
Black Holes and Compact 
Binaries in Alternative 

Theories

Nicolas Yunes
Assistant Professor, 

Montana State University

August 31st, 2011
NR-HEP Workshop



Standing on the Shoulders of...
Professors:
Clifford Will, Jim Gates, David Spergel, Frans Pretorius, Neil 
Cornish, Stephon Alexander, Abhay Ashtekar, Sam Finn, Ben 
Owen, Bernd Bruegman, Carlos Sopuerta, Pablo Laguna, Emanuele 
Berti, Alessandra Buonanno.

Post-Docs:
Victor Taveras, Bence Kocsis, Daniel Grumiller.

Graduate Students:
Kent Yagi, Laura Sampson, Leo Stein, Sarah Vigeland. 



Do Black Holes Exist?

MPI movie

There is a dense object at the center of our galaxy, but how do we 
know that it can be completely described by the Kerr metric?

What else could it be? Can we test the Kerr hypothesis?



Road Map

I. Black Holes in Alternative Theories

II. Compact Binaries in Alternative Theories

III. Gravitational Wave Tests of Alternative Theories



I. Black Holes in Alternative Theories



Black Holes in General Relativity

z

No-Hair Theorems
All stationary, vacuum BH solutions to the Einstein equations 
have spherical horizon topology (Hawking) 

All stationary, axisymmetric vacuum solutions to the Einstein 
equations are uniquely characterized by 2 parameters: M and S -
> Kerr BHs are unique. (Carter) 

All stationary, vacuum, BH solutions to the Einstein equations 
are static or axisymmetric (Hawking) 
All static, vacuum, spherically symmetric BH solutions to the 
Einstein equations are Schwarzschild (Birhoff theorem, Israel) 

Black Holes need not be Kerr if:

(i) They are not in vacuum (eg. plasma, accretion disk).
(ii) They are not stationary (eg. flows in disks).
(iii) They are not solutions to the Einstein equations.



Black Holes in Alternative Theories

z

We will focus on stationary, vacuum solutions to modified gravity 
field equations in four-dimensions. 

We will study theories with curvature expansions of the form:

Simplifications

We will search for “small” deformations away from GR solutions 
because we want (i) stable solutions, (ii) solutions that pass 
weak-field tests and (iii) analytic solutions.

Theta is a spacetime function and the alpha’s are coupling constants.  
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Black Holes in DCSG

z

valid to O(a^2/M^2) and to O(alpha_4)vvaalliidd ttoo OO((aa^̂22//MM^̂22)) aanndd ttoo OO((aallpphhaa 44))

This modified gravity deformation corrects the dragging of inertial 
frames (the gravitomagnetic sector of the metric only). 
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Spherically symmetric metrics are not modified in DCSG (Birkhoff 
theorem holds) but non-spherically symmetric ones are, coupling to 
parity breaking terms. 

(Yunes and Pretorius ’09)

A “hairy” solution in that it has a pseudo-scalar charge that acts as a 
magnetic dipole.



Black Holes in EDGB

Spherically symmetric metrics are modified, Birkhoff Theorem does 
not hold (neither do the no-hair theorems). 

(Yunes and Stein ’10)

A “hairy” solution in that it has a scalar charge that 
acts as an electric monopole.

ϑ =
α3

β

2

Mr

(
1 +

M

r
+

4M2

3r2

)

gtt = gSchw
tt − 1

3

α2
3

βκ

M3

r3

(
1 +

26M

r
+ . . .

)

grr = gSchw
rr − α2

3

βκ

(
1− 2M

r

)−2
M2

r2

(
1 +

M

r
+ . . .

)



Modified Gravity Bumpy Black Holes

Can we construct a metric that parametrically deviates from Kerr 
such that the previous metrics can be reproduced in some limit, 

while also approximately preserving the Kerr Killing symmetries?

(Vigeland, Stein and Yunes ’10)

where hab is given by some complicated functions of coordinates 
and bump coefficients. gab satisfies the Killing equations.

gab = gKerr
ab + hab

The resulting metric is stationary and axially symmetric, but it 
does not solve the Einstein equations.

This metric is valid for small deformations away from Kerr 
(hab<<1) 

With this, we can now study how EMRIs evolve in a parametrically 
deformed, bumpy spacetime. 



