとう

3

| Outline | Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|---------|------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|         |            |                      | 000                      |                              |               |                 |




 Evolution is stable and the constraints are preserved;

・ コット (雪) ( 小田) ( コット 日)

 Successfully monitor the apparent horizons;

| Outline | Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|---------|------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|         |            |                      | 000                      |                              |               |                 |



- Evolution is stable and the constraints are preserved;
- Successfully monitor the apparent horizons;

ヘロト 人間 とくほとくほとう

3

| Outline | Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|---------|------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|         |            |                      |                          |                              |               |                 |

## Outline



- 2 Black holes in a box
- Black holes in de Sitter
- Black holes on a 5D cylinder

#### 5 Final remarks

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

## Black holes in compact dimensions...

- arise in gauge/gravity duality and braneworld scenarios;
- have a richer phase structure and dynamics than in flat-space;
- analytical tools are capable of handling only a limited class of idealized scenarios;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

## Black holes in compact dimensions...

#### arise in gauge/gravity duality and braneworld scenarios;

- have a richer phase structure and dynamics than in flat-space;
- analytical tools are capable of handling only a limited class of idealized scenarios;

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

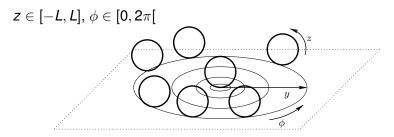
## Black holes in compact dimensions...

- arise in gauge/gravity duality and braneworld scenarios;
- have a richer phase structure and dynamics than in flat-space;
- analytical tools are capable of handling only a limited class of idealized scenarios;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

## Black holes in compact dimensions...

- arise in gauge/gravity duality and braneworld scenarios;
- have a richer phase structure and dynamics than in flat-space;
- analytical tools are capable of handling only a limited class of idealized scenarios;


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

## D = 5 black holes on a cylinder

In the absence of black holes, we have  $\mathbb{M}^{1,3} \times S^1$ :

$$ds^{2} = \underbrace{-dt^{2} + dx^{2} + dy^{2} + y^{2}d\phi^{2}}_{\mathbb{M}^{1,3}} + \underbrace{dz^{2}}_{S^{1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Outline Motivation Black holes in a box Black holes in de Sitter Black holes on a 5D cylinder Final remarks Acknowledgement o

## Formalism

Most general metric element

$$ds^2 = g_{\mu
u} dx^\mu dx^
u + \lambda d\Omega^2_{D-4}$$

 $\mu = 0, 1, 2, 3.$ D-dimensional vacuum Einstein equations imply

$$egin{aligned} &R_{\mu
u}=rac{D-4}{2\lambda}\left(
abla_{\mu}\partial_{
u}\lambda-rac{1}{2\lambda}\partial_{\mu}\lambda\partial_{
u}\lambda
ight)\ &
abla^{\mu}\partial_{\mu}\lambda=2(D-5)-rac{D-6}{2\lambda}\partial_{\mu}\lambda\partial^{\mu}\lambda \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Outline Motivation Black holes in a box Black holes in de Sitter Black holes on a 5D cylinder Final remarks Acknowledgement

# Formalism

Most general metric element

$$ds^2 = g_{\mu
u}dx^\mu dx^
u + \lambda d\Omega^2_{D-4}$$

 $\mu = 0, 1, 2, 3.$ *D*-dimensional vacuum Einstein equations imply

$$egin{aligned} \mathcal{R}_{\mu
u} &= rac{D-4}{2\lambda} \left( 
abla_{\mu}\partial_{
u}\lambda - rac{1}{2\lambda}\partial_{\mu}\lambda\partial_{
u}\lambda 
ight) \ \nabla^{\mu}\partial_{\mu}\lambda &= 2(D-5) - rac{D-6}{2\lambda}\partial_{\mu}\lambda\partial^{\mu}\lambda \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?



# Formalism

The resulting system is

$$\begin{aligned} \left(\partial_{t} - \mathcal{L}_{\beta}\right)\gamma_{ij} &= -2\alpha K_{ij} \\ \left(\partial_{t} - \mathcal{L}_{\beta}\right)K_{ij} &= -D_{i}\partial_{j}\alpha + \alpha \left(^{(3)}R_{ij} + KK_{ij} - 2K_{ik}K^{k}_{j}\right) \\ &- \alpha \frac{D-4}{2\lambda} \left(D_{i}\partial_{j}\lambda - 2K_{ij}K_{\lambda} - \frac{1}{2\lambda}\partial_{i}\lambda\partial_{j}\lambda\right) \\ \left(\partial_{t} - \mathcal{L}_{\beta}\right)\lambda &= -2\alpha K_{\lambda} \\ \frac{1}{\alpha} \left(\partial_{t} - \mathcal{L}_{\beta}\right)K_{\lambda} &= -\frac{1}{2\alpha}\partial^{i}\lambda\partial_{i}\alpha + (D-5) + KK_{\lambda} + \frac{D-6}{\lambda}K_{\lambda}^{2} \\ &- \frac{D-6}{4\lambda}\partial^{i}\lambda\partial_{i}\lambda - \frac{1}{2}D^{k}\partial_{k}\lambda \end{aligned}$$

