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Quarks + Gluons = Black Holes



• All you need to know about:

• Illustrate with few results:

! Quantum ChromoDynamics.
! String theory.
! Why they should be related: Gauge/string duality.

Plan

Casalderrey!Solana, Liu, D.M., Rajagopal & Wiedemann 
arXiv:1101.0618 "hep!th#

! For more information see:

! Equilibrium/Near equilibrium.

• Invitation for NR: Out of equilibrium.



Quantum ChromoDynamics



... is the quantum theory of the strong nuclear force.

Quantum ChromoDynamics...



Universality and Scaling in AdS/CFT with Flavour
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Quantum ChromoDynamics

•  Responsible for binding quarks inside mesons 
and baryons:



quark quark

gluon

• Quarks interact because they carry colour, which 
they exchange through gluons:

Quantum ChromoDynamics



quark quark

gluon

• Quarks interact because they carry colour, which 
they exchange through gluons:

• Analogue of electric charge, but comes in  
Nc = 3  types: 

$ q, q, q %

Quantum ChromoDynamics
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• Strength of interaction depends on energy:

Universality and Scaling in AdS/CFT with Flavour
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Why is QCD hard?
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This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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Quark Gluon Plasma
&QGP'

Mesons and baryons

Confinement and deconfinement



The QGP

• This was realized in 
the hot, early 
Universe...



 ... and is the only fundamental phase transition that 
can be recreated in a lab like RHIC or LHC!

The QGP



QCD remains a challenge 

• We have some good tools but they all have 
limitations. For example:

! Perturbation theory: Weak coupling.

! Lattice: Di(cult to apply to real!time phenomena.

! Etc.
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• A string reformulation might help.

• Topic of this talk with focus on QGP.
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• Quantum theory of one!dimensional objects.

String theory



Universality and Scaling in AdS/CFT with Flavour

!s (1)

M2
π = −

〈q̄LqR〉Mq

f 2
π

(2)

π0 , π+ , π− . (3)

〈q̄LqR〉 $= 0 (4)

A = co + c1gYM + c2g
2
YM

+ · · · (5)

ΛQCD ∼ 200 MeV (6)

gYM ∼ 1 (7)

Mu & Md :





u

d



 → U





u

d



 , U = Unitary matrix (8)

Mu & Md & 0 :





uR

dR



 → UR





uR

dR



 ,





uL

dL



 → UL





uL

dL





(9)

{q, q, q} = qi i = 1, . . . , Nc (10)

qa = {u, d, s, c, b, t} , a = 1, . . . , Nf (11)

qi q̄j Gj
i (12)

q̄ (13)

M = 2mq

√

π

g2
YM

Nc

√

(n + ! + 1)(n + ! + 2) (14)

η

s
& (2 − 4) ×

1

4π
(15)

25/2n

Nf

√

g2
YM

NcT 3
(16)

T/M̄ (17)

η

s
≥

1

4π
(18)

1

Universality and Scaling in AdS/CFT with Flavour

gs (1)

M2
π = −

〈q̄LqR〉Mq

f 2
π

(2)

π0 , π+ , π− . (3)

〈q̄LqR〉 $= 0 (4)

A = co + c1gYM + c2g
2
YM

+ · · · (5)

ΛQCD ∼ 200 MeV (6)

gYM ∼ 1 (7)

Mu & Md :





u

d



 → U





u

d



 , U = Unitary matrix (8)

Mu & Md & 0 :





uR

dR



 → UR





uR

dR



 ,





uL

dL



 → UL





uL

dL





(9)

{q, q, q} = qi i = 1, . . . , Nc (10)

qa = {u, d, s, c, b, t} , a = 1, . . . , Nf (11)

qi q̄j Gj
i (12)

q̄ (13)

M = 2mq

√

π

g2
YM

Nc

√

(n + " + 1)(n + " + 2) (14)

η

s
& (2 − 4) ×

1

4π
(15)

25/2n

Nf

√

g2
YM

NcT 3
(16)

T/M̄ (17)

η

s
≥

1

4π
(18)

1

• Characterised by two parameters:

• Quantum theory of one!dimensional objects.

String theory
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• Interested in strings propagating in curved space:
Universality and Scaling in AdS/CFT with Flavour
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• Interested in strings propagating in curved space:

:  String does not split. 

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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:  String behaves as a point.