II. Compact Binaries in Alt. Theories



Compact Binaries in GR

Gμν = 8πTμνgμν = ημν + hμν �ηhμν = τμν [h2]→
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An Example: Equations of Motion 

d

Leading term: Newtonian gravity.

1 PN (Relativity 
corrections)

2 PN (more 
corrections ... )



and craziness ensues... 

d

[Blanchet 2006, Liv Rev 
Rel 9, 4, Eq. (168)]

3 PN (yet more corrections ... )

Impressed yet ... ?



Compact Binaries in Alt. Theories

d

and now you can use the same PN tools as always to solve the above 
wave equations (see eg. the DIRE approach or dim regularization).

Gμν + Cμν = 8πTμν

�ηhμν = τμν [h
2] + σμν [h

2, ∂nh]

�ηδhμν = τμν [h
2
GR] + σμν [h

2
GR, ∂

nhGR]

Start with the modified field equations

Linearize about Minkowski

Linearize about GR

But be careful!!

The point-particle description of BHs works in GR (in part due to the 
Birkhoff theorem), but this need not be so in Alternative Theories. In 
fact, usually one must compensate for violations of this description.

(Yagi, Stein, Yunes and Tanaka ’10)



Some Preliminary Results

d

Based on this, one expects the scalar fields to radiate like an electric-
type monopole (-1PN) and like a magnetic-type dipole (2 PN). 

This was confirmed through the methods described previously.

Going back to EDGB and 
DCSG, recall that the 

scalar fields act like an 
electric monopole and a 

magnetic dipole. 

(Yagi, Stein, Yunes and Tanaka ’10)
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In both cases, this radiation modifies the rate of change of the 
energy-momentum lost by the binary, strongly impacting waves.

In the DCSG case, not including the spin-dependent background 
scalar field leads to a huge suppression of the modification. 



III. Gravitational Wave Tests



Gravitational Waveform in GR

h×(t) ∝ μ

R
cos ι [MF (t)]2/3 cos 2φ + . . .×
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Parameterized post-Einsteinian 
Framework (ppE)

Promote the response function to a non-GR response, with 
parameters that control “well-motivated” deformations

ppE parameters

GR: 

BD: (α, a, β, b) = (0, a, βBD,−7/3)

PV: (α, a, β, b) = (αCS , 1, 0, b)

(α, a, β, b) = (0, a, 0, b)

(Yunes & Pretorius ’09)

Extremely Simple Eg: 
Inspiral ppE template

Match filter with this new response function and let the data 
decide what these ppE parameters are.

You cannot test GR by assuming GR templates a priori

PPPromottte ttthhhe response fffunctttiiion ttto a non-GGGRRR response wiiittthhh

YYYYoooouuuu ccccaaaannnnnnnnooootttt tttteeeesssstttt GGGGRRRR bbbbyyyy aaaassssssssuuuummmmiiiinnnngggg GGGGRRRR tttteeeemmmmppppllllaaaatttteeeessss aaaa pppprrrriiiioooorrrriiii

h̃ = h̃GR (1 + α ηc ua) ei β ηdub

MMMaaatttccchhh fififilllttteeerrr wwwiiittthhh ttthhhiiisss nnneeewww rrreeessspppooonnnssseee fffuuunnnccctttiiiooonnn aaannnddd llleeettt ttthhheee dddaaatttaaa 
decide what these ppE parameters are.



Questions for ppE
Given a GW detection, how sure are we it was a GR event? 

Statistically significant anomalies in the signal?

Can we test for deviations from/consistency with GR, without 
explicitly building templates banks for all conceivable theories?

How would we mischaracterize the universe if GR was close but not 
quite the correct theory of nature? (“fundamental bias”)

Templates/
Theories GR ppE

GR

Not GR

Business as usual

Quantify the likelihood of GR 
being the underlying theory 

describing the detected  event, 
within the class of alt. theories 

captured by ppE 

Understand the bias that could 
be introduced filtering non-GR 

events with GR templates

Measure deviations from GR 
characterized by non-GR ppE 

parameters.

