Imprint of Alternative Theories

Hajime SOTANI (National Astronomical Observatory of Japan)

contents

- Tests in the post-Newtonian limit
- Imprint of the *scalar-tensor theory* in GWs spectrum
- Imprint of the *tensor-vector-scalar theory* in GWs spectrum
 - from the isolated neutron stars
- Conclusion

alternative theories of gravity

- Up to now, there exists no experiment purported inconsistency of Einstein's theory.
- General relativity (GR) is definitely a beautiful theory of gravitation.
- However, we may have alternative approaches to explain all gravitational phenomena.
- We have also faced on some fundamental unknowns in the Universe such as dark energy and dark matter, which might be solved by new theory of gravitation.
- The candidates as *an alternative gravitational theory* should satisfy at least three criteria for viability; (1) *self-consistency*, (2) *completeness*, and (3) *agreement with past experiments*.

metric theory

- *Metric theories* should satisfy the following principles;
 - spacetime possesses a metric
 - metric satisfies the equivalence principle
- Metric theories of gravity differ from each other in their laws for the generation of the metric.
 - In *GR*, the metric is generated directly by the stress-energy of matter and of nongravitational fields.
 - In *Dicke-Brans-Jrdan thoery*, matter and nongravitational fields generate a scalar field ϕ ; then ϕ acts together with the matter and other fields to generate the metric, while "long-range field" ϕ CANNOT act back directly on matter.
 - (1) Despite the possible existence of long-range gravitational field in addition to the metric in various metric theories of gravity, *the postulates of those theories demand that matter and non-gravitational fields be completely oblivious to them*.
 - (2) The only gravitational field that enters the equations of motion is the metric.

 \rightarrow Thus, the metric and equations of motion for matter become the primary entities for calculating observable effects.

2011/09/02

post-Newtonian limit

- The comparison of metric theories of gravity with each other and with experiments becomes particular simple, when one takes the *slow-motion* & *weak-field limit*. This approximation, known as the "*post-Newtonian limit*", is sufficiently accurate to encompass most solar-system tests.
 - In fact, the solar-system has weak gravity, the matter that generates solar-system gravity moves slowly, and has small internal energy, such as $|U| < 10^{-6}$, $v^2 < 10^{-7}$, $\Pi < 10^{-6}$.
- Each metric theory has its own post-Newtonian approximation.
- Despite the great differences between metric theories themselves, *their post-Newtonian approximations are very similar*.
 - Metric predicted by nearly every metric theory of gravity has the same structure.
 - It can be written as an expansion about the Minkowski metric in terms of dimensionless gravitational potentials of varying degrees of smallness, which are constructed from the matter variables.

<u>Parameterized Post-Newtonian</u> (PPN) formalism

- "Order of smallness" is determined according to the rules; $U \sim v^2 \sim \Pi \sim p/\varrho \sim O(\varepsilon), v^i \sim |d/dt| \sim |d/dx| \sim O(\varepsilon^{1/2})$, and so on.
- A consistent post-Newtonian limit requires determination of $g_{00} \sim O(\epsilon^2)$, $g_{0i} \sim O(\epsilon^{3/2})$, and $g_{ij} \sim O(\epsilon)$.
- The only way that one metric theory differs from another is in the numerical values of the coefficients that appear in front of the metric potential.
- The PPN inserts parameters depending on the theory in place of these coefficients. In order to indicate general properties of metric theories of gravity, *one need TEN parameters*.
- By using these parameters, one can identify the metric theories of gravity.
 - One set of values makes the PPN formalism identical to the PN limit of GR.
 - Another set of values makes it the PN limit of Dicke-Brans-Jordan theory, etc...

PPN parameters

parameter	What it measures relative to GR		
γ	How much space-curvature produced by unit rest mass ?		
eta	How much "nonlinearity" in the superposition law for gravity ?		
ξ	Preferred-location effects ?		
$\alpha_1, \alpha_2, \alpha_3$	Preferred-frame effects ?		
$\alpha_3, \varsigma_1, \varsigma_2, \varsigma_3, \varsigma_4$	Violation of conservation of total momentum ?		

- The parameters γ and β are used to describe the "classical" tests of GR, and in some sense the most important.
- The parameter ξ is non-zero in any theory of gravity that predicts preferred location effects such as a galaxy-induced anisotropy in the local gravitational constant.
- In GR, $(\gamma, \beta) = (1, 1)$ and the other parameters are zero.
- In scalar-tensor, the only non-zero parameters are γ and β .
- Fully conservative theories have three PPN parameters (γ, β, ξ) .