• Complicated theory, but simplifies dramatically if:

Classical supergravity.
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String theory



Why and how should QCD 

and string theory be related



+ + ...
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At present the duality has its own limitations          

Complementary tool

In terms of applications to QCD
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Suppresses quantum corrections. Makes the string tiny.

Limitations: Classical gravity requires
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Suppresses quantum corrections. Makes the string tiny.

Technical di(culties, no" fundamental limitations.

Limitations: Classical gravity requires
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Solving large!     would be great progress!

λ = g2
YMNc →∞

M ∼ ΛQCD (1)

R4

"4
s

= λ = g2
YMNc (2)

"s ∼
1

λ1/4
(3)

gs ∼
1

Nc

(4)

χ = a dθ

Nc = 3
dE

dx
≈ 2− 8 GeV/fm (5)

δS = −a

∫
dx3 ∧ Tr

(
A ∧ F +

2

3
A3

)
. (6)

δS =

∫
θ(x) TrF ∧ F , θ(x) = ax3 . (7)

Tµν (8)

Jµ (9)

tchar ' texpan (10)

g−χ
s (11)

S =
A

4G
(12)

η =
σabs(ω → 0)

16πG
=

A

16πG
(13)

η

s
( 1

λ2
→∞ (14)

sBek-Haw =
SBek-Haw

V3
=

π2

2
N2

c T 3 (15)

η (16)

sBek-Haw =
3

4
sfree (17)

SCFT = SBek-Haw =
A

4G
(18)

1

Limitations



gs ∼ 1
Nc
" 1

χ = a dθ

Nc = 3
dE

dx
≈ 2− 8 GeV/fm (1)

δS = −a

∫
dx3 ∧ Tr

(
A ∧ F +

2

3
A3

)
. (2)

δS =

∫
θ(x) TrF ∧ F , θ(x) = ax3 . (3)

Tµν (4)

Jµ (5)

tchar " texpan (6)

g−χ
s (7)

S =
A

4G
(8)

η =
σabs(ω → 0)

16πG
=

A

16πG
(9)

η

s
' 1

λ2
→∞ (10)

sBek-Haw =
SBek-Haw

V3
=

π2

2
N2

c T 3 (11)

η (12)

sBek-Haw =
3

4
sfree (13)

SCFT = SBek-Haw =
A

4G
(14)

THaw =
1

β
, β =

πR2

r0
(15)

TCFT (16)

r = r0 Horizon IR (17)

T > Tdec (18)

δAµ = ∂µf (19)

1

Nc →∞
M ∼ ΛQCD (1)

R4

!4
s

= λ = g2
YMNc (2)

!4
s ∼

1

g2
YMNc

(3)

gs ∼
1

Nc

(4)

χ = a dθ

Nc = 3
dE

dx
≈ 2− 8 GeV/fm (5)

δS = −a

∫
dx3 ∧ Tr

(
A ∧ F +

2

3
A3

)
. (6)

δS =

∫
θ(x) TrF ∧ F , θ(x) = ax3 . (7)

Tµν (8)

Jµ (9)

tchar ' texpan (10)

g−χ
s (11)

S =
A

4G
(12)

η =
σabs(ω → 0)

16πG
=

A

16πG
(13)

η

s
( 1

λ2
→∞ (14)

sBek-Haw =
SBek-Haw

V3
=

π2

2
N2

c T 3 (15)

η (16)

sBek-Haw =
3

4
sfree (17)

SCFT = SBek-Haw =
A

4G
(18)

1

λ = g2
YMNc →∞

M ∼ ΛQCD (1)

R4

"4
s

= λ = g2
YMNc (2)

"4
s ∼

1

g2
YMNc

(3)

gs ∼
1

Nc

(4)

χ = a dθ

Nc = 3
dE

dx
≈ 2− 8 GeV/fm (5)

δS = −a

∫
dx3 ∧ Tr

(
A ∧ F +

2

3
A3

)
. (6)

δS =

∫
θ(x) TrF ∧ F , θ(x) = ax3 . (7)

Tµν (8)

Jµ (9)

tchar ' texpan (10)

g−χ
s (11)

S =
A

4G
(12)

η =
σabs(ω → 0)

16πG
=

A

16πG
(13)

η

s
( 1

λ2
→∞ (14)

sBek-Haw =
SBek-Haw

V3
=

π2

2
N2

c T 3 (15)

