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0  Introduction

LCGT
GRB

LHC

• Increasing  roles  in  numerical  relativity  with  

development  of  observational  and  experimental  

technologies  (Frans‟s  talk)

• Numerical  relativity  plays  a  role  in                                               

-- Gravitational-wave  astrophysics/astronomy                                   

-- High-energy  astrophysics;  e.g.,  GRB                                 

-- Exploring  nature  of  GR; e.g.  critical behavior                               

-- LHC,  high-D  gravity



This  talk

1. Our  current  status  &  personal  perspective  

in  numerical  relativity  in                                      

GW  physics  &  high-energy  astrophysics

2. Higher-dimensional  numerical  relativity



Ingredients  &  Current  status  in  4D  NR

1. Einstein‟s  evolution  equations  solver

2. GR  Hydrodynamic  equations  solver

3. Gauge  conditions (coordinate  conditions)

4. Realistic  initial  conditions  

5. Gravitational  wave  extraction  techniques 

6. Apparent  horizon  (Event  horizon)  finder

7. Special  techniques  for  handling  BHs 

8. Physical  modeling:  EOS,  neutrinos,       

B-field, radiation  transfer

9. AMR
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last  frontier

Solving  Boltzmann  eq.

 Another   high-D  NR



Our  latest  simulation
(Sekiguchi  et  al.  2011)

• Einstein‟s  equation (BSSN)

• GR  hydro (a  shock  capturing  scheme) 

• Physical  EOS (finite-temperature  EOS)

• Neutrino  emission  (simplified  transfer)

• I  will  show  a  simulation  for  merger  of  

binary  neutron  stars
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NS-NS  merger  with  microphysics

Shen‟s  + hyperon  EOS

1.35—1.35 Msun

 (g/cm3) L(erg/cm3/s)

Sekiguchi  et  al.

PRL & submission  2011
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NS-NS merger with hyperon  (x-z  plane)  

• Disk  mass  ~  0.1 Msun

• High  mass  &  high  luminosity  disk

• Could  be  the  engine  of  GRB 

 (g/cm3) L(erg/cm3/s)

only  during  the  BH  formation  is  shown



Gravitational  waveforms
Appearance  of  hyperon  is  reflected

1.35-1.35 Msun

1.5-1.5 Msun

1.6-1.6 Msun



I   Motivations  for  high-D  NR

• Exploring  high-velocity  collision  of               

two  particles/two  black  holes                         
(Talks  by  Pretorius,  Witek,  Okawa)

• Exploring  the  stability  of  black  objects,  such  

as  a  Myers-Perry  black  hole,  black  string, etc

• Developing  a  new  field  in  numerical  rela.:  

E.g.,  Numerical  relativity  in  AdS,  AdS/CFT  

(Pretorius)

• Others ?

Variety  of  motivations



Several  codes  have  to  be  developed

1. BH  collision,  stability  of  MP  BH: 

Higher-dimensional  code  for  

asymptotically  flat  (AF)  spacetime                                                              

 Easily  extended   from  4D  code

2. Stability  of  black  string                                           

 Need  simply  to  change  boundary  

condition

3. Asymptotically  AdS                                                   

 Need  a  substantial  change

In  the  following,  I  will  talk  on  

our  effort  in  1  &  3



II    High-D  numerical  relativity: 

our  approach  to  AF  spacetime

• Solve  D-dim  Einstein‟s  equation  Gmn=0      

in  (N+1)  formalism  (N=D-1)

• Specifically,  BSSN + puncture  formalism  is  

employed  as  in  3+1  case;  works  well

• Symmetry  in  the  extra-dimensional  

directions  is  assumed;  SO(D-3)  symmetry

 In  computation,  the  number  of  

dimension  is  “3” + 1 (time)  

( )2 2 2 12k k i j

k k ijds dt dx dt dx dx     - - -  



SO(D-3)  Symmetry
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Cartoon  method  imposing  symmetry

• Traditional  method  for  symmetric  space  is  

to  use  curvilinear  coordinates;  e.g.,  6D                                       

z=R cosy,   w1=R siny cosf,  w2=R siny sinf

• In  this  method,  coordinate  singularities  

appear  at  R = 0  and  y = 0

 Special  treatment  is  necessary  &  

guaranteeing  numerical  stability  is  always    

messy  problem  in  numerical  relativity

• Cartoon: Solve  equations  in  the  Cartesian  

coordinates  but  only  in  the  restricted  space.