2011/09/02

tests of the parameter γ

• Deflection of light

- 1995 VLBI: $(1+\gamma)/2 \sim 0.9996 \pm 0.0017$.
- 2004 VLBI: $(1+\gamma)/2 \sim 0.99992 \pm 0.00023$.
- \rightarrow equivalently γ -1=(-1.7 ± 4.5) × 10⁻⁴.
- Time delay of light
 - 1976 Viking: in a 0.1% measurement.
 - 2003 Cassini: γ -1=(2.1 ± 2.3) × 10⁻⁵.
 - \rightarrow (1+ γ)/2 must be within at most 0.0012% of unity.
 - → Scalar-tensor theories must have $\omega > 40000$ to be compatible with this constraint.

test of the parameter β

- perihelion shift of Mercury
 - $d\omega/dt = 42.$ ''98 [(2+2 γ - β)/3 + 3 × 10⁻⁴ × $J_2/10^{-7}$] (arcsec./centuly)
 - $J_2 = (2.2 \pm 0.1) \times 10^{-7}$: determined from the data of heliosesmology
 - → one obtains the PPN bound $|2\gamma \beta 1| < 3 \times 10^{-3}$.

current limits on the PPN parameters

parameter	effect	limit	remarks
γ-1	Time delay	2.3×10^{-5}	Cassini tracking
	light deflection	4×10^{-4}	VLBI
<i>β</i> -1	perihelion shift	3×10^{-3}	$J_2=10^{-7}$ from helioseismology
	Nordtvedt effect	2.3×10^{-4}	$\eta_{\rm N}=4\beta-\gamma-3$ assumed
ξ	Earth tides	10-3	gravimeter data
α_1	orbital polarization	10-4	Lunar laser ranging
		2×10^{-4}	PSR J2317+1439
α_2	spin precession	4×10^{-7}	solar alignment with ecliptic
α_3	pulsar acceleration	4×10^{-20}	pulsar d <i>P</i> /d <i>t</i> statistics
$\eta_{ m N}$	Nordtvedt effect	9×10^{-4}	Lunar laser ranging
ς_1		2×10^{-2}	combined PNN bounds
ς_2	binary acceleration	4×10^{-5}	$d^2 P/dt^2$ for PSR 1913+16
ς_3	Newton's 3rd law	10-8	lunar acceleration
ς_4		6×10^{-3}	$6\varsigma_4 = 3\alpha_3 + 2\varsigma_1 - 3\varsigma_3$ assumed

Numerical Relativity and High Energy Physics (NR/HEP)@Madeira

In the strong gravitational field ??

- In the weak-field regime of gravity, many experiments say the validity of GR.
- While, the gravitational theory is *still unconstrained* in the strong-field regime of gravity.
- However, owing to the development of the technology, it is becoming possible to observe the compact objects with high accuracy.
- These observations could be used to make a constraint in the gravitational theory.
 - red shift
 - quasi-periodic oscillations (QPOs)
 - gravitational waves (GWs)

scalar-tensor theory (ST) of gravity

- A natural alternative to GR is the scalar-tensor theory (ST), in which gravity is mediated by long-range scalar fields in addition to the usual tensor field present in Einstein's theory.
- ST can be obtained from the low energy limit of string theory or/and other gauge theories.
- The existence of scalar fields is crucial in explaining the accelerated expansion phases of the universe, e.g., inflation and quintessence.
- Still, it is not clear how the scalar fields couple to gravity.
- A basic assumption is that the scalar and gravitational fields are coupled to matter via an "effective metric" $g_{\mu\nu} = A^2(\phi) g^*_{\mu\nu}$.
 - Brans-Dicke theory; $A(\phi) = \exp(\alpha_0 \phi), \alpha_0^2 = (2\omega+3)^{-1}$
 - → solar system experiments set strict limits as $\omega > 40000$, $\alpha_0^2 < 10^{-5}$.
 - Damour & Esposito-Farese; $A(\phi) = \exp(\alpha_0 \phi + \beta \phi^2/2)$
 - → Harada found that "spontaneous scalarization" is possible for β <-4.35.

basic equations in ST

- Metric; $g_{\mu\nu} = A(\phi)^2 g^*_{\mu\nu}$, where $A(\phi) = \exp(\beta \phi^2/2)$
- Field equations;
 - $G^{*}_{\mu\nu} = 8\pi G^{*}T^{*}_{\mu\nu} + 2(\phi_{,\mu}\phi_{,\nu} g^{*}_{\mu\nu}g^{*\alpha\beta}\phi_{,\alpha}\phi_{,\beta}/2)$ $- \Box^{*}\phi = -4\pi G^{*}\alpha(\phi)T^{*}$
- Perfect fluid;
 - $T_{\mu\nu} = (\varrho + P)U_{\mu}U_{\nu} + Pg_{\mu\nu}$
- The stellar properties change dramatically!!

possibility to distinguish the ST from the GR

- DeDeo & Psaltis (2003) : redshift of emitted X & γ rays.
- DeDeo & Psaltis (2004) : QPOs
- HS & Kokkotas (2004) : GWs related to the fluid oscillations
- HS & Kokkotas (2005) : GWs related to the spacetime oscillations

stellar properties in ST

• Relation between the ADM mass and the central density, as varying the parameter β .

