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Outline 

• Motivation : Gravity in the coming decade 
 

– where does numerical relativity fit in? 
 

• A one-sided and partial overview of recent results of 
possible interest to high energy physics 

 
– black hole formation in super-Planck scale “particle” 

collisions 
 

– high-speed black hole scattering 
 

– the Gregory-Laflamme instability of black strings 
 

– black holes and hydrodynamics via gauge/gravity dualities 
 



Gravity in the coming decade – GW astrophysics 

• A concerted effort is underway to observe gravitational waves from a 
variety of sources in the universe, with plausible first detection 
within ~5 years 

 

• Ground based interferometers  
targeting sources in the 10’s of Hz to KHz range  

 

• Pulsar timing  
sensitive to waves in the  
10’s of nanoHz to 10’s of  
microHz range 

 

• B-modes in the CMB  
frequencies ~ 10-15 - 10-18 Hz 
at decoupling 

 

• More distant future : space- 
based detectors such as LISA, 
10’s milliHz – 1/10 Hz 

LIGO Livingston 



Gravity in the coming decade – GW astrophysics 

• GW’s hold promise to be a driving force in learning more 
about  the universe 

 
– provide overwhelming evidence for the existence of black holes  

 
– explore the properties, populations and interactions of compact objects 

(black holes, neutron stars) and the consequences (e.g. sources of short 
gamma ray bursts?) 
 

– test the nature of strong-field,  
dynamical gravity; constrain 
(discover!)  alternative theories 
 

– clues to the early universe in a  
stochastic background, CMB  
polarization 
 

– “exotica” like cosmic strings, etc. 
 

– discover the unknown? 
An artist’s impression of the merger of two 

neutron stars 



Gravity in the coming decade – understanding 
fundamental physics 

• Still major challenges for fundamental physics 
 

– Theory : a framework to resolve the incompatibility between a 
classical (GR) description of spacetime and the quantum world, 
that is experimentally or observationally verifiable  
 

– Observational puzzles : dark energy and dark matter 

 

• Gravity could be expected to play an imported role 
in these endeavors  

 
– higher dimensional Einstein gravity? 

 
– modifications to general relativity, in 4 or higher dimensions?  

 
– clues from GW astrophysics? 



Gravity in the coming decade – gauge/gravity 
dualities 

• AdS/CFT and related correspondences showing remarkable 
connections between seemingly disparate physics 

 

– quark-gluon plasma formation in heavy ion collisions and black hole 
collisions 
 

– “hairy” black holes and superfluids, superconductors and other 
condensed matter systems 

 

– black hole dynamics and fluid mechanics 
  

• Even if string theory is not the theory of everything, that such a mapping 
exists is astonishing, and provides an alternative route to understanding 
gravity and strongly coupled gauge theories 

 

• Since the dualities are holographic, understanding “ordinary” 4D physics in 
terms of geometry requires study of higher dimensional gravity, in particular 
spacetimes with event horizons 
 

– much richer set of solutions & dynamics compared to 4D 



Where does numerical relativity fit in? 

• In many of these problems, understanding classical 
general relativity is required 
 

• Often, understanding require solutions to the 
underlying equations 
 

• In the 21st century, numerical methods should be 
considered one of the standard tools that can be 
brought to bare to find solutions to equations 



Black hole formation in super-Planck scale 
particle collisions 

• The presence of extra dimensions could allow for a very different 
Planck scale than what would then be the effective 4D one of 1019 

GeV [Arkani-Hamed , S. Dimopoulos & G.R. Dvali PLB 429 (1998) ; Randall 

& R. Sundrum PRL 83 (1999) ] 
 

– current lower limits on the Planck scale are several TeV; if slightly 
above this, super-Planck scale collisions could be occurring in cosmic 
ray collisions with the atmosphere, and the LHC at maximum 
energies 

 

– it is generically expected that the consequence of this would be black 
hole formation, regardless of any non-gravitational interactions 
between particles [Banks & Fishler hep-th/9906038, Dimopoulos & Landsberg 

PRL 87 161602 (2001), Giddings & Thomas PRD 65 (2002) , Feng & Shapere, PRL 

88 021303 (2002)] 

 

• see Talks by Giddings, Parker, Landsberg, Moeller 
 

 



Black hole formation in super-Planck scale 
particle collisions 

• The expected genericity is essentially for two reasons 
 

– at such energies gravity dominates the interaction, and sufficiently 
above the Planck scale classical GR should be a good description of it 

 

– classical GR, by Thorne’s hoop conjecture, implies a black hole will 
form, hiding all details of non-gravitational interactions inside it 

