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0 Introduction

* Increasing roles in numerical relativity with
development of observational and experimental

technologies (Frans’s talk)

« Numerical relativity plays a role In

-- Gravitational-wave astrophysics/astronomy

-- High-energy astrophysics; e.g., GRB

-- Exploring nature of GR;e.g. critical behavior
-- LHC, high-D gravity

- G R B ‘ £
B
L
- | e TR
. \ 3 b



This talk

1. Our current status & personal perspective
In numerical relativity In

GW physics & high-energy astrophysics
2. Higher-dimensional numerical relativity



Ingredients & Current status in 4D NR

. Einstein’s evolution equations solver

. GR Hydrodynamic equations solver

. Gauge conditions (coordinate conditions)
. Realistic initial conditions

. Gravitational wave extraction technigues
. Apparent horizon (Event horizon) finder
. Special techniques for handling BHs

. Physical modeling: EOS, neutrinos,
B-field, radiation transfer«----- last frontier

O 9. AMR Solving Boltzmann eq.
- Another high-D NR
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Our latest simulation
(Sekiguchi et al. 2011)

Einstein’s equation (BSSN)
GR hydro (a shock capturing scheme)

Physical EOS (finite-temperature EOS)
Neutrino emission (simplified transfer)

| will show a simulation for merger of
binary neutron stars
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NS-NS merger with microphysics

L (erg/cm?3/s) 4

Shen’s + hyperon EOS
1.35—1.35 M,

Sekiguchi et al.
o PRL & submission 2011



NS-NS merger with hyperon (x-z plane)

t = 18.83 ns
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only during the BH formation is shown

* Disk mass ~ 0.1 M,
* High mass & high luminosity disk
* Could be the engine of GRB
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| Motivations for high-D NR

« Exploring high-velocity collision of
two particles/two black holes
(Talks by Pretorius, Witek, Okawa)

« Exploring the stability of black objects, such
as a Myers-Perry black hole, black string, etc

* Developing a new field in numerical rela.:
E.g., Numerical relativity in AdS, AdS/CFT
(Pretorius)

e Others?

Variety of motivations



Several codes have to be developed

1. BH collision, stability of MP BH:
Higher-dimensional code for
asymptotically flat (AF) spacetime
- Easily extended from 4D code

2. Stability of black string
- Need simply to change boundary

condition
3. Asymptotically AdS
- Need a substantial change

In the following, | will talk on
our effort in 1 & 3



Il  High-D numerical relativity:
our approach to AF spacetime

* Solve D-dim Einstein’s equation G, =0
In (N+1) formalism (N=D-1)

ds’ = —(a’ - BB )dt? + 28, dx"dt + y*7;dx'dx!

» Specifically, BSSN + puncture formalism 1Is
employed as in 3+1 case; works well

« Symmetry In the extra-dimensional
directions I1s assumed; SO(D-3) symmetry
- In computation, the number of
dimension 1s “3” + 1 (time)



SO(D-3) Symmetry

Problems in interest:
Angular momentum

exists only In x-y plang
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Cartoon method Iimposing symmetry

 Traditional method for symmetric space Is
to use curvilinear coordinates; e.g., 6D
z=R cosy, Ww,;=Rsiny cosg, wW,=R sinysSing

* |In this method, coordinate singularities
appear at R=0 and =0
-> Special treatment Is necessary &
guaranteeing numerical stability is always
messy problem In numerical relativity

« Cartoon: Solve equations In the Cartesian
coordinates but only In the restricted space.



For simplicity, consider the 5D case
with no rotation In subspace (z, w)

Consider only (x,vy,z) (w=0) plane
Symmetries give y,,=0 and y = %./Z
Vectors g*, = pY,=0, p*,=0, B", = Bz
Tensors g;,=0 (I,] =X, Y, 2),

gAW,W:gAZ/Z (A:X’ Y W)’ gZW,W:(gZZ _gww)/z’ etc.
Exception: z=0 > Use finite difference

Every w derivatives can be replaced to
(X, Y, z) derivatives or simple relations
using the symmetry relation !

- 3D spatial grid i1s enough



Second derivatives are also easily done

Scalar y,,=0 (one ,w Is always zero)
Vectors SY . Is (B4z),

Tensors ;=0 (I, ), k=X,Y, 2),
Ywwi—(%i/2); 15 finite difference of j,,/z

Bluw: Ziww are a little complicated to do,
but straightforward

For higher-dimensions, extension IS easy:
€.d., IBI,WW 2 (D'4) IBI,WW



Applications so far

« High-velocity collision of two BHS
- Okawa’s talk (5,6D, v up to~ 0.9c)

o Stability of MP BHs



Standard picture of particle collision
(Giddings, yesterday)
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Hawking radiation; spin down Evaporation



Is scenario really true ?

e If the formed BH is stable, it iIs OK

 For D >4, no proof of stability for BH:
likely, many instabilities (review later)

e |If the formed BH Is unstable, it will
not relax to a stable state soon =
Different scenario could be the result



11 Stability of High-dim rotating
black hole with single spin

 The formed BH in collision will have one
spin parameter associated with orbital plane

S

&

- MP BH with one spin

 Perturbation analysis for rotating BH Is not
easy

- Robust method is Numerical Relativity



Setting

* Prepare Myers-Perry black hole (1986) with single
rotation, and then perform simulations

G, u . D)
ds? = —dt? + rD‘isz(dtJrasm2 fdp) +Xdr2 +3d6?

