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Introduction

Perturbation analysis  (analytical/numerical)

• GW emission from a particle (plunging into or orbiting)  
around a BH 

• Stability problem
Stable  final state of gravitational collapse 

Unstable  New branch of solutions

• Information about the geometry:   Quasi-Normal Modes 
• Insights into Uniqueness/non-uniqueness
• Attempt to find new, approximate solutions 

(by deforming an existing solution)



Two major issues when formulating perturbation theory

• Fixing gauge ambiguity

Imposing suitable gauge conditions

or

constructing manifestly gauge-invariant variables

• Reduction of perturbation equations to 
a simple, tractable form (Master equations)

classifying  perturbation variables into 
(to be) mutually decoupled groups

separating  variables



Master equations 

4D Static asymptotically  flat vacuum case  Regge-Wheeler 57     

Zerilli 70                             

charge case       Moncrief

-- Stability                Regge-Wheeler 57, Veshveshwara 70 …   

asymptotically AdS/dS case            Cardoso-Lemos

--- set of decoupled self-adjoint ODEs

Stationary Rotating vacuum (Kerr) case Teukolsky 72  

--- Stability Press-Teukolsky 73  --- Whihting 89 …                                   

Talk by Ferrari 



4D classification (Uniqueness)

• BH Thermodynamics: 

Stationary black holes obey equilibrium  
thermodynamic law  (i.e. 1st law) 

 described by merely a small numbers of parameters 

(Israel-Carter-Robinson-Mazur-Bunting-Chrusciel)



Physical implications

Uniqueness +  Stability +  Cosmic Censorship





• D>4 General Relativity 

No uniqueness like 4D GR

Many unstable black (rotating) objects

Classification Problem in Higher Dimensions



Stability results so far

• 4D Static: vacuum, charged, Λ  stable
Rotating: vacuum (Kerr)                            stable

Λ(<0) (Kerr-AdS)          unstable (                  )

• D>4 Static: vacuum                                          stable  
charged (D=5…11) w.  Λ                can be unstable 

Rotating:  many unstable cases

Gregory-Laflamme instability 
Superradiant instability



• Rotating BH case    Not separable in general  (Talk by Godazgar)
still a long way from having a complete perturbation theory 

Progress in some special cases 
cohomogeneity-one (odd-dim. ) 

Kunduri-Lucietti –Reall 07,  Murata-Soda 08 
Kundt spacetimes (e.g. Near-horizon geom)  

Durkee-Reall 11

Numerical approach 
e.g. Talks by Shibata, Dias, 

• Static BH case   simpler and tractable:  
-- can reduce to a set of decoupled ODEs

Perturbations in Higher Dimensional General Relativity



In this talk

-- focus on Static black holes in General Relativity

-- discuss  Gauge-invariant formulation of linear perturbations 
(metric pert. Approach)

Master equations 

Stability analysis

Generalizations 

Open issues 

See. e.g.  latest review  AI & Kodama 1103.6148  



Background geometry

:  m – dim spacetime metric

:  n – dim Einstein metric

e.g. n-sphere 

This metric describe a fairly generic class of metrics



FLRW universe

Static black hole 

Myers-Perry black hole ( w/ single rotation)

Black-brane 



Cosmological perturbation theory

:   scale factor 

:  homogeneous isotropic time-slice

:  FLRW background metric

Perturbations                           are decomposed into 3 types 
according to its tensorial behaviour on time-slice

Tensor-type:    transverse-traceless (  possible only when                )            
 Gravitational Waves 

Vectro-type:    div-free vector   couple to matter 
e.g.   velocity perturbations 

Scalar-type:     scalar                   couple to matter 
e.g.   density perturbations    

Gauge-invariant formulation     Bardeen 80     Kodama-Sasaki 84



Brane-world cosmology

• AdS - (Black Hole)-Bulk spacetime 

• Brane-world 

Bulk perturbations induce  brane-world cosmological perturbations
--- need to develop a formula for AdS-Black Hole perturbations 
--- convenient to decompose bulk perturbations into 

Tensor-, Vector-, Scalar-type  wrt

Kodama – AI – Seto ‘00



Background geometry

charge

ADM-mass

Cosmological constant

Static solutions of Einstein-Maxwell + cosmological constant
in  



Basic strategy to derive master equations  

(1)   Mode-decompose                   as 

Tensor-type                                   new component in  D > 4 case 

Vector-type                                   axial - mode in D = 4 case                       

Scalar-type                                    polar - mode in  D = 4 case                            

(2) Expand                 by  tensor harmonics                               defined on 

(3)   Write the Einstein equations in terms of the expansion coefficients
in 2-dim.  spacetime             spanned by 



Decomposition theorem

(i) Any (dual) vector field on compact Riemaniann manifold 
can be uniquely decomposed as 

(ii)  Any 2nd-rank symmetric tensor          on compact Einstein manifold 

can be uniquely decomposed as 

Metric perturbations : decomposed as 



Tensor-type perturbations

• :    Transverse-Traceless harmonic tensor on              

• is a gauge-invariant variable  

• Einstein’s equations reduce to Master equation



Vector-type perturbations

• :   Div.-free vector harmonics  on          :       

• Gauge-invariant variable:    