Numerical Relativity and High Energy Physics (NR/HEP)@Madeira

fluid oscillations in ST (1)

- Dependence of the frequencies on β .
- For β < -4.35, frequencies dramatically are changing. (spontaneous scalarization)
- Higher overtones depend strongly on β .
- For the n-th order mode,

$$rac{\partial \omega_n}{\partial (-eta)}pprox rac{n}{4}$$

which is almost independent of EOS.

fluid oscillations in ST (2)

- Frequencies of *f* mode oscillations as a function of average density
 - In GR, frequencies can be expressed as a function of average density, which is *almost independent* of the EOS.
- In the case of the existence of ϕ , depending on the value of β , the frequencies become 30~50% larger.
 - → Observations of GWs might reveal the existence of scalar field.

spacetime oscillations in ST (1)

$$\begin{split} \text{Metric perturbations; } g_{\mu\nu} &= g^{(0)}{}_{\mu\nu} + h_{\mu\nu} \\ \hat{h}^{(-)}_{\mu\nu} &= \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \begin{pmatrix} 0 & 0 & -h_{0,lm} \sin^{-1}\theta \partial_{\phi} & h_{0,lm} \sin \theta \partial_{\theta} \\ 0 & 0 & -h_{1,lm} \sin^{-1}\theta \partial_{\phi} & h_{1,lm} \sin \theta \partial_{\theta} \\ * & * & 0 & 0 \\ * & * & 0 & 0 \end{pmatrix}} Y_{lm\nu} \\ \hat{h}^{(+)}_{\mu\nu} &= \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \begin{pmatrix} H_{0,lm} e^{2\Phi} & H_{1,lm} & 0 & 0 \\ * & H_{2,lm} e^{2\Lambda} & 0 & 0 \\ 0 & 0 & r^2 K_{lm} & 0 \\ 0 & 0 & 0 & r^2 K_{lm} \sin^2 \theta \end{pmatrix} Y_{lm} \end{split}$$

• Scalar field perturbation; $\phi = \phi^{(0)} + \delta \phi$

• perturbation of matter field; $P = P^{(0)} + \delta P Y_{lm}$, $\varrho = \varrho^{(0)} + \delta \varrho Y_{lm}$

$$\begin{split} \delta \tilde{U}^t &= \frac{1}{2A^3} e^{-\Phi} H_0 Y_{lm}, \quad \delta \tilde{U}^r = \frac{1}{A} e^{\Phi - 2\Lambda} W Y_{lm}, \\ \delta \tilde{U}^\theta &= \frac{1}{Ar^2} e^{\Phi} \left(V \partial_\theta Y_{lm} - u \frac{1}{\sin \theta} \partial_\phi Y_{lm} \right), \quad \delta \tilde{U}^\phi = \frac{1}{Ar^2 \sin^2 \theta} e^{\Phi} \left(V \partial_\phi Y_{lm} + u \sin \theta \partial_\theta Y_{lm} \right). \end{split}$$

- The metric perturbation in the Einstein frame is simplified and reduced to the "standard" Regge-Wheeler form of a perturbed spherical metric.
- For axial perturbations, the equation does not coupled to $\delta\phi$.

2011/09/02

•

Numerical Relativity and High Energy Physics (NR/HEP)@Madeira

spacetime oscillations in ST (2)

spacetime oscillations in ST (3)

• Dependence of w_1 mode on the stellar compactness

• Independently of the EOS, the frequency and damping rate depend on only β .

spacetime oscillations in ST (4)

• Dependence of (the lowest) w_{II} mode on the stellar compactness

- similarly to w_1 mode, *independently of the EOS*, the frequency and damping rate depend on only β .
- But, the dependence of damping rate is different.
- the shift in GW spectrum could unambiguously signal the presence of a scalar field, if $\beta < -4.35$ in actuality.