+(r?+a’)sin? 0d® +r? cos’ 0dQ}

Gyu

I,.D—5

L. Mass parameter, a: spin parameter

>=r‘+a‘cos’d: A=r’+a’-—

D-2)Q
— l\/|=( ) == J:—2 Ma
167G, D-2
Length: (Gou)"®™, | q=——=-——: nondim. spin

(Gou)



Brief review for previous studies

« Axisymmetric instability sets in for the ultra-
spinning case: q=a/uY®-%) >~1.6 with D=6—9
(Dias et al. & Murata et al. 09)

« Non-axisymmetric instability:

Emparan-Myers give a conjecture based on
Thermodynamical argument (2003)

-> This suggests that BHs are unstable for
g=a/u(®-3) > ~1 (smaller q) irrespective of D >4




Analogy: Rotating star in 4D

Rapidly rotating stars are unstable against

nonaxisymmetric deformation (many works done,
e.g., by Eriguchi and collaborators since 1980)

Often found criterion, T/W ~ 0.27;

T = rotational Kkinetic energy
W= gravitational potential energy;

or of strongly differential rotation
not highly deformed; spheroid Is unstable

By contrast, rotating stars (like pancake) only
with T/W > 0.4 could be unstable against
axisymmetric mode (ring formation)




Simulation, more specifically

Prepare a rotating Myers-Perry BH In the
quasi-isotropic coordinates (good coordinates)
and follow time evolution using puncture
approach

Initially, a small perturbation Is given

Method: 4 order finite difference in time
and space & puncture-gauge with BSSN

Fixed mesh refinement iIs used: High grid
resolution Is necessary for high spin case

Perform simulations for various values of @



Method of analysis
* Analyze apparent horizon during simulation

 Calculate proper length of circumferential
radius, and area

« Define deformation parameter
_Calculate the

/ deformation, e.g.
O = s C(0)/ Cy(2)
View from z-axis Ce(9):

Meridian length
 Also, extract gravitational waves In the

wave zone (along z axis)



D-dim case (D > 5)

Spin parameter q=a/wt(P-3)=[0,0)

Ellipticity Increases with g, but Increases
slowly with (

BH with g>~ 1.6 Is unstable against

axisymmetric deformation
(Dias et al., Murata et al. 2009)

Nonaxisymmetric instability sets In even for

much smaller spin! (for spheroidal BH)
(Shibata & Yoshino, PRD 81, 104035, 2010)




Evolution of deformation of AH
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Evolution of deformation of AH
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Longterm evolution of deformation of AH

=6, 0—082 0.80, 078 104 0.99, 0.93, 088

01

0.01 ¢
S Sg.001
0 100 200 300 400
t/

Growth - Saturation by GW emission
- New stable BH of smaller spin
The same process of 4D fast rotating star



Gravitational waves
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Evolution of C,/C,: Spin down

Not very
small
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Summary for D-dim MP BH

« Rapidly rotating spheroidal BHs are unstable
against bar-mode deformation

» The threshold value of spin Is fairly small
q ~0.87 (D=5), q~0.74 (D=6), 0.73 (D=7), and
0.77 (D=8)

 We can follow BH for a very long time to
determine the final fate for D>5

- Unstable BH radiates GWs and after the
spin-down by sufficient radiation, the BH
settles down to a new stable state

Note: Ultra-spinning BH (pancake-shape) may have
different fate; our study is only for spheroidal BH



qmax

« Analysis by Yoshino-Nambu (2002)
Indicates maximum Impact parameter for
formation of BH iIn ultra-rela. collision

* This gives the maximum spin of BH
formed In the collision as 0.93 (D=5), 1.47
(D=6), 1.98 (D=7), 2.50 (D=8): much larger
than q.; found In our work

« Formation of larger impact parameter

seems to be more frequent
- Many of formed BHs are unstable ?



Corrected picture ?

Unstable BH -
Longterm emission of
gravitational waves

~ @
Quantum radiation

from nonstationary BH ? Evaporation



|V Latest effort for numerical

relativity of
(Takahashi,

* We want to consio
type spacetime wit

Asymptotic AdS
Okawa, Shibata)

er Randall-Sundrum |11
N domain wall
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Motivation:

o Stability of a BH on the
brane (by T. Tanaka)

 New frontier in NR

* AdS/CFT ?



Setting

« Handling singular surface Is not easy In

numerical relativity: Regularity 1s not
easily guaranteed In numerical simulation

» Consider a thick wall by sin-Goldon type
scalar-field potential (Giovannini “01)

2 [ 1 V DW
V(g)= 1—5sin2£\/§¢(x)j £

¢(x):\/§tanl(bx)

1
ds® =
b?x? +1

¢— P+

ds;. : AdS for x>b™ ¥=0




Formulation

1
dSZ :—2

3 [_O‘Zdtz + 777 (dX + gdt) (dx’ +,Bjdt)]
Original BSSN variables: 7,, A, »°, K I
U a®=1+b’x?
Variables in AdS: 7,, A, =Alla, y=yx"/a’>, K=K°/a, I'

» Modified BSSN with a few additional factors
assoclated with a, a’, a”
« Boundary conditions, similar to asymptotic flat case,
work for new variables.
« At x=0, reflection symmetric (or asymmetric)
BCs are simply imposed.



Status (just started)

e Testl1l: Put the exact solution & evolve
- Static solution remains static; OK

« Test2: Put a perturbation & evolve
- looks OK
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Next step

* Prepare BH at the center & evolve,
prepare BH as Frans does ?

« Consider applications seriously;
suggestions are welcome



Thanks
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