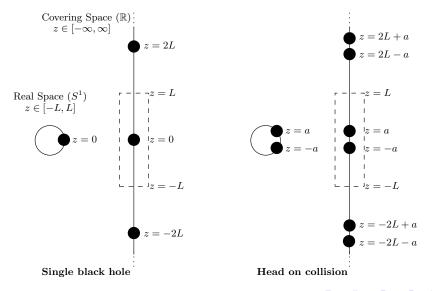
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

ightarrow effective 3 + 1 system with source terms



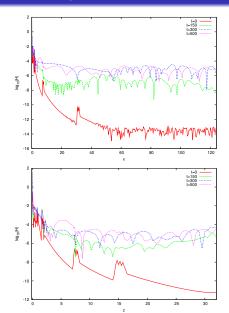

# Formalism

The resulting system is


$$\begin{aligned} \left(\partial_{t} - \mathcal{L}_{\beta}\right)\gamma_{ij} &= -2\alpha K_{ij} \\ \left(\partial_{t} - \mathcal{L}_{\beta}\right)K_{ij} &= -D_{i}\partial_{j}\alpha + \alpha \left(^{(3)}R_{ij} + KK_{ij} - 2K_{ik}K^{k}_{j}\right) \\ &- \alpha \frac{D-4}{2\lambda} \left(D_{i}\partial_{j}\lambda - 2K_{ij}K_{\lambda} - \frac{1}{2\lambda}\partial_{i}\lambda\partial_{j}\lambda\right) \\ \left(\partial_{t} - \mathcal{L}_{\beta}\right)\lambda &= -2\alpha K_{\lambda} \\ \frac{1}{\alpha} \left(\partial_{t} - \mathcal{L}_{\beta}\right)K_{\lambda} &= -\frac{1}{2\alpha}\partial^{i}\lambda\partial_{i}\alpha + (D-5) + KK_{\lambda} + \frac{D-6}{\lambda}K_{\lambda}^{2} \\ &- \frac{D-6}{4\lambda}\partial^{i}\lambda\partial_{i}\lambda - \frac{1}{2}D^{k}\partial_{k}\lambda \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

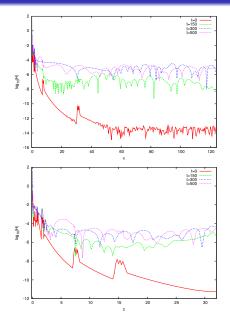
 $\rightarrow$  effective 3 + 1 system with source terms




## Initial data



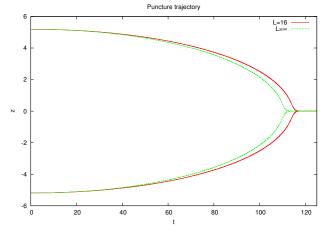
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで


## L = 32 single black hole evolution – constraint violation



 The evolution is stable and the constraints are preserved

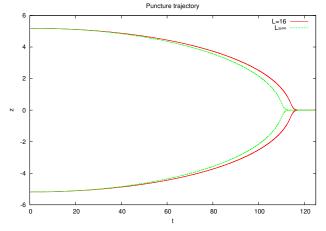
< □ > < □ > < □ > < □ > <


## L = 32 single black hole evolution – constraint violation



 The evolution is stable and the constraints are preserved

< □ > < □ > < □ >


## L = 16 head-on collision – trajectory



ightarrow longer collision time for the cylindrical case

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

## L = 16 head-on collision – trajectory



 $\rightarrow$  longer collision time for the cylindrical case

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

| Outline Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|--------------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|                    |                      |                          |                              |               |                 |

## Outline



- 2 Black holes in a box
- Black holes in de Sitter
- 4 Black holes on a 5D cylinder





Outline Motivation o Black holes in a box oo Black holes in de Sitter Black holes on a 5D cylinder Final remarks Acknowledgement

# Conclusions

#### BH in a box

- Studied stability of rotating BH and gravitational radiation in boxed spacetime;
- Results consistent with expectations for wavepacket of radiation travelling back and forth
- BH in de Sitter
  - Evolved head-on collision of BHs in asymptotically de Sitter spacetime and monitored apparent horizons;
  - ToDo: Study formation of common apparent horizon as function of initial separation;
- 5D cylinder
  - Successfully evolved head-on collision of BHs in a 5*D* cylindrical spacetime using dimensional reduction procedure;
  - ToDo: deformation of the apparent horizon; radiated energy; smaller compactification radius;

# The group



## http://blackholes.ist.utl.pt/

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

| Outline | Motivation | Black holes in a box | Black holes in de Sitter | Black holes on a 5D cylinder | Final remarks | Acknowledgement |
|---------|------------|----------------------|--------------------------|------------------------------|---------------|-----------------|
|         |            |                      |                          |                              |               |                 |

# the end