Quarks, Gluons and Black Holes Gauge/gravity predictions for HIC

David Mateos ICREA & University of Barcelona

Quarks + Gluons = Black Holes

David Mateos ICREA & University of Barcelona

Plan

- All you need to know about:
 - Quantum ChromoDynamics.
 - String theory.
 - Why they should be related: Gauge/string duality.
- Illustrate with few results:
 - Equilibrium/Near equilibrium.
- Invitation for NR: Out of equilibrium.

For more information see:

Casalderrey-Solana, Liu, D.M., Rajagopal & Wiedemann arXiv:1101.0618 [hep-th]

... is the quantum theory of the strong nuclear force.

• Responsible for binding quarks inside mesons and baryons:

 p, n, \ldots

• Quarks interact because they carry colour, which they exchange through gluons:

• Quarks interact because they carry colour, which they exchange through gluons:

 Analogue of electric charge, but comes in N_c = 3 types:

 $\{\mathbf{q},\mathbf{q},\mathbf{q}\}$

Why is QCD hard?

• Strength of interaction depends on energy:

Why is QCD hard?

Why is QCD hard?

Confinement...

Mesons and baryons

Confinement and deconfinement

Mesons and baryons

Quark Gluon Plasma (QGP)

The QGP

• This was realized in the hot, early Universe...

The QGP

... and is the only fundamental phase transition that can be recreated in a lab like RHIC or LHC!

QCD remains a challenge

- We have some good tools but they all have limitations. For example:
 - Perturbation theory: Weak coupling.
 - Lattice: Difficult to apply to real-time phenomena.
 - Etc.

QCD remains a challenge

- We have some good tools but they all have limitations. For example:
 - Perturbation theory: Weak coupling.
 - Lattice: Difficult to apply to real-time phenomena.Etc.
- A string reformulation might help.
- Topic of this talk with focus on QGP.

• Quantum theory of one-dimensional objects.

• Quantum theory of one-dimensional objects.

• Characterised by two parameters:

• Different vibration modes behave as particles of different masses and spins:

M

• Different vibration modes behave as particles of different masses and spins:

M

M=0, Spin=2: Graviton!

• Different vibration modes behave as particles of different masses and spins:

M

• Interested in strings propagating in curved space:

• Interested in strings propagating in curved space:

- Complicated theory, but simplifies dramatically if:
 - $\ell_s \ll R$: String behaves as a point.
 - $g_s \ll 1$: String does not split.

Why and how should QCD and string theory be related

• Large-N_c expansion:

't Hooft '74

• First concrete example:

Maldacena '97

$$\mathcal{N} = 4 \text{ SYM} \leftrightarrow \text{IIB on } AdS_5 \times S^5$$

$$g_s = \frac{1}{N_c} \quad , \quad R^4 = \lambda \ell_s^4$$

• First concrete example:

Maldacena '97

 $\mathcal{N} = 4 \text{ SYM} \leftrightarrow \text{ IIB on } AdS_5 \times S^5$

$$g_s = \frac{1}{N_c}$$
 , $R^4 = \lambda \ell_s^4$

• Exact equivalence at *all* energies, N_c and $\lambda = g_{_{YM}}^2 N_c$!

• First concrete example:

Maldacena '97

 $\mathcal{N} = 4 \text{ SYM} \iff \text{IIB on } AdS_5 \times S^5$

$$g_s = \frac{1}{N_c}$$
, $R^4 = \lambda \ell_s^4$

Exact equivalence at *all* energies, N_c and λ = g²_{YM}N_c ! *Disclaimer:* Not proven but lots of evidence.

From viewpoint of a theorist.

• Duality is an extraordinary discovery:

From viewpoint of a theorist.

• Duality is an extraordinary discovery:

• Unifying framework for diverse (and difficult) fields of physics: QGP, condensed matter, etc.

In terms of applications to QCD

At present the duality has its own limitations

Limitations: Classical gravity requires

$$\boxed{N_{\rm c} \to \infty}$$

Suppresses quantum corrections.

$$\lambda = g_{\rm YM}^2 N_{\rm c} \to \infty$$

Makes the string tiny.

Limitations: Classical gravity requires

$$N_{\rm c} \to \infty$$

$$\lambda = g_{_{
m YM}}^2 N_{
m c}
ightarrow \infty$$

Suppresses quantum corrections.

Makes the string tiny.

Technical difficulties, not. fundamental limitations.
$$N_{\rm c} \to \infty$$

$$\lambda = g_{_{
m YM}}^2 N_{
m c}
ightarrow \infty$$

Suppresses quantum corrections.

Makes the string tiny.

Solving large- N_c would be great progress!

$$N_{\rm c} \to \infty$$

 $\lambda = g_{_{
m YM}}^2 N_{
m c}
ightarrow \infty$

Suppresses quantum corrections.

- Asymptotically free.
- Dynamically generated scale.
- Confinement.
- Deconfinement phase transition.

Makes the string tiny.

<u>+</u> ...

$$N_{\rm c} \to \infty$$

$$\lambda = g_{\rm YM}^2 N_{\rm c} \to \infty$$

Suppresses quantum corrections.

Makes the string tiny.

Strong coupling means no asymptotic freedom!

Therefore

• At present gauge/string duality is not a tool for *precision*. QCD physics.

Therefore

• At present gauge/string duality is not a tool for *precision*. QCD physics.

- However, *certain*, results may be universal enough to apply to QCD in *certain*, regimes:
 - Quantitative ballpark estimates.
 - Qualitative insights.