η (16)

sBek-Haw =
3

4
sfree (17)

SCFT = SBek-Haw =
A

4G
(18)

1

λ = g2
YMNc →∞

M ∼ ΛQCD (1)

R4

"4
s

= λ = g2
YMNc (2)

"s ∼
1

λ1/4
(3)

gs ∼
1

Nc

(4)

χ = a dθ

Nc = 3
dE

dx
≈ 2− 8 GeV/fm (5)

δS = −a

∫
dx3 ∧ Tr

(
A ∧ F +

2

3
A3

)
. (6)

δS =

∫
θ(x) TrF ∧ F , θ(x) = ax3 . (7)

Tµν (8)

Jµ (9)

tchar ' texpan (10)

g−χ
s (11)

S =
A

4G
(12)

η =
σabs(ω → 0)

16πG
=

A

16πG
(13)

η

s
( 1

λ2
→∞ (14)

sBek-Haw =
SBek-Haw

V3
=

π2

2
N2

c T 3 (15)

η (16)

sBek-Haw =
3

4
sfree (17)

SCFT = SBek-Haw =
A

4G
(18)

1

Suppresses quantum corrections. Makes the string tiny.

Limitations

! Asymptotically free.
! Dynamically generated scale.
! Confinement. 
! Deconfinement phase transition.
! ...
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Suppresses quantum corrections. Makes the string tiny.

Strong coupling means no asymptotic freedom!

Limitations
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Need not be CFT!

• Confinement.
• S!SB.
• Thermal phase 

transitions.
• Etc.

QCD

AdS/CFT is a 
misnomer!

Limitations



Universality and Scaling in AdS/CFT with Flavour

gYM = gYM(E) (1)

Mu ! Md :





u

d



 → U





u

d



 , U = Unitary matrix (2)

Mu ! Md ! 0 :





u↑

d↑



 → UR





u↑

d↑



 ,





u↓

d↓



 → UL





u↓

d↓





(3)

{q, q, q} = qi i = 1, . . . , Nc (4)

qa = {u, d, s, c, b, t} , a = 1, . . . , Nf (5)

qi qj Gij (6)

q̄ (7)

M = 2mq

√

π

g2
YM

Nc

√

(n + " + 1)(n + " + 2) (8)

η

s
! (2 − 4) ×

1

4π
(9)

25/2n

Nf

√

g2
YM

NcT 3
(10)

T/M̄ (11)

η

s
≥

1

4π
(12)

References

[1] M. Kruczenski, D. Mateos, R. C. Myers and D. J. Winters, “Towards a Holo-

graphic Dual of Large-N QCD”, J. High Energy Phys. 05 (2004) 041.

[2] J. Babington, J. Erdmenger, N. J. Evans, Z. Guralnik and I. Kirsch, “Chiral

symmetry breaking and pions in non-supersymmetric gauge / gravity duals,”

Phys. Rev. D 69, 066007 (2004) [arXiv:hep-th/0306018].

1

g2
YM

SχSB

Nf ! Nc (2)

O
(

ΛQCD

M

)
(3)

1
η

s
∼ 1

4π

η

s
∼ 1

4π
(4)

R4 = λ %4
s , λ = g2

YMNc (5)

Sstrong/Sfree = 3/4

Sstrong/Sfree # 0.8

J/ψ, Υ, ...

ω = |(k|

v < 1 (6)

Tfun(v) = (1− v2)1/4 Tfun (7)

η

s
=

1

4π
(8)

η

s
= (0− 5)× 1

4π
(9)

T/Mmes (10)

n∗
B

nB

Nf

√
λT 3

(11)

JB
µ = JEM

µ (12)

Nf/Nc (13)

GNTD7 ∼
λNf

Nc

(14)

2

Theory with gravity 
approximation

S ∼ − 1

gs

∫
d8x

√
− det(g + F ) −

∫
dτAµ

dxµ

dτ
−

∫
dτφi

dxi

dσ
(41)

Tχ ≥ Tc (42)

Nγ ∝ ηµνχµν , χµν ∼ Im〈JEM
µ JEM

ν 〉 (43)

Γ ∼ e−
√

λ ∼ e−Mq/T (44)

Γ ∼ 1/N2
c (45)

〈JEM
µ JEM

ν 〉 (46)

ΛQCD ∼ M e−
1

λ(M)

λ(M) ' 1

λ(M) ( 1

SχSB

Nf ' Nc (47)

O
(

ΛQCD

M

)
(48)

1
η

s
∼ 380× 1

4π

η

s
∼ 1

λ
(49)

1
η

s
∼ 9× 1

4π

η

s
∼ 1

λ
(50)

R4 = λ (4
s , λ = g2

YMNc (51)

Sstrong/Sfree = 3/4

Sstrong/Sfree * 0.8

J/ψ, Υ, ...

