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Plan

• Review of ADD ( and RSI ) and RSII braneworlds

• The numerical static black hole problem

• Black holes in ADD

• An aside; AdS/CFT on a black hole metric  ( + some details... )

• Black holes in RSII

• Caveat:  this talk will only discuss static solutions, vacuum gravity (ie. no 
moduli stabilization).
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Talk based on...

• Framework for static numerical construction and KK results:  with M. 
Headrick & S. Kitchen  [ 0905.1822 ]

• For RSII results:  

• related solution:  with P. Figueras & J. Lucietti  [ 1104.4489 ]

• results:  with P. Figueras   [ 1105.2558 ]

• Also for stationary solutions:    with A. Adam & S. Kitchen  [ 1105.6347 ]

• Review on KK:    with G. Horowitz  [1107.5563] 

• Review on numerical methods:  [ 1107.5513 ] 
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Part I: Review of ADD & RSII brane worlds

• Braneworlds essentially fall into two categories: compact and non-compact.

• The canonical compact model is `ADD’

• The simplest toy model to study is Kaluza-Klein theory ie. gravity in 5-d, 
where one dimension is compact. 

• Branes are treated as probes:    

vacuum on brane = reflection plane

Reflection plane = vacuum brane

Identify
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KK (or ADD)

• By KK we mean: gravity restricted to geometries asymptoting to 

• At linear level we understand well the transition from 5d to 4d behaviour as 
one probes scales smaller/larger than the circle size    . Consider     fixed.

• There are two obvious black hole solutions in KK; the homogeneous black 
string and the localized black hole.

Mink4 ⇥ S1

L

ds2 = ds24dSch + dz2

ds2 ' ds25dSch

L
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KK (or ADD)

• The important questions in this scenario are;  

• what happens as one makes the localized black hole larger? 

• what is the nature of the transition from 5d to 4d behaviour

• are there any other solutions that might impact phenomenology?
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RS II

• The 5d Randall-Sundrum II model is a remarkable ‘compactification’. 4d 
gravity is recovered on the brane, at scales larger than   ;  l

� = � 4
l2

Source

ADD
RSII

AdS

Isreal junction conditions

Source
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• The 5d Randall-Sundrum II model is a remarkable ‘compactification’. 4d 
gravity is recovered on the brane, at scales larger than   ;  

RS II

l
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RS II

• The 5d Randall-Sundrum II model is a remarkable ‘compactification’. 4d 
gravity is recovered on the brane, at scales larger than   .

• 4d propagator goes as;                            so there is no mass gap.

• Relation to AdS/CFT:   RS II ~ 4d gravity + strongly coupled CFT

• For small scales, 5d gravity is recovered. In particular a small (            ) black 
hole on the brane looks like 5d Schwarschild.

• Key question: is there a 4d limit for large black holes?

• Claim [Tanaka; Emparan, Kaloper, Fabbri ‘02]: For black holes, radius            
there exist no static solutions. Counter argument [Fitzpatrick, Randall, TW ‘06]

• Previous numerical attempts; Kudoh                   ,  Yoshino claimed no solns

l

� 1
r

+
l2

r3
+ . . .

R4 � l

R4 > l

R4 � 0.6 l
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Part II:   Static numerical problem

• static problem should be elliptic;  specify asymptotics and horizon regularity

• use a characteristic version of the einstein eq - `harmonic einstein eq’ - to 
manifest this character:

• reference connection  -              for simplicity take ref metric

• now;

• analogous to harmonic coordinates;

RH
µ⌫ ⌘ Rµ⌫ �r(µ⇠⌫)

�̄↵
µ⌫ = �↵

µ⌫ [ḡ⇢�]�̄↵
µ⌫

RH
µ⌫ ⇠ �1

2
g↵�@↵@�gµ⌫

r2
Sx

↵ = H↵ ⌘ �gµ⌫ �̄↵
µ⌫⇠↵ = 0 =)

⇠↵ ⌘ gµ⌫
�
�↵

µ⌫ � �̄↵
µ⌫

�

RH
µ⌫ = 0
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Static problem

• assume one static killing horizons with the same surface gravity.