• Einstein’s equations reduce to 

*

There exists                    such that                                         

Einstein’s equation reduces to Master equation              

-- corresponds to the Regge-Wheeler equation in 4D 



Scalar-type perturbations

• Construct  gauge-invariant variables:                             on      

• After Fourier transf. wrt ‘    ’   Einstein’s equations reduce to 

--- such a system can be reduced to a single wave equation                        

• For a certain linear combination                    of             

-- corresponds to the Zerilli equation in 4D 

• Expand                 by  scalar harmonics        on          :                         

• Set of 1st –order ODEs for 
• A  linear algebraic relation among them 

Einstein’s equations reduce to 



Thus, for each type of perturbations, we obtain 
a single master wave equation : 

:  effective potential

• Degrees of freedom: 

Tensor harmonics              :                               -- indpdt. components  (             )

Vector harmonics              :                                                  ***                 (             )

Scalar harmonics               :               1                                 *** 

Total                                                                       components  



• 4D case:

Intertwining between vector (axial) and scalar (polar) 
perturbations

• D>4 case:

No such intertwining among Tensor-, Vector-, and Scalar-type 
perturbations



Stability analysis

• Master equation takes the form: 

If  “    ”  is a positive self-adjoint operator, the master 
equation does not  admit “unstable” solutions

--- The black hole is stable



Boundary conditions

• Asymptotically flat case: 

at infinity

at Horizon

at 

infinity

Horizon     (-- can be removed) 

Show positivity of                              under the boundary condition  



If stable wrt pert. w/ Dirichlet condition at Horizon,  then 
stable wrt pert.  on extended Schwarzschild (Kruskal) spacetime 

Kay-Wald 87 



Stability wrt Tensor-type  

Stable



Stability wrt Scalar-type

• Not obvious to see whether                                is positive or not 
…  

The potential is NOT positive definite in D > 4



Stability proof

• Define                                       w. some function 

where 

Boundary terms vanish under our Dirichlet conditions                 

Task:     Find           that makes         positive definite

Then,    is uniquely extended to be a positive self-adjoint operator



“OK”  “Stable”

When the horizon manifold              is maximally symmetric

WRT  Tensor- and Vector-perturbations   Stable over entire parameter range

WRT  Scalar-perturbations   ???  when 



Numerical study

• Schwarzschild-de Sitter in                                 stable

• Charged (RN) de Sitter can be unstable in                 

when       and        large enough  

Konoplya-Zhidenko 07  09 



Potential for Scalar-type pert.  w. non-vanishing      ,  

Not  fully  studied yet 

For extremal and near-extremal case, the potential becomes 
negative in the immediate vicinity of the horizon 



Extremal BHs

• No bifurcate surface: Kay-Wald’s theorem concerning 
boundary conditions at horizon 
does not apply

What boundary conditions are appropriate 
at near-horizon throat?

• The effective potential has a negative ditch near the horizon

• Numerical (QNMs) study indicates instability  



Some generalizations and open problems



Static black holes in Lovelock theory

• Master equations in generic Lovelock theory Takahashi – Soda 10 

in Gauss-Bonnet theory Dotti – Gleiser 05 

• Asymptotically flat, small mass BHs are unstable wrt
Tensor-type  perturbations  (in even-dim.) 
Scalar-type perturbations  (in odd-dim.)

• Instability is stronger in higher multipoles rather than low-multipoles

Higher curvature terms involved

Equations of motion contain  only up to 2nd-order derivatives

If                   , then                              for sufficiently large 



c. f.   Cohomogeneity-1 Myers-Perry BHs

( not in the class of metrics of                                                                      )

Talk by Dias 

Kunduri-Lucietti –Reall 07,  Murata-Soda 08 



Rotating case:  Cohomogeneity-2 Myers-Perry BHs

Numerical approach to stability analysis Talks by Shibata, Dias

--- include the ultra-spinning case 

Talk by Dias



Cohomogeneity-2 MP case: Analytic formulation?

Tensor-type perturbations:   A single master scalar variable            on  

satisfy the same equation for a massless Klein-Gordon field 

How about vector-type and scalar-type perturbations?

KK-reduction  along              Equations for massive vector/ tensor fields 
on             :  4-dim. Kerr –type  spacetime

For vector-type:   3 master scalar variables on  

For scalar-type:    6 master scalar variables on                       (              )

Not known how to (analytically) deal with even in the standard 4-dim. Kerr background



Metric perturbation approach in

Tensor-type:   1              master scalar variable  

Vector-type:   gauge-invariant  scalar variables 

Scalar-type:   gauge-invariant scalar variables   

--- intricately coupled on 



:  Gauge-invariant variables in 



Perturbation analysis and Classification problem 

• In 4D classification:  Uniqueness + Stability of the Kerr metric 
important (astro-)physical implications

Uniqueness Theorem was established by assembling 

Topology results, Symmetry (Rigidity) results,  etc. and 
all comp. of the Einstein equations all together

• How about D>4 classification?  



Role of symmetry in Stability problem

• Stability of an extremal black hole and its near-
horizon geometry 

Examine perturbations of the near-horizon geometry 
that respect the symmetry of the full BH solution

• Symmetric perturbation at Topology changing point

c.f. critical behavior
and critical exponent

Durkee - Reall 11



Summary: linear perturbation

• Static BHs:   Complete formulation for perturbations

• Rotating BHs: 
-- Still a long way from having a complete formulation

-- Considerable progress recently made for some special cases

• Interesting:  
Interplay between Symmetry /Topology properties  

and Perturbation analysis