ω = |+k|

v < 1 (52)

3

QCD

So this may not seem like a big deal...

Limitations



Universality and Scaling in AdS/CFT with Flavour

gYM = gYM(E) (1)

Mu ! Md :





u

d



 → U





u

d



 , U = Unitary matrix (2)

Mu ! Md ! 0 :





u↑

d↑



 → UR





u↑

d↑



 ,





u↓

d↓



 → UL





u↓

d↓





(3)

{q, q, q} = qi i = 1, . . . , Nc (4)

qa = {u, d, s, c, b, t} , a = 1, . . . , Nf (5)

qi qj Gij (6)

q̄ (7)

M = 2mq

√

π

g2
YM

Nc

√

(n + " + 1)(n + " + 2) (8)

η

s
! (2 − 4) ×

1

4π
(9)

25/2n

Nf

√

g2
YM

NcT 3
(10)

T/M̄ (11)

η

s
≥

1

4π
(12)

References

[1] M. Kruczenski, D. Mateos, R. C. Myers and D. J. Winters, “Towards a Holo-

graphic Dual of Large-N QCD”, J. High Energy Phys. 05 (2004) 041.

[2] J. Babington, J. Erdmenger, N. J. Evans, Z. Guralnik and I. Kirsch, “Chiral

symmetry breaking and pions in non-supersymmetric gauge / gravity duals,”

Phys. Rev. D 69, 066007 (2004) [arXiv:hep-th/0306018].

1

g2
YM

SχSB

Nf ! Nc (2)

O
(

ΛQCD

M

)
(3)

1
η

s
∼ 1

4π

η

s
∼ 1

4π
(4)

R4 = λ %4
s , λ = g2

YMNc (5)

Sstrong/Sfree = 3/4

Sstrong/Sfree # 0.8

J/ψ, Υ, ...

ω = |(k|

v < 1 (6)

Tfun(v) = (1− v2)1/4 Tfun (7)

η

s
=

1

4π
(8)

η

s
= (0− 5)× 1

4π
(9)

T/Mmes (10)

n∗
B

nB

Nf

√
λT 3

(11)

JB
µ = JEM

µ (12)

Nf/Nc (13)

GNTD7 ∼
λNf

Nc

(14)

2

Theory with gravity 
approximation

S ∼ − 1

gs

∫
d8x

√
− det(g + F ) −

∫
dτAµ

dxµ

dτ
−

∫
dτφi

dxi

dσ
(41)

Tχ ≥ Tc (42)

Nγ ∝ ηµνχµν , χµν ∼ Im〈JEM
µ JEM

ν 〉 (43)

Γ ∼ e−
√

λ ∼ e−Mq/T (44)

Γ ∼ 1/N2
c (45)

〈JEM
µ JEM

ν 〉 (46)

ΛQCD ∼ M e−
1

λ(M)

λ(M) ' 1

λ(M) ( 1

SχSB

Nf ' Nc (47)

O
(

ΛQCD

M

)
(48)

1
η

s
∼ 380× 1

4π

η

s
∼ 1

λ
(49)

1
η

s
∼ 9× 1

4π

η

s
∼ 1

λ
(50)

R4 = λ (4
s , λ = g2

YMNc (51)

Sstrong/Sfree = 3/4

Sstrong/Sfree * 0.8

J/ψ, Υ, ...

