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Introduction

Perturbation analysis (analytical/numerical)

GW emission from a particle (plunging into or orbiting)
around a BH

Stability problem
Stable =» final state of gravitational collapse
Unstable =» New branch of solutions

Information about the geometry: Quasi-Normal Modes
Insights into Unigueness/non-uniqueness

Attempt to find new, approximate solutions
(by deforming an existing solution)



Two major issues when formulating perturbation theory

* Fixing gauge ambiguity
A |mposing suitable gauge conditions

or

A constructing manifestly gauge-invariant variables

e Reduction of perturbation equations to
N a simple, tractable form (Master equations)

classifying perturbation variables into
A (to be) mutually decoupled groups

separating variables



Master equations

4D Static asymptotically flat vacuum case Regge-Wheeler 57
Zerilli 70

charge case  Moncrief
-- Stability Regge-Wheeler 57, Veshveshwara 70 ...

asymptotically AdS/dS case Cardoso-Lemos

--- set of decoupled self-adjoint ODEs

Stationary Rotating vacuum (Kerr) case Teukolsky 72
--- Stability Press-Teukolsky 73 --- Whihting 89 ...

Talk by Ferrari



4D classification (Uniqueness)

* BH Thermodynamics: AM = LA + QuAJ

s

Stationary black holes obey equilibrium
thermodynamic law (i.e. 15t law)

=» described by merely a small numbers of parameters
(M, J, Q)

(Israel-Carter-Robinson-Mazur-Bunting-Chrusciel)

— vacuum rotating black hole spacetime —> Kerr-metric



Physical implications

@ If weak cosmic censorship (Penrose) holds, gravitational
collapse always forms a black hole

@ The Kerr-metric is stable (Press-Teukolsky 73, Whiting 89)

—> describes a possible final state of dynamics

The Kerr-metric describes—to a very good approximation—black holes,
formed via gravitational collapse in our universe }

Uniqueness + Stability + Cosmic Censorship



“In my entire scientific life ... the most shattering

experience has been the realization that an
exact solution of general relativity, discovered by

the New Zealand mathematician Roy Kerr,
provides the absolutely exact representation of
untold numbers of massive black holes that
populate the Universe”

Chandrasekhar



Classification Problem in Higher Dimensions

* D>4 General Relativity
No uniqueness like 4D GR

Area ( same M)

A
. Rotating Hole
Thin Ring

Fat Ring

3 Black Objects

Many unstable black (rotating) objects



Stability results so far

e 4D  Static: vacuum, charged, A =>» stable
Rotating: vacuum (Kerr) =>» stable
A(<0) (Kerr-AdS) =>» unstable (¢(Qy > 1)

« D>4 Static: vacuum =>» stable
charged (D=5...11) w. A =>» can be unstable
Rotating: =» many unstable cases

Gregory-Laflamme instability
Superradiant instability



Perturbations in Higher Dimensional General Relativity

* Rotating BH case =2 Not separable in general (Talk by Godazgar)
still a long way from having a complete perturbation theory

Progress in some special cases
cohomogeneity-one (odd-dim. )
Kunduri-Lucietti —Reall 07, Murata-Soda 08
Kundt spacetimes (e.g. Near-horizon geom)
Durkee-Reall 11

Numerical approach
e.g. Talks by Shibata, Dias,

» Static BH case = simpler and tractable:
-- can reduce to a set of decoupled ODEs



In this talk

-- focus on Static black holes in General Relativity

-- discuss Gauge-invariant formulation of linear perturbations
(metric pert. Approach)

Master equations
Stability analysis
Generalizations

Open issues
See. e.g. latest review Al & Kodama 1103.6148



Background geometry

MP = N™ x K" ds? = gap(y)dy®dy® + 2 (y)do?

gab(y) : m—dim spacetime metric
do‘% — ’Yij(z)dzidzj : n—dim Einstein metric ~ Rij; = (n — 1)Kv;;

e.g. n-sphere K=+1,0

This metric describe a fairly generic class of metrics



m=1 y? ¢ FLRW universe ds? = —dt° + T(t)zdag

m =2 y*— (t,r) Staticblack hole
1
f(r)

ds® = —f(r)dt® + dr? + r2do?

