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“The aim of this workshop is to bring together world experts in 
two extremely active and successful, but up to now essentially 
disjoint, research fields: numerical relativity and high energy 
physics. …” 

Stellar oscillations provide  an  examples of how general relativity, its 
numerical implementations, and some fundamental issues in high energy 
physics are parts of a problem which is, by its own nature, 
interdisciplinary.  

 I will investigate compact object oscillations using gravitational 
radiation as a probe. 



Remind: some basic results of the theory of black hole perturbations 

Regge&Wheeler 1957 

F. Zerilli 1970 

Perturbations of  Schwarzschild black holes 

Z±
�

 -  axial (odd) perturbations 
 + polar (even) perturbations 
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A wave equation also for the perturbations of Kerr black holes 

ΔRlm,rr + 2(s + 1)(r − M)Rlm,r + V (ω, r)Rlm = 0
Δ = r2 − 2Mr + a2

ΔRlm,rr + 2(s + 1)(r − M)Rlm,r + V (ω, r)Rlm = 0
Δ = r2 − 2Mr + a2

ψs(t, r, θϕ) =
1
2π

∫
e−iωt

∞∑
l=|s|

l∑
m=−l

eimϕSlm(cos θ)Rlm(r)dω

Slm(cos θ)

s= is the  spin-weight parameter, s=0, ± 1, ± 2,  
for scalar, electromagnetic and gravitational perturbations 

satisfies the equations of the oblate spheroidal harmonics 

S.Teukolsky 1972 Phys. Rev. Lett. 29, 1114 
S.Teukolsky 1973  Ap. J. 185, 635 
 

the potential is complex and depends on m and on frequency 

V (ω, r) =
1
Δ

[
(r2 + a2)2ω2 − 4aMrmω + a2m2+

+ 2is(am(r − M) − Mω(r2 − a2))
]
+

[
2isωr − a2ω2 − Alm

]



Black hole perturbations are described by wave equations, with  
one-dimensional  potential barrier generated by the spacetime  
curvature 

Black hole perturbations can be studied as a scattering problem. 
 

Black holes oscillate at some characteristic, complex frequencies: 
the Quasi-Normal Mode frequencies. 
 
Standard methods used in quantum mechanics can be used to  
find the quasi-normal mode frequencies: they are the singularities 
of the scattering cross-section associated the wave equation  

 

 

 



In quantum mechanics  the equation which expresses the symmetry and 
unitarity of the S-matrix 

is an energy conservation law: if a wave of unitary amplitude is  
incident on one side of the potential barrier, it gives rise to a reflected and a 
transmitted  wave such that the sum of the square of their amplitudes is  
still one. 

This conservation law is a consequence of  the constancy of the Wronskian  
of pairs of independent solutions of the Schroedinger equation. 

Same is for black holes: the constancy of the Wronskian of two 
independent solutions of the black holes wave equation, allows to write the 
same equation relating the reflection and transmission coefficients of the 
potential  barrier. 

Energy conservation also governs  phenomena involving 
gravitational waves emitted by perturbed black holes. 

|R|2 + |T |2 = 1



Black hole  Quasi-Normal modes          

The wave equation for the functions Z±  (+ for polar, - for axial) allows 
complex frequency solutions which satisfy the following boundary 
conditions 

Z±
� → eiωr∗ , r∗ → −∞, (pure ingoing wave

at the black hole horizon)

Z±
� → e−iωr∗ , r∗ → +∞, (pure outgoing wave at infinity)

These boundary conditions are  
satisfied for a discrete set of  
frequencies 

ωk + i 1/τk



The wave equation for the functions Z±  (+ for polar, - for axial) allows 
complex frequency solutions which satisfy the following boundary 
conditions 

Z±±±� → A�e
iωωωk(t−r∗)≡≡≡A�e

−(t− r∗)(t− r∗)(t− r∗)
τkτkτk eiωωωk(t− r∗)(t− r∗)(t− r∗),

When the black hole oscillates in these modes, the  solution at radial infinity 
is a damped, outgoing wave 

These boundary conditions are  
satisfied for a discrete set of  
frequencies 

ωk + i 1/τk

Black hole  Quasi-Normal modes          



Mωk + iM/τk Mωk + iM/τk
� = 2 0.3737+i0.0890 � = 3 0.5994+i0.0927

0.3467+i0.2739 0.5826+i0.2813
0.3011+i0.4783 0.5517+i0.4791
0.2515+i0.7051 0.5120+i0.6903

Firstly calculated by Chandrasekhar & Detweiler in 1975  

The frequencies and damping times of the axial and polar quasi normal 
modes are equal, i.e. 
 
Axial and Polar Quasi-Normal modes of non rotating black holes are          
                                        
                                           isospectral 



Mωk + iM/τk Mωk + iM/τk
� = 2 0.3737+i0.0890 � = 3 0.5994+i0.0927

0.3467+i0.2739 0.5826+i0.2813
0.3011+i0.4783 0.5517+i0.4791
0.2515+i0.7051 0.5120+i0.6903

ν =
c× (Mωk)

2πnM�
=

32.26

n
(Mωk) kHz

τ =
nM�

(M/τk)c
=

n× 0.49 · 10−5

(M/τk)
s.