<u>Tensor-Vector-Scalar theory</u> (TeVeS) of gravity

- Modified Newtonian dynamics (MOND) was developed to describe the differences between the observed masses of galaxies and clusters of galaxies with the masses inferred from Newtonian dynamics.
- However, it is clear that MOND was never more than a toy model for gravity as it is not a covariant theory.
- A relativistic version has been put forward by Bekenstein (2004), where the standard Einstein tensor field of GR is coupled to a vector field as well as a scalar field.
- TeVeS has attracted considerable attention as an alternative gravitational theory.
 - It explains galaxy rotation curve and the Tully-Fisher law (roughly $L \propto v^4$ for spiral galaxy) without the existence of dark matter.
 - TeVeS has also successfully explained strong gravitational lensing, key features of the CMB, and galaxy distributions through an evolving Universe without CDM.

possibility to distinguish the TeVeS from the GR

- Laksy, HS, & Giannios (2008) : redshift of the atomic spectral lines radiated from the surface of NSs.
- Desai, Kahya, & Woodard (2008) : Shapiro delays of GWs and photons or ν .
- HS (2009a) : GWs associated with the fluid oscillations
- HS (2009b) : GWs associated with the spacetime oscillations
- HS (2010a) : rotational effects
- HS (2010b) : toroidal oscillations in NSs
- Lasky & Doneva (2011) : scalar perturbations of BH
- HS (2011) : torsional oscillations in NSs

stellar properties in TeVeS

- For small value of K, such as K < 0.05, the deviations from GR are small.
- For larger value of *K*, the deviations from GR begin to become considerable.
- The radius of NS in TeVeS is expected smaller than that in GR.

observation consequences

Laksy, HS, & Giannios (2008) 1 Mass Radius 0.10.1 Surface redshift factor 2 Stellar compactness 0.01Stellar average density • k = 0.03 $\varphi_{c} = 0.003$ 0.0010 0.51.01.5 $M_{
m ADM}~[M_{\odot}]$ 0.30.20.51.0 $M_{\rm ADM}/R$ 0.2**0.1** 0.1 $\substack{k=0.03\\\varphi_c=0.003}$ 0 0.51.01.50 $M_{\rm ADM}$ $[M_{\odot}]$

Numerical Relativity and High Energy Physics (NR/HEP)@Madeira

fluid oscillations (1)

- The deviation between the *f* mode frequencies expected in GR and in TeVeS is obviously.
 - Depending to K, the frequencies become around 20% larger than those in GR
 - This can be an observable effect and one might distinguish the gravitational theory in strong gravitational field by using the observations of GWs.

Numerical Relativity and High Energy Physics (NR/HEP)@Madeira

fluid oscillations (2)

For the stellar models with $M_{ADM} = 1.4 M_{\odot}$, the normalized eigenvalues of • the first few modes $(f, p_1, p_2, \text{ and } p_3)$. HS (2009a) 3.55.21.4f mode p_1 mode. p_2 mode $\frac{1.35}{1.3}$ 1.3 1.2 5 $R^3/M_{
m ADM}$ $R^3/M_{
m ADM}$ $_{3.3}\,\omega$ 4.8EOS II 4.63.1EOS EOS I 4.4EOS A $\Delta \omega$ EOS A EOS A 4.2>2.91.23 3 4 1.153.82.70.20.40.60.8 0.60.80.20.40.60.8 0 0.20.41 0 0 KKK $p_3 \mod$ Mode **EOSA EOS II** $\omega \sqrt{R^3/M_{
m ADM}}$ 6.510.28% 12.89% 6 EOS II 15.21% 18.18% p_1 EOS A 5.517.88% 20.73% p_2 50.20.40.60.80 1 19.23% 21.89% p_3 K

relative frequency change of each eigenmode defined as $\Delta \omega / \omega_{0.05}$

• We can find that with the help of observation of stellar mass, it might be possible to probe the gravitational theory in the strong-field regime by using observations of GWs.

spacetime oscillations

- Dependence of w_{II} mode on M/R is almost *independent* of *K* and EOS.
- Frequencies of w_{II} mode is also almost independent of the adopted value *K*.
- We derive the empirical formula;

 $\text{Re}(\omega M) = -0.041 + 0.71(M/R) + 3.3(M/R)^2$

- Frequency of *w* mode is also independent from *K* and EOS.
- However, those expected in TeVeS are *completely different* from those in GR.
- Via GW observations, one could distinguish the gravitational thoery in the strong-field regime.

<u>conclusion</u>

- In the weak gravitational field, there are many experiments and the validity of GR has been shown, while the gravitational theory in the strong-field regime are still unconstrained by the observations.
- However, GWs observations could become the valuable tool to reveal the gravitational theory in the strong gravitational field.
- Via the projecting GW detectors, one can see the true gravitational theory and whether the scalar field exist or not...