(Yunes and Pretorius ‘09)



Constraining Phase Deviations

(Cornish, Sampson, Yunes & Pretorius (2011)h̃ = h̃GR (1 + αfa) eiβfb

Strong FieldWeak Field

GR Signal/ppE Templates, 3-sigma constraints, SNR = 20

(Yunes and Hughes, PRD 82 (2010)
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Parameter Bias

Non GR injection, extracted with GR templates (dashed) and ppE 
templates (solid). GR template extraction is “wrong” by much more 

than the systematic (statistical) error -> “Fundamental Bias” 

Non-GR Signal/GR and ppE Templates, SNR = 20

(Cornish, Sampson, Yunes & Pretorius, 2011)
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Conclusions

The full exploit of GW astrophysics will require the strong 
collaboration between relativists, astrophysicists, data analysts & 

high-energy theorists. The future is around the corner!

Compact binary evolution is also modified in alternative theories of 
gravity, not only due to strong-field modifications to the individual 

BHs, but also due to new dynamical effects. 

Several analytic examples exist (EDGB, DCSG) for non-Kerr, 
“hairy” BH solutions in alternative theories.  

Black holes need not be described by the Kerr metric in alternative 
theories of gravity, even if these are stationary and axisymmetric.

TTTThhhheeee ffffuuuullllllll eeeexxxxppppllllooooiiiitttt ooooffff GGGGWWWW aaaassssttttrrrroooopppphhhhyyyyssssiiiiccccssss wwwwiiiillllllll rrrreeeeqqqquuuuiiiirrrreeee tttthhhheeee ssssttttrrrroooonnnngggg 
collaboration between relativists, astrophysicists, data analysts & 

high-energy theorists. The future is around the corner!

A new (ppE) waveform parameterization has been proposed to 
capture generic, model-independent GR deformations. 



But What Theory Do We Pick?

It’s not easy to fool Mother Nature! (Wald)

A Minimal (?) Set of Criteria: 

1. Weak-Field Consistency (existence and stability of physical 
solutions, satisfaction of precision tests).
2. Strong-Field Inconsistency (deviations only where experiments 
cannot currently rule out modifications)

Other Nice Criteria:
3. Well motivated from fundamental physics.
4. Well-posed theory ?? This is hard to do...

IIIItttt’’’’ssss nnnnooootttt eeeeaaaassssyyyy ttttoooo ffffoooooooollll MMMMooootttthhhheeeerrrr NNNNaaaattttuuuurrrreeee!!!! ((((WWWWaaaalllldddd))))



A Proposed Recipe

 (2) Go back to your data and study whether you have missed 
something or whether the data is consistent with GR:

(1) For low SNR sources, GWs are buried in noise. Construct 
Templates and extract via matched filtering, assuming GR is right. 
After all, Solar System/Binary Pulsar Tests have confirmed GR in the 
weak-field limit, so the early inspiral must be right.   

If it is consistent If it is not consistent

Cross-Correlate 
with other 

detectors to 
eliminate inst. and 
astroph. artifacts 

Test GR
Place a constraint on 
how large Phase and 
Amplitude deviations 

could be given 
uncertainties. 

Characterize any 
Phase or Amplitude 

deviation. Trace 
back to a specific 

modification to GR.



Unavoidable Correlations

a = 0

b = 0

b = -5/3



Identifying GR Deviations

Filter an injected ppE signal (a,alpha,b,beta)=(a,0,-1.25,0.1) with a 
ppE template family. For a given beta’, integrate the posterior to 

find the evidence or Bayes factor or odds Ratio.

Non-GR Signal/ppE Templates, aLIGO, SNR = 20

Eg. if beta’ = 0.175, 
there would be a 

100:1 odds that GR 
is wrong. 

(Cornish, Sampson, Yunes 
& Pretorius, 2011)
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Identifying GR Deviations

Filter an injected ppE signal 
(b,beta,eta,beta’)=(-1.25,10.0,0.204,13.57) with ppE templates. The 
marginalized posterior for beta shows a preference away from GR.

Non-GR Signal/ppE Templates, aLIGO, SNR = 20

With a single 
detection, you 

cannot break the 
eta and beta 

degeneracy, so you 
can constrain beta’

(Cornish, Sampson, Yunes 
& Pretorius, 2011)
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