For  simplicity,  consider  the  5D  case      

with  no  rotation  in  subspace  (z, w)

• Consider  only  (x, y, z)  (w=0)  plane

• Symmetries  give  ,w =0 and ,ww = ,z/z

• Vectors  x,w =  y,w=0,   z,w =0,   w,w =  z/z

• Tensors  gij,w=0 (i, j = x, y, z),                       

gAw,w=gAz/z (A=x, y, w),  gzw,w=(gzz -gww)/z,   etc.

• Exception: z=0  Use  finite  difference

Every  w derivatives  can  be  replaced  to

(x, y, z) derivatives  or  simple  relations  

using  the  symmetry  relation !

 3D  spatial  grid  is  enough



Second  derivatives  are  also  easily  done

• Scalar ,wz =0 (one  ,w is  always  zero)

• Vectors  w,wk is  ( z/z),k

• Tensors  ij,wk=0   (i, j, k = x, y, z),                        

iw,wj=(iz/z),j  is  finite  difference  of  Az/z

•  i,ww ,  ij,ww  are  a  little  complicated  to  do,  

but  straightforward

• For  higher-dimensions,  extension  is  easy: 

e.g.,  i,ww (D-4)  i,ww



Applications  so  far

• High-velocity  collision  of  two  BHs               

 Okawa‟s  talk  (5, 6D,  v up  to ~ 0.9c)

• Stability  of  MP  BHs



Standard  picture  of  particle  collision
(Giddings,  yesterday)

Gravitational  waves

Hawking  radiation; spin  down Evaporation

E > MP



Is  scenario  really  true ?

• If  the  formed  BH  is  stable,  it  is  OK

• For  D > 4,  no  proof  of  stability  for  BH:  

likely,  many  instabilities  (review  later)    

• If  the  formed  BH  is  unstable,  it  will  

not  relax  to  a  stable  state  soon   

Different  scenario  could  be  the  result



• The  formed  BH  in  collision  will  have  one

spin parameter  associated  with  orbital  plane

 MP  BH  with  one  spin

• Perturbation  analysis  for  rotating  BH  is  not  

easy 

 Robust  method  is   Numerical   Relativity

S

III    Stability  of  High-dim  rotating  

black  hole  with  single  spin



Setting

• Prepare  Myers-Perry  black  hole  (1986)  with  single  

rotation,  and  then  perform  simulations 
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Brief  review  for  previous  studies

• Axisymmetric  instability  sets  in for  the  ultra-

spinning  case:  q=a/m1/(D-3) > ~1.6  with D=6—9  
(Dias  et  al. &  Murata et al.  09) 

• Non-axisymmetric  instability:                            

Emparan-Myers  give  a conjecture  based  on

Thermodynamical  argument (2003)                                                                            

 This  suggests  that  BHs  are  unstable  for  

q=a/m1/(D-3) > ~1 (smaller  q)  irrespective  of   D > 4

A ~ rhm  0 A = 2Ao >0



Analogy:  Rotating  star  in  4D

• Rapidly  rotating  stars  are  unstable  against  

nonaxisymmetric deformation  (many  works  done,  

e.g.,  by  Eriguchi  and  collaborators since  1980)  

• Often  found  criterion,  T/W ~ 0.27;                          
T = rotational  kinetic  energy                                            

W= gravitational  potential  energy;                                           

or  of  strongly  differential  rotation                                 

• not  highly  deformed;  spheroid  is  unstable

• By  contrast, rotating  stars  (like  pancake)  only  

with  T/W > 0.4  could  be  unstable  against  

axisymmetric  mode  (ring  formation)

Shibata  et  al.

2003



Simulation,  more  specifically

• Prepare  a  rotating  Myers-Perry  BH  in  the  

quasi-isotropic  coordinates  (good coordinates)

and  follow  time  evolution  using  puncture  

approach

• Initially,  a  small  perturbation  is  given

• Method:  4th order  finite  difference  in  time  

and  space  &  puncture-gauge  with  BSSN

• Fixed  mesh  refinement  is  used:  High  grid  

resolution  is  necessary  for  high  spin  case

• Perform  simulations  for  various  values  of  q



Method  of  analysis

• Analyze  apparent  horizon  during  simulation

• Calculate  proper  length  of  circumferential  

radius,  and  area

• Define  deformation  parameter

• Also,  extract  gravitational  waves  in  the  

wave  zone  (along  z axis) 

Calculate  the  

deformation, e.g.