 

• squeeze matter/energy into a “ball” with radius smaller than the 
corresponding Schwarzschild radius, and a black hole forms 

 

• Planck’s constant enters the picture for quantum particle interactions in 
defining the size of the fundamental particle through de Broglie’s relation 

 

• however,  sparse evidence in the form of solutions to the GR field equations 
to support this conjecture 

 

• colliding plane-fronted gravitations waves (Penrose) and generalizations 
there of in the infinite boost limit  



High speed soliton collision simulations  

 

• Test this hypothesis by colliding self-gravitating solitons, 
boson stars in this case [M.W. Choptuik & FP, PRL 104, (2010)] 

 

• Very computationally expensive to run high- simulations, so 
need to start with a relatively compact boson star that will 
reach hoop-conjecture limits with reasonable  ’s. 

 

– LHC-type scenario is essentially all kinetic energy; here, a 
sizeable amount of rest-mass energy as well 

 

• Choose parameters to give a boson star with R/2M ~ 22 
 

– thus, hoop-conjecture suggests a collision of two of these with 
=11 in the center of mass frame will be the marginal case 



Case 1: free-fall collision from rest  

• Here, gravity dominates the interaction, causing the boson stars to 
coalesce into a single, highly perturbed boson star (this case 
eventually collapses to form a black hole) 

 

Symmetry axis 

Both the color and 
height of the 

surface represent 
the magnitude of 

the scalar field. 
Scale M is the 

total rest-mass of 
of the boson stars 



Case 2 :  = 2  

• Here, though gravity strongly perturbs the boson stars, kinetic energy “wins” and causes 
them to pass through each other 

 

– soliton-like interference pattern can be seen as the boson star matter interacts 
 

– superposition of initial data, and subsequent truncation, cause some component of the field to 
move in the wrong direction; the truncation error part converges away with resolution, the initial 
data part lessens the further the initial separation 

 

 



Case 3 :  = 4  

• Here, the early matter interaction looks similar, but now the gravitational interaction of the kinetic 
energy of the solitons causes gravitational collapse and black hole formation 

 

 

– NOTE: gauge than previous case: the coordinate spreading of the solitons before collision, and  shrinking of 
the horizon afterwards, are just coordinate effects; also, different color scale 



High speed collisions and black hole formation 

• All this implies one can use any model of a particle to study the 
nature of sufficiently super-Planck scale scattering, including black 
holes!  

 

• Several groups working on this; see talks later today by Witek, 
Zilhao, Okawa, and Shibata on Friday   

 

• Here will discuss one example of interesting “zoom-whirl” behavior 
seen in grazing collisions from Sperhake, Cardoso, P, Berti, 
Hinderer ,Yunes  PRL 103 (2009) 

 

– results obtained with U. Sperhake’s Lean code 
 

– “just”  4D, so make extrapolations to LHC-type scenarios with caution 
 

– again, see talks later today for the latest, and in higher dimensions 

 



Zoom-whirl behavior 

• Zoom-whirl behavior originally noted in geodesics about black holes 
 

• At first glance, seems like “extreme” pericenter precession, but in fact zoom-
whirl orbits are perturbations of unstable circular orbits that exists within the 
inner-most stable spherical orbit (ISCO) 

 

– In Schwarzschild, radial perturbations of circular orbits in the range 4M to 6M lead to 
elliptic zoom-whirl orbits, 3M (the “light ring”) to 4M lead to a hyperbolic orbit with 
one whirl episode 

 
 
 
 

usual (but large) pericenter precession zoom-whirl orbit 

Schwarzschild 
geodesics; 

inner circle is 
event 

horizon, outer 
one is ISCO  



Zoom-whirl behavior 

• Might imagine ZW orbits are particular to geodesic motion, 
however one can also understand ZW behavior as arising due to 
their being (at least) two distinct end-states in the BH scattering 
problem : one BH or two BH’s 

 

– thus, qualitative behavior should arise generically in all BH scattering 
problems 

 

• Consequences near the critical impact parameter 
 

– strong sensitivity to initial conditions 
 

– enhanced total gravitational wave emission, even in scattering cases 
 

• In 4D also get a huge enhancement in gravitational wave luminosity, 
though may be peculiarity of 4D in that in an effect geodesic model the 
light ring frequency is commensurate with the least-damped quasinormal 
mode frequency of the black hole 

 

– at threshold, expect all kinetic energy to be converted to GW energy 



Enhanced energy emission in grazing 
collisions 

GW energy emitted in head on 
collisions vs center of mass velocity 

(from Sperhake, Cardoso, P, Berti, 
Gonzalez PRL 101 (2008))  

GW energy for v=0.75 case vs impact 
parameter (green line is merger 
threshold for initial interaction) 



Scatter example, =1.5  

Re[Y4] 



Whirl, then scatter , =1.5  

Re[Y4] 



Whirl, then merger, =1.5 

Re[Y4] 



 
• Higher dimensional black holes have many properties in common 

with their 4D counterparts, e.g. 
 