ω = |+k|

v < 1 (52)

3

Additional d.o.f. with                       !               M ∼ ΛQCD (1)

R4

!4
s

= λ = g2
YMNc (2)

gs ∼
1

Nc

(3)

χ = a dθ

Nc = 3
dE

dx
≈ 2− 8 GeV/fm (4)

δS = −a

∫
dx3 ∧ Tr

(
A ∧ F +

2

3
A3

)
. (5)

δS =

∫
θ(x) TrF ∧ F , θ(x) = ax3 . (6)

Tµν (7)

Jµ (8)

tchar % texpan (9)

g−χ
s (10)

S =
A

4G
(11)

η =
σabs(ω → 0)

16πG
=

A

16πG
(12)

η

s
' 1

λ2
→∞ (13)

sBek-Haw =
SBek-Haw

V3
=

π2

2
N2

c T 3 (14)

η (15)

sBek-Haw =
3

4
sfree (16)

SCFT = SBek-Haw =
A

4G
(17)

THaw =
1

β
, β =

πR2

r0
(18)

1

QCD

but it is:
So this may not seem like a big deal...

Limitations



Universality and Scaling in AdS/CFT with Flavour

gYM = gYM(E) (1)

Mu ! Md :





u

d



 → U





u

d



 , U = Unitary matrix (2)

Mu ! Md ! 0 :





u↑

d↑



 → UR





u↑

d↑



 ,





u↓

d↓



 → UL





u↓

d↓





(3)

{q, q, q} = qi i = 1, . . . , Nc (4)

qa = {u, d, s, c, b, t} , a = 1, . . . , Nf (5)

qi qj Gij (6)

q̄ (7)

M = 2mq

√

π

g2
YM

Nc

√

(n + " + 1)(n + " + 2) (8)

η

s
! (2 − 4) ×

1

4π
(9)

25/2n

Nf

√

g2
YM

NcT 3
(10)

T/M̄ (11)

η

s
≥

1

4π
(12)

References

[1] M. Kruczenski, D. Mateos, R. C. Myers and D. J. Winters, “Towards a Holo-

graphic Dual of Large-N QCD”, J. High Energy Phys. 05 (2004) 041.

[2] J. Babington, J. Erdmenger, N. J. Evans, Z. Guralnik and I. Kirsch, “Chiral

symmetry breaking and pions in non-supersymmetric gauge / gravity duals,”

Phys. Rev. D 69, 066007 (2004) [arXiv:hep-th/0306018].

1

g2
YM

SχSB

Nf ! Nc (2)

O
(

ΛQCD

M

)
(3)

1
η

s
∼ 1

4π

η

s
∼ 1

4π
(4)

R4 = λ %4
s , λ = g2

YMNc (5)

Sstrong/Sfree = 3/4

Sstrong/Sfree # 0.8

J/ψ, Υ, ...

ω = |(k|

v < 1 (6)

Tfun(v) = (1− v2)1/4 Tfun (7)

η

s
=

1

4π
(8)

η

s
= (0− 5)× 1

4π
(9)

T/Mmes (10)

n∗
B

nB

Nf

√
λT 3

(11)

JB
µ = JEM

µ (12)

Nf/Nc (13)

GNTD7 ∼
λNf

Nc

(14)

2

Theory with gravity 
approximation

S ∼ − 1

gs

∫
d8x

√
− det(g + F ) −

∫
dτAµ

dxµ

dτ
−

∫
dτφi

dxi

dσ
(41)

Tχ ≥ Tc (42)

Nγ ∝ ηµνχµν , χµν ∼ Im〈JEM
µ JEM

ν 〉 (43)

Γ ∼ e−
√

λ ∼ e−Mq/T (44)

Γ ∼ 1/N2
c (45)

〈JEM
µ JEM

ν 〉 (46)

ΛQCD ∼ M e−
1

λ(M)

λ(M) ' 1

λ(M) ( 1

SχSB

Nf ' Nc (47)

O
(

ΛQCD

M

)
(48)

1
η

s
∼ 380× 1

4π

η

s
∼ 1

λ
(49)

1
η

s
∼ 9× 1

4π

η

s
∼ 1

λ
(50)

R4 = λ (4
s , λ = g2

YMNc (51)

Sstrong/Sfree = 3/4

Sstrong/Sfree * 0.8

J/ψ, Υ, ...

ω = |+k|

v < 1 (52)

3

QCD

QCD is hard because it is both 
strongly and weakly coupled!
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! With or without quarks.
! With or without chemical potential.
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! Theories in di)erent dimensions.
! With or without quarks.
! With or without chemical potential.
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• In QCD we cannot calculate it but we can go to RHIC 
and LHC:
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A good quantitative example

• Although in right ballpark, it could be o) by 200!300* !
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Gauge

BHSmoothGravity

in RHIC experiments is approximately TRHIC ! 2Tc, with Tc ! 175 MeV the deconfinement
temperature of Quantum Chromodynamics (QCD). Despite the large increase in the collision
energy, this is expected to lead only to a moderate increase in the plasma temperature at
LHC [2], i.e. TLHC ! (3 − 4)Tc.1 In contrast, high energy partons originating in hard initial
collisions will be copiously produced at the LHC. This will allow the study of quarks and
gluons in the 100 GeV range, an order of magnitude larger than that at RHIC.