• simplest way to manifest ellipticity is to perform a euclidean contination of 
time, choosing period to render horizon smooth.

• ie. find smooth ricci flat metrics with U(1) isometry

• problem is now elliptic (since                                 ).

• Choose the reference metric to have the U(1) isometry.

• then          is invariant under static U(1), so Harm. Ein. Eq. consistently 
truncates to static metrics.

RH
µ⌫ ⇠ �1

2
g↵�@↵@�gµ⌫

RH
µ⌫
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Static problem

• elegant formulation as a boundary value problem; 

• only boundary is asymptotic one where size of time circle (~temperature) is 
fixed.

• certainly a solution               in gauge 

• may be other solutions,                     with non-trivial             called ‘ricci 
solitons’.

Rµ⌫ = 0 ⇠↵ = 0 RH
µ⌫ = 0=)

Rµ⌫ = r(µ⇠⌫) ⇠↵

Thursday, 1 September 11



Ricci solitons

• since                is elliptic then a solution should be locally unique. 

• hence can always distinguish a soliton from a ricci flat solution.

• however, there may exist only ricci flat solutions;

• Bourguignon (’79) proves on compact manifold no solitons exist.

• For various asymptotics one can prove that for appropriate choices of 
reference metric that no solitons can exist    [ Figueras, Lucietti, TW  ’11 ]

RH
µ⌫ = 0
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Solving the elliptic system I.

• local relaxation (eg jacobi) = diffusion

• DeTurck’s flow:

• diffeomorphic to Ricci flow                         since                            is an 
infinitessimal diffeo.

• An important implication is that the flow is a geometric flow; the trajectory in 
the space of geometries is independent of the choice of  

d

d�
gµ⌫ = �2RH

µ⌫ = �2Rµ⌫ + 2r(µ⇠⌫)

d

d�
gµ⌫ = �2Rµ⌫ �gµ⌫ = r(µ⇠⌫)��

�̃
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Solving the elliptic system I.

• About a fixed pt                     we perturb;

• In a suitable gauge, Ricci flow implies; 

• Thus the fixed point is stable if          is a positive operator.

• Gross, Perry and Yaffe should that for Euc. Schwarzschild          has a single 
negative eigenmode.

• may still use method, but if ‘n’ negative modes must tune ‘n’ parameter set of 
initial data.

Ric[g0] = 0 g = g0 + �g

�ġµ⌫ = �24L�gµ⌫

4L

4L
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Solving the elliptic system II.

• Solve                using Newton method ie.                                                          
where,         , is the linearization of 

• Again we require  reference connection     , but now the trajectory taken in 
solution does depend on this choice.

• Advantages:  works very well, no problem -ve modes

• Disadvantages:  more complicated than Ricci flow, and it is not geometric. In 
particular basin of attraction depends on choice of    . Also basin of attraction 
typically rather small in practice.

RH
µ⌫ = 0 �gµ⌫ = �O�1[g] ↵�

µ⌫ RH
↵�

O RH
µ⌫

�̄

�̄
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Part III: Kaluza-Klein black holes

• Can apply static numerical methods to find these

• Use Newton method

• Ricci flow less useful due to negative modes

• No solitons exist for the system
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GL instability

• Space of solutions is mediated by two effects;

• Thin black string is unstable to GL instability;

�gµ⌫ ⇠ e⌦teikzfµ⌫(r)

�gµ⌫ ⇠ eikczfµ⌫(r)

Unstable Stable

Marginal

`Inhomogeneous
black strings’
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Topology change

• Kol proposed a localized black hole and inhomogeneous string may meet in 
the space of solutions at a topology changing solution.