– can be defined using global (event horizons) or local (isolated horizons) 
constructs, contain geometric singularities, quasi-stationary processes 
are governed by the usual laws of black hole mechanics, end-points of 
gravitational collapse, Hawking radiate at the semi-classical level, etc. 

 

• However, no strict uniqueness as in 4D, and many black objects are 
unstable  to perturbations 

 

• Within the context of gauge-gravity dualities, black holes play a 
prominent role 

 

– associated with states where a thermal/hydrodynamic description is 
valid 

 

• Will show two examples of numerical solutions of higher dimensional BHs: 
 

– Gregory-Laflamme instability of the 5D black string 
– quasinormal ringdown of 5D S3 black holes in asymptotically AdS spacetime 

 
• see Talks by Hubeny, Emparan, Gregory, Wiseman, Mateos, Dias, Ishibashi 

Higher dimensional black holes 



 
• Black strings are a particularly simple class of higher 

dimensional black hole solutions  
 
– in N spacetime dimensions, the metric is 4D Schwarzschild X  

(N-4)D Euclidean flatspace; e.g. for N=5, in Schwarzschild 
coordinates 

 

 

 

 
 
 

– here m is interpreted as mass per unit length; a segment of 
length Dw=L of the spacetime has asymptotic mass M=mL 

Black Strings 
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• Gregory and Laflamme [PRL 70 (1993)] first showed that 

black strings are linearly unstable to long-wavelength 
perturbations 
 
 
 
– Images from  

R. Gregory and R. Laflamme,  
Nucl.Phys.B428 (1994) 
 

– the D=4 curve corresponds to  
the 5D black string, and the  
critical wavelength above which  
modes are unstable is   
 
 
 
 
 

Gregory-Laflamme instability 

mwimteggg //

0

 =

mc 3.14



 
• much speculation about the end-state 

 

– from entropic considerations, GL argued that black string would “pinch-off” into a 
sequence of spherical black holes (in the process violating cosmic censorship) 
 

• earlier numerical simulations seemed to indicate in favor of this, though 
“crashed” before a conclusive statement could be made, Choptuik et al. [PRD 
68, 044001 (2003)]  

 
– Horowitz and Maeda [PRL 87, 131301 (2001)] argued the end-state would be a 

new, static, non-uniform solution with the same topology as the black string, 
based on a proof that any cross-sectional radius of the horizon cannot shrink to 
zero in finite affine time of the horizon generators 

 

• non-uniform black hole solutions were found, though they had too high 
entropy to be the end-state of the GL instability [S. S. Gubser, CQG. 19, 4825 
(2002), T. Wiseman, CQG. 20, 1137 (2003), E. Sorkin, PRD74:104027 
(2006)];  

 

– Cardoso and Dias [PRL 96 (2006)] showed that the spectrum of unstable modes 
of a Rayleigh-Plateau-unstable fluid stream was qualitatively similar to GL; 
Camps, Emparan & Haddad [JHEP 1005 (2010)] derived the GL dispersion 
relationship using the blackholds GR-hydronamics duality   

End-state of the instability? 



 
• The hydrodynamic analogies, 

in particular GL-RP, give 
weight to the pinch-off 
scenario 
 

– of course, the caveat is that 
at present the GL-RP 
relation is just an analog, 
and the blackfolds approach 
only describes the linear 
regime of the instability 

 
– need solutions in the non-

linear regime 
 

• will show results from a 
simulation with L. Lehner  
[PRL 105 2010] that shows 
the “answer” is pinch-off in  
a manner qualitatively 
consistent with RP. 