Experimentally, extremely valuable information is obtained by analyzing the energy loss
of these energetic partons as they travel through the QGP. In order to use this information to
learn about the plasma, a theoretical, quantitative understanding of the different mechanisms
of parton energy loss is needed. Several such mechanisms have been previously studied, both
in QCD itself [3] and in the context of the gauge/gravity duality [4].

A remarkable conclusion from the RHIC experiments [5] is that the QGP does not behave
as a weakly coupled gas of quarks and gluons, but rather as a strongly coupled fluid [6].
Because of the moderate increase in the temperature and the logarithmic running of the
QCD coupling constant, a qualitatively rather similar behaviour may be expected for the
QGP at the LHC. This makes it particularly important to understand mechanisms of parton
energy loss that may operate at strong coupling. We recently uncovered one such mechanism
[1] whereby a sufficiently fast heavy quark traversing a strongly coupled plasma loses energy
by Cherenkov-radiating in-medium mesons.

The analysis in [1] showed that this mechanism takes place in all strongly coupled, large-
Nc gauge theory plasmas with a gravity dual. The argument is so simple that we reproduce
in section 2 for completeness. This section emphasizes the universality of the mechanism,
since no reference to a specific model is necessary.

Ref. [1] also performed a quantitative analysis in the simple example of a quark moving
through the N = 4 super Yang-Mills (SYM) plasma. The quark Cherenkov-radiates both
vector and scalar mesons. The rate of energy loss into the transverse modes of the vector
mesons was calculated in [1], and we again reproduce it here for completeness. The vector
mesons in question are massive, and thus they also possess a longitudinal mode. Here we
extend the calculation of [1] and obtain the rate of energy loss into longitudinal vector mesons
and scalar mesons. The result for the former is qualitatively similar to that for the transverse
modes. In contrast, the result for scalar mesons is qualitatively different from that for vector
mesons.

Ref. [1] presented a rather preliminary exploration of the potential implications of these
results for HIC experiments. Here we elaborate on that discussion and extend it to include
possible implications of the new results presented in this paper.

2. A universal mechanism of quark energy loss

The reason that the mechanism we are going to describe is universal is that it only relies on
1A ballpark estimate is obtained by assuming that the temperature scales as the fourth root of the energy

density.
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the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as
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Heavy mesons survive deconfinement

Black Hole

Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This

124

as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))
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In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))
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In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Black Hole

Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))
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In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
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In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This

124

as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))
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In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-

plicitly. The total action of the system is

S = SG[g] + ε SB[g, X] , (1)

where SG is the gravitational action, which depends on the metric g, and SB is the

brane’s action, which depends on the metric and the worldvolume fields, collectively

denoted by X. The brane action is suppressed by a small parameter ε ∼ Nf/Nc with

respect to the gravitational action. A solution to the equations of motion takes the

form of an expansion in powers of ε:

g = g0 + ε g1 + · · · , X = X0 + ε X1 + · · · (2)

where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.

Now consider evaluating some physical quantity O. Interesting cases include the

action itself, O = S, the stress-energy tensor, O = Tµν , etc. In general any observable

receives contributions from both parts of the action, so to order ε we have

O[g, X] = OG[g0] +
δOG

δg

∣

∣

∣

∣

g0

ε g1 + ε OB|g0,X0
. (3)

The third term is the direct brane contribution, whereas the second one is the con-

tribution from the backreaction. This contribution would seem to vanish if and only

if
δOG

δg

∣

∣

∣

∣

g0

= 0 . (4)

This is true for the action itself, ie. in the case O = S, because g0 is an extremum of

the gravitational action, but it is not true for the stress-energy tensor.

So we apparently conclude that the backreaction of the branes always contributes

to the stress-energy tensor. The reason we are confused is that this conclusion does
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Black Hole

Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the diffeomorphism trans-
forming the single shock metric (8) from Fefferman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B+ +B−. We choose the
initial time v0 so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a4 and f2 may be found analytically,

a4 = − 4
3 [h(v0+z)+h(v0−z)] , f2 = h(v0+z)−h(v0−z).