m >3  y*— (t,r,y) Black-brane

ds® = dy? — f(r)dt> + L 2 4+ r2do?2
f(r)
m=4 Y= (t,760,6) Myers-Perry black hole ( w/ single rotation)

r — 7 COS6

ds® = ((4-dim. Kerr type metric)) + r2 cos? 6do=



Cosmological perturbation theory
ds® = —dt®> + 'r'(t)2da,,% : FLRW background metric

r(t) : scale factor
do2 = 'yz-j(z)dzidzj : homogeneous isotropic time-slice

n=23

Perturbations édg,, 6T, are decomposed into 3 types
according to its tensorial behaviour on time-slice (X", v;;)

Tensor-type: transverse-traceless ( possible only when n >3 )
=>» Gravitational Waves

Vectro-type: div-free vector = couple to matter
e.g. velocity perturbations

Scalar-type: scalar =>» couple to matter
e.g. density perturbations

Gauge-invariant formulation Bardeen80 Kodama-Sasaki 84



Brane-world cosmology
* AdS - (Black Hole)-Bulk spacetime

1 y -
2 _ 2, 1 .o 5.9
ds5., = f(r)dtc + f(r)d'r' + r<do;, . AdS (BH) Bulk_~
* Brane-world f(r)é? — f(r)# =1 Brane-world
ds%+n = —dr? + TQ(T)dag

Bulk perturbations induce brane-world cosmological perturbations
--- need to develop a formula for AdS-Black Hole perturbations
--- convenient to decompose bulk perturbations into
Tensor-, Vector-, Scalar-type wrt do2 = ~;;(2)dz'd>’

Kodama — Al — Seto ‘00



Background geometry

Static solutions of Einstein-Maxwell + cosmological constant
in D=2+n

1
f(r)

_ 2M Q? 2
f(r) = K — rn_l + 7«2(?1—1) — Ar

ds® = —f(r)dt® + dr? 4 r?do?
n

K=41,0
M ADM-mass
Q charge

Ao A Cosmological constant



Basic strategy to derive master equations

(1) Mode-decompose  0guv as

— Tensor-type S ZTRIERPRPRIR > new componentin D >4 case
= Vector-type Grrerereennennens » axial- mode in D =4 case
— Scalar-type D S » polar-modein D=4 case

(2) Expand dguv by tensor harmonics T;; V; S definedon K"

(3) Write the Einstein equations in terms of the expansion coefficients
in 2-dim. spacetime A2 spanned by ¥ = (¢,r)



Decomposition theorem

(i) Any (dual) vector field on compact Riemaniann manifold
can be uniquely decomposed as

v; = Vi+ DS where DiV; = 0

(ii) Any 2"d-rank symmetric tensor t;; on compact Einstein manifold
can be uniquely decomposed as

(2) A (1 N i
tij — tt'j + QD(ET( }j} + fL Ii] + Lijt'_]"

Metric perturbations : decomposed as
hyndaMdaN = habdy”‘d_yb -+ Qhaidy“dzi + h.?;jdzidzj
hai = Dihg + 0D
hi; = hg?)ij + Qﬁ(ifz.%})j) + hrvyij + ﬁijh.g,g})




Tensor-type perturbations

-------------------------------------------------------------

69,_“; —

0 42t r) T,
K :

_/

Fyt= ()

. Tij : Transverse-Traceless harmonic tensor on xn

(An+ 12Ty =0  Ti=0, DjT/;=

o ®(t,r) isagauge-invariant variable

* Einstein’s equations reduce to Master equation A/2

D

n(n+ 1)M

rn—1

+ k3 — (n—2)K



Vector-type perturbations

* V; : Div.-free vector harmonics on xn : (An + k), =0, D;V'=0

n
 Gauge-invariant variable: e := ,n—2pa " pa (Ez)
”

* Einstein’s equations reduce to { D, F*=0 - (1)
OF*+...=0 --. (2)
(1) =mmmp Thereexists & (¢,r) suchthat pa — EabDb (,,,n/zcb)

(2) w=mmm) Einstein’s equation reduces to Master equation

f

Vi il . e o nn+2) . ndf
[ (D — —) b =0 ] V=3 [kv (n—1)K + 1 f 5"

-- corresponds to the Regge-Wheeler equation in 4D



Scalar-type perturbations

e Expand dguv by scalar harmonics S on K" : (An—kk%)S =0

. Construct gauge-invariant variables: X, Y, Z on N?