End-state of the instability? 

http://web.mit.edu/nnf/people/clasen/jet2.mov


Embedding Diagram of 
Apparent Horizon Unstable 

5D Black String  

• map the geometric 1D shape of each 
t=x=y=constant slice of the apparent 
horizon to a flat (R,Z) Euclidean space; i.e. 
in parametric form 

 
 
 
 

• R(x) is the areal radius of that point on the 
horizon, and Z(x) is defined so that the 
proper length of the curve in the flat space 
is identical to that of the corresponding 
curve in the physical geometry 
 

• the movie shows this curve spun around 
R=0 to form a surface for visual aid 

 
• color is mapped to R 

 

• note that time is “slowing down” 

R 

Z 
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Embedding Diagram of 
Apparent Horizon Unstable 
5D Black String, close-up 

and in “real time”  

• map the geometric 1D shape of each 
t=x=y=constant slice of the apparent 
horizon to a flat (R,Z) Euclidean space; i.e. 
in parametric form 

 
 
 
 

• R(x) is the areal radius of that point on the 
horizon, and Z(x) is defined so that the 
proper length of the curve in the flat space 
is identical to that of the corresponding 
curve in the physical geometry 
 

• the movie shows this curve spun around 
R=0 to form a surface for visual aid 

 
• color is mapped to R 

R 

Z 
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Gregory-LaFlamme and Raleigh-Plateau 

 

• In the Rayleigh-Plateau hydrodynamic 
analogue, a self-similar cascade can also 
occur 

 

– the lower the viscosity of the fluid, 
the more generations of self-similar 
behavior are seen before break-up 

 

– the membrane paradigm and 
gravity/gauge dualities suggests 
black holes have much lower shear 
viscosity to entropy ratio that any 
“real-world” fluid 

 

• An exact scaling solution of the Navier 
Stokes equation [Eggers, PRL 71 (1993); 
Miyamoto, JHEP 1010 (2010) ]  near 
pinch-off is known, giving 
 
 
 
and this is consistent with the numerical 
results of the Gregory-Laflamme 
instability 

 

Image from Review article by Eggers 
[Rev.Mod.Phys 59 (1997)], from work of  
Tjahjadi, Stone, and Ottino, [Fluid 

Mech. 243 (1992) ] 

)( 0 ttr 



Quasinormal ringdown of highly distorted black 
holes in 5D Asymptotically AdS spacetime 

• Will show preliminary results from a new code designed 
to study 5D AAdS spacetimes (with Hans Bantilan) 

 

– eventual goal is to study gravity dual of quark-gluon plasma 
formation in heavy ion collisions, conjectured to be black hole 
collisions [Nastase (2005)]  

 
• first numerical approach to this problem by Chesler & Jaffe [PRL 106 (2011)] 

 

– here we impose SO(3) symmetry in global AdS, hence we can 
study axisymmetric bulk geometries, dual to spherically 
symmetric states on the boundary with topology R  S3 

 

– immediate goals to see if any non-linear phase of ringdown 
apparent (corresponding to thermalization time?), and when the 
boundary dynamics becomes consistent with that of a thermal, 
conformal fluid 



5D AdS spacetime 

• Global AdS in spherical-polar type coordinates  
 
 
      2

2

2222
1

2

22
2

22 sin11 =


ddrdr
L

rdt
L

rds 

• spacetime of constant negative curvature R=-20/L2 
 

• the boundary metric (r) is the 4D Einstein static 
universe (R x S3) 
 

• Poincare coordinates cover a conformally flat piece of 
global AdS (the Poincare patch)  
 
 
 
 
 
this segment of AdS is usually used for applications with a 
CFT on R3,1 ; we will use global coordinates, and can 
transform a patch as needed 

 

• The boundary is timelike, and though an infinite proper 
distance from any point in the interior to a point on the 
boundary on a t=const. slice, null signals will propagate 
back and forth in finite proper time, experiencing infinite 
red/blue shift in the process  
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AAdS Black Holes 

• The 5D AdS-Schwarzschild black hole has metric is: 
 
 
 
 
 
 
the horizon is at r=rH, where 
 
 
 
 
and it has mass, entropy and temperature 
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Quasi-normal modes of AAdS Black Holes 

• Gravitational and scalar field perturbations of 5D AdS-Schwarzschild 
black holes exhibit quasi-normal (QN) decay [Horowitz & Hubeny 
PRD 62 (2000); Review: Berti, Cardoso & Starinets CQG 26 (2009)] 
  
– in general for the metric there are scalar, vector & tensor modes; 

here due to axisymmetry only scalar modes can be excited 
 

– decompose scalar perturbation into scalar spherical harmonics on 
S3, Sklm(,q,j) ; again due to symmetry only k≠0; l=m=0. 

 

– A given QN mode can then schematically be written as 
 
 
 

 
– the decay times (imaginary modes) of most interest to heavy ion 

collisions  equilibration/thermalization time scale of boundary 
state 
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Quasi-normal modes of AAdS Black Holes 

• For large BHs relative to L (rH>L), there are fast  
 
 
 
 
 
and slow  
 
 
 
 
 
gravitational QNMs; it has been suggested the former can be 
thought of as related to “microscopic” perturbations of the boundary 
state, the latter “hydrodynamic” [Friess et al. JHEP 0704 (2008)].  