View  from  z-axis
Ce(f):

Meridian  length

Ce(0)/ Ce(/2)



D-dim  case  (D > 5)

• Spin  parameter  q=a/m1/(D-3) = [0,∞)

• Ellipticity  increases  with  q,  but  increases  

slowly  with  q

• BH  with  q > ~ 1.6 is  unstable  against  

axisymmetric  deformation                                       
(Dias et al., Murata et al. 2009)

• Nonaxisymmetric  instability  sets  in  even  for  

much  smaller  spin !  (for  spheroidal  BH)                                    
(Shibata & Yoshino, PRD 81, 104035, 2010)



Evolution  of  deformation  of  AH
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Evolution  of  deformation  of  AH
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Longterm  evolution  of  deformation  of  AH

D=6, q=0.82, 0.80, 0.78,         1.04, 0.99, 0.93, 0.88

Growth   Saturation  by  GW  emission

 New  stable  BH  of  smaller  spin

The  same  process of  4D  fast  rotating  star



Gravitational  waves

a=0.80m1/3 a=0.99m1/3

Slow  growth

Slow  damp

Rapid  growth

Slow  damp



Evolution  of  Cp / Ce: Spin  down

Cp

Ce

High q > 0.743

q = 0.743

q < 0.743

Not  very

small



Evolution  of  Cp / Ce for  high  spin

q > 0.743

q=0.743

q ~ 0.6

q ~ 1Not  very

small



Summary  for  D-dim  MP  BH

• Rapidly  rotating  spheroidal  BHs  are  unstable  

against  bar-mode  deformation

• The  threshold  value  of  spin  is  fairly  small       

q ~0.87 (D=5),  q ~ 0.74 (D=6),  0.73 (D=7),  and  

0.77 (D=8)

• We  can  follow  BH  for  a  very  long  time  to  

determine  the  final  fate  for  D > 5                                              

 Unstable  BH  radiates  GWs  and  after  the  

spin-down  by  sufficient  radiation,  the  BH  

settles  down  to  a  new  stable  state

Note:  Ultra-spinning  BH  (pancake-shape)  may  have  

different  fate;  our  study  is  only  for  spheroidal  BH



qmax

• Analysis  by  Yoshino-Nambu (2002)  

indicates  maximum  impact  parameter  for  

formation  of  BH  in  ultra-rela.  collision

• This  gives  the  maximum  spin  of  BH  

formed  in  the  collision  as 0.93 (D=5), 1.47 

(D=6),  1.98 (D=7),  2.50  (D=8):  much  larger  

than  qcrit found  in  our  work

• Formation  of  larger  impact  parameter  

seems  to  be  more  frequent                                       

 Many  of  formed  BHs  are  unstable ?



Corrected  picture  ?

Unstable  BH  

Longterm  emission of

gravitational  waves

Quantum  radiation

from  nonstationary  BH ? Evaporation



IV  Latest  effort  for  numerical  

relativity  of  Asymptotic  AdS                 
(Takahashi,  Okawa,  Shibata)

• We  want  to  consider  Randall-Sundrum  II  

type  spacetime  with  domain  wall

BraneAdS

Motivation:  

• Stability  of  a  BH  on  the    

brane  (by  T.  Tanaka)

• New  frontier  in  NR

• AdS/CFT ?



Setting

• Handling  singular  surface  is  not  easy  in  

numerical  relativity:  Regularity  is  not  

easily  guaranteed  in  numerical  simulation

• Consider  a  thick  wall  by  sin-Goldon  type  

scalar-field  potential (Giovannini  „01)
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Formulation
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• Modified  BSSN  with  a  few  additional  factors  

associated  with  a,   a‟, a‟‟

• Boundary  conditions , similar  to  asymptotic  flat  case , 

work  for  new  variables.

• At  x=0,  reflection  symmetric  (or  asymmetric)

BCs  are  simply  imposed.



Status (just  started)

• Test 1:  Put  the  exact  solution  &  evolve                 

 Static  solution  remains  static;  OK

• Test 2:  Put  a  perturbation  &  evolve                                 

 looks  OK

x



Next  step

• Prepare  BH  at  the  center  &  evolve;               

prepare  BH  as  Frans does ?

• Consider  applications  seriously;                  

suggestions  are  welcome



Thanks 



Evolution  of  deformation  of  AH: D=6

q=0.80 

No  dependence 

on  initial  condition

Saturate