(10)

A complication with this initial data is that the metric
functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a4 a small positive constant δ.
This introduces a small background energy density in
the dual quantum theory. Increasing δ causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is ∆z = 6.2/µ. We chose
δ = 0.014µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, Tbkgd = 0.11µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v=0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10−4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = −0.23/µ, where P‖ has its
maximum, it is roughly 5 times larger than P⊥. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, P‖ is more than 3 times
larger than P⊥.

The fluid/gravity correspondence [17] implies that at
sufficiently late times the evolution of Tµν will be de-
scribed by hydrodynamics. To test the validly of hydro-

Time dependence & thermalization
Chesler & Ya)e ‘10

• Collide two infinite sheets of energy in N=4           d=2+1 in AdS   
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positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10−4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = −0.23/µ, where P‖ has its
maximum, it is roughly 5 times larger than P⊥. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, P‖ is more than 3 times
larger than P⊥.

The fluid/gravity correspondence [17] implies that at
sufficiently late times the evolution of Tµν will be de-
scribed by hydrodynamics. To test the validly of hydro-

Time dependence & thermalization
Chesler & Ya)e ‘10

• Collide two infinite sheets of energy in N=4           d=2+1 in AdS   

! Short thermalization time ~ 0.3 fm.

Insigh":
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ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10−4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = −0.23/µ, where P‖ has its
maximum, it is roughly 5 times larger than P⊥. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, P‖ is more than 3 times
larger than P⊥.

The fluid/gravity correspondence [17] implies that at
sufficiently late times the evolution of Tµν will be de-
scribed by hydrodynamics. To test the validly of hydro-

Time dependence & thermalization
Chesler & Ya)e ‘10

• Collide two infinite sheets of energy in N=4           d=2+1 in AdS   

! Only numerical ball!park. 
! Thermalization could occur via weak!coupling mechanism. 

Caveats:

! Short thermalization time ~ 0.3 fm.

Insigh":
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Finite impact parameter:  d=4+1 in AdS

! Include elliptic flow.
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Figure 2.5: Sketch of the collision of two nuclei, shown in the transverse plane perpendicular to the
beam. The collision region is limited to the interaction almond in the center of the transverse plane.
Spectator nucleons located in the white regions of the nuclei do not participate in the collision. Figure
taken from Ref. [60].

short direction of the almond as they are in the long direction. And, as we shall see, it turns
out that ideal hydrodynamics does a surprisingly good job of describing these asymmetric
explosions of the matter produced in heavy ion collisions with nonzero impact parameter.
This has implications which are sufficiently interesting that they motivate our describing this
story in considerable detail over the course of this entire Section. We close this introduction
with a sketch of these implications.

First, the agreement between data and ideal hydrodynamics teaches us that the viscosity
η of the fluid produced in heavy ion collisions must be low. η enters in the dimensionless
ratio η/s, with s the entropy density, and it is η/s that is constrained to be small. A
fluid that is close to the ideal hydrodynamic limit, with small η/s, requires strong coupling
between the fluid constituents. Small η/s means that momentum is not easily transported
over distances that are long compared to ∼ s−1/3, which means that there can be no well-
defined quasiparticles with long mean free paths in a low viscosity fluid since if they existed,
they would transport momentum and damp out shear flows. No particles with long mean
free paths means strongly coupled constituents.

Second, we learn that the strong coupling between partons that results in approximate
local equilibration and fluid flow close to that described by ideal hydrodynamics must set
in very soon after the initial collision. If partons moved with significant mean free paths
for many fm of time after the collision, delaying equilibration for many fm, the almond
would circularize to a significant degree during this initial period of time and the azimuthal
momentum asymmetry generated by any later period of hydrodynamic behavior would be
less than observed. When this argument is made quantitative, the conclusion is that RHIC
collisions produce strongly coupled fluid in approximate local thermal equilibrium within
close to or even somewhat less than 1 fm after the collision [61].2

2Reaching approximate local thermal equilibrium and hence hydrodynamic behavior within less than 1
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Let’s sit down and talk !

• Many of these problems require “just” solving 
classical Einstein equations in AdS.



Thank you.