• Conical singular geometry:  

Moduli space coordinate

ds2
cone

= d↵2 +
1

3
↵2

�
d�2 � sin2 �dt2

�
+

1

3
↵2d⌦2

2
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Results:  Kaluza-Klein black holes

• Area against mass:

Inhomogeneous Strings

Localized Black Holes

Localized Black
Holes

Homogeneous Strings

GL point

Merger point?
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1.2

AêL3
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Results:  Kaluza-Klein black holes

• Inv temperature against mass

GL point

Merger point?
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Kaluza-Klein embeddings

Thursday, 1 September 11



Results:  Kaluza-Klein black holes

• Global stability

Inhomogeneous Strings

Localized Black Holes

Localized Black
Holes

Homogeneous Strings

GL point

Merger point?

0.00 0.05 0.10 0.15 G5MêL20.0

0.2

0.4

0.6

0.8

1.0

1.2

AêL3

Thursday, 1 September 11



Results:  Kaluza-Klein black holes

• Local stability
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Part III:  AdS-CFT with a black hole boundary

• Suppose we wish to understand AdS-CFT where the dual 4d CFT is placed 
on a Schwarzschild background. Aim to solve                      such that;Rµ⌫ = ⇤gµ⌫ ⇤ = � 4

l2

Conformal
boundary 

(Schwarzschild)

AdS 
Poincare 
(extremal) 
horizon

Fefferman-Graham
 expansion about z = 0

ds

2 =
l

2

z

2

�
dz

2 + hµ⌫(z, x)dx
µ
dx

⌫
�

hµ⌫(z, x)dx
µdx⌫ =

✓
�fdt2 +

1

f
dr2 + r2d⌦2

◆
+ z4tµ⌫(x)dx

µdx⌫ +O(z6)=)
Thursday, 1 September 11



AdS-CFT with a black hole boundary

• We may use the isometry,          , and any others (eg. axisymmetry) to simplify 
the problem, by reducing on these directions. At fixed points, boundary 
conditions are required, and are determined from smoothness of the original 
metric.

• We use a metric ansatz of the form;

• Then                       are functions of          and their behaviour at boundaries in 
the         domain specifies the topology of the metric.

• Initial guess = reference metric =  

@/@⌧

ds

2 =
l

2

1� x

2

✓
4r2f2

e

T

d⌧

2 + x

2
g e

S

d⌦2
(2) +

4

f

2
e

T+r

2
fA

dr

2 +
4

g

e

S+x

2
B

dx

2 +
2rx

f

Fdrdx

◆

g = 2� x

2 ; f = 1� r

2

T,A,B, F, S r, x

r, x

(T = A = B = S = F = 0)

Thursday, 1 September 11



AdS-CFT with a black hole boundary

x = 0

r = 0

r = 1

x = 1

non-extremal horizon
(ficticious bounary)
Neumann b.c.

symmetry axis
(ficticious bounary)
Neumann b.c.

conformal
boundary

Dirichlet b.c. (=0)

AdS Poincare horizon (extremal horizon),  Dirichlet b.c. (=0)
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AdS-CFT with a black hole boundary

• Two very nice features of this system:

• There exist no solitons

• Since the black hole is not ‘dynamical’ there are no negative modes. One 
can simply use Ricci flow to relax to the solution. 

• Thus it is very straightforward to find this solution!
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AdS-CFT with a black hole boundary

• Solve using ricci flow ( or newton method )

• Embedding into hyperbolic space                                                   as  

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0

z

R

ds2 =
l2

z2

⇣
dz2 + dr2 + r2d⌦2

(2)

⌘
r = R(z)
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AdS-CFT with a black hole boundary

• extract O(N^2) part of boundary stress tensor

1.0 1.5 2.0 2.5 3.0 3.5 4.0-0.06

-0.04

-0.02
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4
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AdS-CFT with a black hole boundary

• Interpretation - many of issues similar to those of large RS black holes.

• Found classical dual to CFT on Schwarzschild metric in standard (zero 
temp) vacuum   ie. not the Hartle-Hawking vacuum.

• Believe it describes the leading order (ie. planar) behaviour of the CFT in 
the Unruh (and possibly Boulware) vacua.

• Determines its O(N^2) stress tensor which is regular everywhere.

• In order to see the usual divergences on past horizon for Unruh vacuum 
one should include bulk quantum/string corrections. 