{ ’

e After Fourier transf. wrt Einstein’s equations reduce to

t

* Set of 1**—order ODEsfor X , YV, Z
{ * A linear algebraic relation among them

--- such a system can be reduced to a single wave equation

e For a certain linear combination ®(¢t,r) of X, Y, Z

i

Einstein’s equations reduce to ( Vs & — ()
f

-- corresponds to the Zerilli equation in 4D



Thus, for each type of perturbations, we obtain
a single master wave equation :

0? o
ot? e = ( orz ) ?

Vv : effective potential I— /

f(r)

- Degrees of freedom:

Tensor harmonics  T;; : (r=2)(n+1) —indpdt. components (7 2> 3)
2

Vector harmonics v, : n—1 kK (n > 2)

Scalar harmonics g 1 e ok %

Total ™) (n+2)(n—-1) D(D-3) components
2 2



e 4D case:

Intertwining between vector (axial) and scalar (polar)
perturbations
Og = pdy + ¢,

dF
VS,VV:ifW+F2+cF

* D>4 case:

No such intertwining among Tensor-, Vector-, and Scalar-type
perturbations



Stability analysis

* Master equation takes the form:

52 d?
9%y A=— v
Fere| 4

d o exp(—iwt)

w2fd'r*|<b|2 = /dr*CD*ACD

If “A” is a positive self-adjoint operator, the master
equation does not admit “unstable” solutions

---  The black hole is stable



Boundary conditions
o0 at infinity
 Asymptotically flat case: 7« — <|:
— 00

at Horizon

d2

Show positivity of A= —— +V under the boundary condition

2
drz

infinity
b = @) at <|j
Horizon (-- can be removed)



If stable wrt pert. w/ Dirichlet condition at Horizon, then
stable wrt pert. on extended Schwarzschild (Kruskal) spacetime

Kay-Wald 87
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Stability wrt Tensor-type

% n,(n4+ Q)f n(n :_ll)fu' k2 (n—Q)K] >0
d2
A= — v >0
dr? i

Stable



Stability wrt Scalar-type

The potential is NOT positive definite in D > 4
d2
dr?

Not obvious to see whether A = — + V'  is positive or not



stability proof

_d
_d’r*

Define D: + S w. some function S(r)

(b, Ad) = —¢*Dd>|bndry—|—/dr* IDD2 4T |b?
ds

d'r'*

Boundary terms vanish under our Dirichlet conditions ¢ = O

where V=V 4+ _ 52

[ Task: Find S(r) that makes V/ positive definite]

Then, A isuniquely extended to be a positive self-adjoint operator



When the horizon manifold ™

is maximally symmetric

lensor Vector Scalar
Q=0|Q#0 | Q=0] Q#0 Q=0 _Q%rOOK
K=1 | A=0| OK OK OK OK OK g;;{?
A>0| OK | OK | OK | OK g;g?OK g;;l,;iOK
A<O0| OK | OK | OK | OK g;;l?OK g;;l?OK
G ) I I R el
K=-1|A<0| OK | OK | OK | OK g;ggK g;gg)[(

“OK” =» “Stable”

WRT Tensor- and Vector-perturbations = Stable over entire parameter range

Q#r0 A#0

WRT Scalar-perturbations =» ??? when




Numerical study
Konoplya-Zhidenko 07 09

 Schwarzschild-de Sitterin D=5,..., 11 =» stable

 Charged (RN) de Sitter can be unstable in D > 7
when ) and A large enough



Potential for Scalar-type pert. w. non-vanishing ) , \

V. Vs-
n=6
n=6
n=5
n=5
n=4
n=4 A n=3
n=3 n=2
0 | n=2 U'a \\/ 5 3
V(\ : r/r, ’ ity
- K=1, A<0, Q*/M*=0.9, I=2
K=1, 2=0, Q*/M?=0.99, I=2

For extremal and near-extremal case, the potential becomes
negative in the immediate vicinity of the horizon

Not fully studied yet



Extremal BHs

* The effective potential has a negative ditch near the horizon

* Numerical (QNMs) study indicates instability

* No bifurcate surface: Kay-Wald’s theorem concerning
boundary conditions at horizon
does not apply

What boundary conditions are appropriate
at near-horizon throat?