Therefore

• At present gauge/string duality is not a tool for *precision*. QCD physics.

- However, *certain*, results may be universal enough to apply to QCD in *certain*, regimes:
 - Quantitative ballpark estimates.
 - Qualitative insights.
- This can be extremely useful!

Illustration: A few results

 $=\frac{1}{4\pi}$ η s

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

- It is the same for all non-Abelian plasmas with gravity dual in the limit $N_c \to \infty, \lambda \to \infty$.
 - Theories in different dimensions.
 - With or without quarks.
 - With or without chemical potential.
 - Etc.

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

- It is the same for all non-Abelian plasmas with gravity dual in the limit $N_c \rightarrow \infty, \lambda \rightarrow \infty$.
 - Theories in different dimensions.
 - With or without quarks.
 - With or without chemical potential.
 - Etc.
- In QCD we cannot calculate it but we can go to RHIC and LHC:

Results indicate strong coupling and $\frac{\eta}{s} \lesssim (2-3) \times \frac{1}{4\pi}$.

Results indicate strong coupling and $\frac{\eta}{s} \lesssim (2-3) \times \frac{1}{4\pi}$.

For water
$$\frac{\eta}{s} \sim 380 \times \frac{1}{4\pi}$$
.

Results indicate strong coupling and $\frac{\eta}{s} \lesssim (2-3) \times \frac{1}{4\pi}$.

For water
$$\frac{\eta}{s} \sim 380 \times \frac{1}{4\pi}$$
.

For liquid He
$$\frac{\eta}{s} \sim 9 \times \frac{1}{4\pi}$$

$$\frac{\eta}{s} = \frac{1}{4\pi} Policastro, Son & Starinets 'or Kovtun, Son & Starinets 'o3}$$

• Although in right ballpark, it could be off by 200-300%!

- Although in right ballpark, it could be off by 200-300%!
- Yet important because:
 - > It teaches us that ratio can_ be "small" in sQGP.
 - It tells us what "*small*" means, e.g. results in HIC are quoted in units of $\frac{1}{4\pi}$.

- Although in right ballpark, it could be off by 200-300%!
- Yet important because:
 - > It teaches us that ratio can be "small" in sQGP.
 - It tells us what "small" means, e.g. results in HIC are quoted in units of $\frac{1}{4\pi}$.
- $\frac{1}{4\pi}$ is *not* a lower bound in AdS/CFT! Mia, Dasg Buck

Kats & Petrov '07 Mia, Dasgupta, Gale & Jeon '09 Buchel, Myers & Sinha '09

Seek results based on universal features of the duality

Deconfinement = Black Hole Witten '98

Confinement

Deconfinement

Heavy mesons survive deconfinement

D.M., Myers & Thomson ' 06 Hoyos-Badajoz, Landsteiner & Montero '06 Babington, Erdmenger, Guralnik & Kirsch '03 Kruczenski, D.M., Myers & Winters '03 Kirsch '04

Heavy mesons survive deconfinement

D.M., Myers & Thomson ' 06 Hoyos-Badajoz, Landsteiner & Montero '06 Babington, Erdmenger, Guralnik & Kirsch '03 Kruczenski, D.M., Myers & Winters '03 Kirsch '04

 $J/\Psi \rightarrow T_{\rm diss} \sim 1.6 - 2.1 T_{\rm c}$

Mesons limiting velocity

D.M., Myers & Thomson '07 Ejaz, Faulkner, Liu, Rajagopal & Wiedemann '07

Cherenkov quark energy loss

Casalderrey-Solana, Fernandez & D.M. '10

Cherenkov quark energy loss

Casalderrey-Solana, Fernandez & D.M. '10

All-order hydrodyanmics from gravity

Bhattacharyya, Hubeny, Minwalla & Rangamani '08

Invitation for NR: Out of equilibrium

Out of equilibrium

Classical Dynamical GR in AdS

Out of equilibrium

Classical Dynamical GR in AdS

Don't let boundary conditions stop you!

Time dependence & thermalization

- Chesler & Yaffe '10
- Collide two infinite sheets of energy in $N=4 \rightarrow d=2+1$ in AdS

Time dependence & thermalization

• Collide two infinite sheets of energy in $N=4 \rightarrow d=2+1$ in AdS

Short thermalization time - 0.3 fm.

Time dependence & thermalization

• Collide two infinite sheets of energy in $N=4 \rightarrow d=2+1$ in AdS

Insight:

Short thermalization time - 0.3 fm.

Caveats:

- Only numerical ball-park.
- Thermalization could occur via weak-coupling mechanism.

Head-on: d=3+1 in AdS

How does the profile at thermalization depend on initial profile?

Finite impact parameter: d=4+1 in AdS

• Gauge/String duality is not a *precision*, tool for sQGP, but it provides solvable models.

• Gauge/String duality is not a *precision*, tool for sQGP, but it provides solvable models.

• Sometimes these may offer valuable insights into problems difficult (or impossible) to analyze by other methods.

- Gauge/String duality is not a *precision*, tool for sQGP, but it provides solvable models.
- Sometimes these may offer valuable insights into problems difficult (or impossible) to analyze by other methods.
- Many of these problems require "just" solving classical Einstein equations in AdS.

• Gauge/String duality is not a *precision*, tool for sQGP, but it provides solvable models.

- Sometimes these may offer valuable insights into problems difficult (or impossible) to analyze by other methods.
- Many of these problems require "just" solving classical Einstein equations in AdS.

Let's sit down and talk !

Thank you.