• Presumably see singularity in O(1) component of stress tensor.
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AdS-CFT with a black hole boundary

• Physical picture: Black hole act as both a thermal source and an energy sink

• Black hole heats up vacuum to form plasma surrounding it

• Radiation pressure of plasma counteracts the (attractive) strong interaction

• At O(N^2) reaches equilibrium configuration with energy emitted from 
horizon equaling energy radiated back in.

• At infinity only O(1) flux of radiation
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Part IV: RSII black holes from AdS/CFT

• From a soln of AdS/CFT one can construct an approximate `large’ RSII soln

z = 0

ds

2 =
l

2

z

2

�
dz

2 + hµ⌫(z, x)dx
µ
dx

⌫
�

hµ⌫(z, x)dx
µdx⌫ =

✓
�fdt2 +

1

f
dr2 + r2d⌦2

◆
+ z4tµ⌫(x)dx

µdx⌫ +O(z6)
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RSII black holes from AdS/CFT

• From a soln of AdS/CFT one can construct an approximate `large’ RSII soln

z = ✏
z = 0

✏ ⌧ 1
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RSII black holes from AdS/CFT

• Induced metric on the brane         which is approximately vacuum

• Find from F-G and Israel:

• Correction to 4d Sch:

• Exact solution is (static) AdS-CFT soln with perturbed boundary metric:

z = 0
z = ✏

�µ⌫

�µ⌫ =
`2

✏2
�
gSch
µ⌫ + ✏2�gµ⌫

�

T brane
µ⌫ = O(✏4)

Gµ⌫ [g
Sch + ✏2�g] = 4✏2tµ⌫ +O(✏4)

gµ⌫ = gSch
µ⌫ +O(✏4)
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RSII black holes

• Modify the AdS/CFT ansatz for RSII braneworld:

• Expect metric functions should approach AdS-CFT soln for large black holes 
where             is the perturbation parameter.

ds

2 = �

✓
4r2f2
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T
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2 + x

2
g e

S

d⌦2
(2) +

4

f

2
e

T+r

2
fA
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2 +
4

g

e

S+x

2
B

dx
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2rx

f

Fdrdx

◆

� =
l

2

1� x

2
! � =

l

2

(1� x

2) + ✏ (1� r

2)

✏ ! 0
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RSII black hole

x = 0

r = 0

r = 1

x = 1

non-extremal horizon
(ficticious bounary)
Neumann b.c.

symmetry axis
(ficticious bounary)
Neumann b.c.

Brane b.c.

AdS Poincare horizon (extremal horizon),  Dirichlet b.c. (=0)

Kij = hij

F = 0

✓
 = �3

l

◆

⇠
x

= 0

=) @
x

⇠
r

=
2

l
⇠
r
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RSII black hole

• Method works well - we can find both very small black holes (            ) and 
large ones (                 )

• However, unlike the AdS/CFT solution we cannot prove no solitons exist, 
although we don’t find any.

• Also since the black hole is fully ‘dynamical’ the solution has a negative mode 
and we must use the Newton method so more complicated.

R4 ⇠ 100l

R4 ⌧ l
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RSII results

• Metric function T:
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RSII results

• Can find solutions from very small to very large black holes (                   ).
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RSII results

• Smooth transition from 5-d to 4-d behaviour;
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RSII results

• Inv Temperature
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RSII results

• Embeddings of brane black hole horizons into hyperbolic space
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RSII results

• Brane geometry and AdS/CFT soln stress tensor
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RSII stability

• Likely to be stable as we only see one Euc negative mode.
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Summary

• We have effective numerical techniques to find static black holes.

• Black holes in ADD have intricate behaviour. However, at large masses there 
appear only to be black strings which have usual 4d behaviour. The transition 
from 5d to 4d behaviour is complicated.

• Large static (stable?) black holes exist in RSI and have usual 4d behaviour. 
The transition from 5d to 4d behaviour is apparently simple.

• Related to existence of interesting AdS/CFT solution with Schwarzschild 
boundary metric.
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