Some generalizations and open problems



Static black holes in Lovelock theory

Higher curvature terms involved

k 1
- Ao A om PR PmBEm
L= Z Cnlom L = 0 R o R

QTTL P1RE1 " PmBEm mOm

m=0
Equations of motion contain only up to 2"4-order derivatives

ds® = — f(r)dt? + 1 g2 + r2do?
f(r)

f(r) =K — X(r)r?

* Master equations in generic Lovelock theory Takahashi— Soda 10
in Gauss-Bonnet theory  Dotti — Gleiser 05

* Asymptotically flat, small mass BHs are unstable wrt
Tensor-type perturbations (in even-dim.)
Scalar-type perturbations (in odd-dim.)

* Instability is stronger in higher multipoles rather than low-multipoles
(D, Ad) = /dr* IDD24£(44+n—1) /d’r*N(T) BE

If N(r) <0 ,then (P, AP) <0 forsufficiently large £



c. f. Cohomogeneity-1 Myers-Perry BHs

D =odd, J1 = Jo = - Jp-1)/2

( not in the class of metrics of ds? = g,;,(y)dy®dy® + r?(y)do?

enhanced symmetry: R x U((D — 1)/2)
Perturbation equations reduce to ODEs

Kunduri-Lucietti —Reall 07, Murata-Soda 08

Talk by Dias



Rotating case: Cohomogeneity-2 Myers-Perry BHs

N4 K
A
( A | [ ]

— - - 2 2 2
m = 4 ds® = {(4-dim. Kerr type metric)) + r< cos< do;

symmetry enhance U(1)N = U(1) x SO(D — 3)

Numerical approach to stability analysis  Talks by Shibata, Dias

--- include the ultra-spinning case

> >>

o Talk by Dias

| Gregory-Laflamme modes




Cohomogeneity-2 MP case: Analytic formulation?

N4 Kcn
\
{ \ \ r \

_ 2 , : 2 2 2
m =4 ds© = ((4-dim. Kerr type metric) + r< cos< fdo;,

Tensor-type perturbations: A single master scalar variable & on A4

satisfy the same equation for a massless Klein-Gordon field
n >3

How about vector-type and scalar-type perturbations?

KK-reduction along K™ =» Equations for massive vector/ tensor fields
on N4 : 4-dim. Kerr —type spacetime

Not known how to (analytically) deal with even in the standard 4-dim. Kerr background

For vector-type: =» 3 master scalar variables on A4

For scalar-type: =» 6 master scalar variables on A4 (mn=>3)



Metric perturbation approachin D = m + n
N K
; : \ —

ds? = gop(y)dy?dy® + r2(y)do?

Tensor-type: => 1 master scalar variable (n > 3)

Vector-type: = m —1 gauge-invariant scalar variables (n > 2)

Scalar-type: => m(m — 1) gauge-invariant scalar variables
2

--- intricately coupled on N



Fup, F': Gauge-invariant variables in N'™
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Perturbation analysis and Classification problem

* |n 4D classification: Uniqueness + Stability of the Kerr metric
important (astro-)physical implications

Uniqueness Theorem was established by assembling

Topology results, Symmetry (Rigidity) results, etc. and
all comp. of the Einstein equations all together

e How about D>4 classification?



Role of symmetry in Stability problem

 Stability of an extremal black hole and its near-
horizon geometry

Examine perturbations of the near-horizon geometry
that respect the symmetry of the full BH solution

Durkee - Reall 11

 Symmetric perturbation at Topology changing point

c.f. critical behavior
and critical exponent




Summary: linear perturbation

Static BHs: Complete formulation for perturbations

Rotating BHs:

-- Still a long way from having a complete formulation
-- Considerable progress recently made for some special cases

Interesting:

Interplay between Symmetry /Topology properties
and Perturbation analysis