 

• The scalar field only has fast modes 
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Quasi-normal modes of AAdS Black Holes 

• form a distorted BH via  
asymmetric scalar field collapse 
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Quasi-normal modes of AAdS Black Holes 

• form a distorted BH via  
asymmetric scalar field collapse 
 

2

22

2

22 sincos

)0,,( yx ww
Aet






==

),,( t

rH=12.2 

rH=5.0; k=2 



Quasi-normal modes of AAdS Black Holes 

• Can quite accurately describe the metric perturbation purely in terms 
of the dominant QN mode, despite starting with initial data 
representing highly distorted BH’s.  

ratio of equatorial to polar 
circumference of AH for increasingly 

asymmetric ID 

“residual” of QN mode; i.e. normalized 
difference between the actual metric 
behavior and extracted  QN mode 



Boundary stress energy 

• The AdS/CFT dictionary says 
 
 
 
 
 
where (q)Tuv is the Brown-York quasi-local stress energy tensor 
associated with a q=const. surface (with intrinsic metric Suv, extrinsic 
curvature Kuv, and intrinsic Einstein tensor Guv) 
 
 
 
 
 
 
and we have subtracted off the AdS Casimir term (arising due to the 
chosen S3 topology) 
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Boundary stress energy 

• For reference, the AdS-Schwarzschild solution describes a thermal 
state on S3 with (L=1): 
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Is the Stress Tensor on the Boundary that of a 
Conformal Fluid? 

• To answer this question, will attempt to map the extracted 
boundary stress tenser to that of a conformal fluid, which in a 
derivative expansion is 
 
 
 
 
 
uv is the fluid 4-velocity 
 
, P and  are the rest-frame energy density, pressure and 
shear viscosity respectively 
 
suv is the shear tensor of the flow 
 
Puv denotes all higher derivative terms of the velocity field.  
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Hydrodynamics on the boundary 

• With SO(3) symmetry 
 
uv=(1,v,0,0)  
 
in (t,,q,j) coordinates, and suv has  
only one independent component 
 
 
 
 
 

• Likewise, with SO(3), there are only 
4 independent components of the  
stress tensor extracted on the  
boundary of the AAdS spacetime 
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Hydrodynamics on the boundary 

• Thus, ignoring the higher order terms Puv , there is a one-to-one 
mapping between “hydrodynamic” and extracted stress tensor 
variables 
 
 
 
 
though it’s a different question whether the mapping gives “sensible” 
hydrodynamics 
 

• For the QN spacetimes we have looked at so far, we find  
 

–    0 
–  P > 0 

–  v [-1,1] 

–  Tu
u=0 and Tuv

;v=0 to within truncation error 

 

• i.e., consistent with some conformal fluid satisfying the Navier-
Stokes equations  
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Boundary Fluid Equation of State 

• Moreover, modulo a possible early time “transient”, the equation of 
state of the fluid is converging to that of an isotropic conformal fluid, 
=3P : 
 
 
 
 



Boundary Fluid Equation of State 

• Close-up of transient: 
 
 
 
 
 
 
 
 
 
 
 

 
• For this case (rh=5.0), the e-folding time of the “fast, microscopic” 

QNM is ~ 0.075; could be that this is causing the non-conformal fluid 
behavior, though early time transients from rapid gauge dynamics at 
the boundary make a clean interpretation of this challenging 
 
 
 



Boundary Fluid Shear Viscosity to Entropy Ratio 

• To check whether the shear viscosity to entropy ratio is 1/4 as 
expected for a conformal gauge theory dual to Einstein gravity 
[Polcastro, Son and Starinets, PRL 87(2001)], we need to make a 
couple of extra assumptions  

 
– that the extracted ua is the velocity field of  

the fluid, and hence we can plug it into the  
definition of the shear tensor to  
independently calculate s: 
 
 
 
 
 
 
 
Define s v = s  to computed using  
the extracted ua  in the above; then 
 
 
 
 
 
This quantity will only be close  where  
suv is large compared to the higher order 
terms Puv ignored in the mapping 
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Boundary Fluid Shear Viscosity to Entropy Ratio 

• The second assumption is that the constituent relationship for a 
thermal fluid holds, to relate  to the entropy density s 

 

 

 

 

• Then 
 
 
 
 
 
 
 
 
 
 
 
i.e., when s v is large, we appear to be converging to the expected 
value 
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