Assuming that the BH mass is  n times the mass of the Sun, converting to  
physical units we find  

ν =
32.26

n
(0.3737) kHz ∼ 12

n
kHz

τ =
n× 0.49 · 10−5

(0.089)
s ∼ n× 5.5 · 10−5 s

For the lowest mode 

Do the QNM-frequencies of black holes fall in the bandwidth of 
gravitational wave detectors? 

Firstly calculated by Chandrasekhar & Detweiler in 1975  



ν =
32.26

n
(0.3737) kHz ∼ 12

n
kHz

τ =
n× 0.49 · 10−5

(0.089)
s ∼ n× 5.5 · 10−5 s

For the lowest mode 

Virgo/LIGO bandwidth:  [10 Hz  - (1-2) kHz] 
  
These detectors can detect BH oscillations if the BH mass is in the 
range 
                     10 M  < M < 103 M  
 
corresponding to a frequency in the range 
                             
                       ν  [12 Hz, 1.2 kHz]  
 
(provided the signal is sufficiently strong). 



ν =
32.26

n
(0.3737) kHz ∼ 12

n
kHz

τ =
n× 0.49 · 10−5

(0.089)
s ∼ n× 5.5 · 10−5 s

For the lowest mode 

LISA bandwidth:  [10−4  - 10−1 Hz] 
LISA  will see oscillating black holes with mass in the range 
 
                        
                            1.2·105 M   < M <  1.2·108 M  

 
 For instance, LISA should detect signals emitted by the massive black 

hole    at the center of our Galaxy SGR A*,  whose  mass is 
                   
                               M = (3.7 ± 0.2) · 106 M . 



                        Kerr Quasi-Normal mode frequencies 
 from S. Chandrasekhar The Mathematical Theory of Black Holes Oxford University Press 1983 

Are Kerr BH “marginally unstable”? 
V. Ferrari, B Mashoon PRL 52, 1984,  
                                    Phys. Rev. D30 1984 
 
 



Can the QNMs be excited in astrophysical phenomena? 

First numerical experiment: radial capture of a small, massive particle 
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M.Davis, R.Ruffini, J.Tiomno Phys. Rev., D5, 2932 (1972) 
 
V.Ferrari, R.Ruffini Phys. Lett. B98, 381 (1984) 

The “ringing tail” appears to be  
 a superposition of the first  
few QNMs 

These modes are excited when  
the infalling mass is at distances 
 smaller than ~ 4 MBH 

The QNMs frequencies provide information on the BH spacetime 
                                 in the strong field regime 



Black hole coalescence
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Gravitational radiation waveform emitted by two coalescing black holes

NOWADAYS: Quasi-Normal Modes excitation is  seen in numerical 
simulations of gravitational collapse to a black hole and of black hole 
coalescence. 

Baker J.G., Campanelli M., Pretorius F. and Zlochower Y.,   
Class. Quant. Grav., 24, S25 (2007) 



Recent developments of the theory of BH oscillations 

In 2000 Horowitz and Hubeny  proposed that the study of 
the  black hole QNM's in anti-de Sitter spacetime could be useful to 
determine some properties of conformal field theories.  
Horowitz G.T. and Hubeny V.E. 2000 Phys. Rev.D  62, 024027 
 

Stimulated by this work, many authors computed the QNM eigenfrequencies  
in anti-de Sitter spacetime. 
HoWang B., Lin C.Y. and Abdalla E. 2000  Phys. Lett. B  481, 79; 
Wang B., Molina C. and Abdalla E. 2001 Phys. Rev. D 63, 084001; 
Cardoso V. and Lemos J.P.S. 2001  Phys. Rev. D 63, 124015; 
Cardoso V. and Lemos J.P.S. 2001 Phys. Rev.D  64, 084017; 
Berti E. and Kokkotas K.D. 2003 Phys. Rev. D 67, 064020; 
Cardoso V., Konoplya R. and Lemos J.P.S. 2003 Phys. Rev.D 68, 044024 

 
It is worth reminding that the  anti-de Sitter solution of Einstein's 
equations describes a universe with a negative cosmological constant; 
therefore these black holes should not be considered as astrophysical 
objects. 



In 2003 Dreyer and Motl suggested that, in the asymptotic limit   n    ∞ ,   
black hole quasi-normal modes would allow to fix the value of the  
Immirzi parameter,  a key parameter in loop quantum gravity.  
Dreyer O. 2003  PRL 90, 081301; 
Motl L. 2003  Adv. Theor. Math. Phys. 6, 1135 
 

Following this proposal, studies of the asymptotic limit of QNM  
have further been developed. 
Nollert H.-P. 1993 Phys. Rev. D  47, 5253; 
Andersson N. 1993  Class. Quantum Grav. 10, L61; 
Barreto A.S. and Zworski M. 1997 Math. Res. Lett. 4, 103; 
Padmanabhan T. 2004 Class. Quantum Grav.21, L1; 
Motl L. and Neitzke A. 2003  Adv. Theor. Math. Phys. 7, 307; 
Cardoso V., Natario J. and Schiappa R. 2004 J. Math. Phys. 45, 4698 
Berti E., Cardoso V., Kokkotas K.D. And Onozawa H. 2003 
Phys. Rev. D  68, 124018; 
Berti E., Cardoso V. and Yoshida S. 2004  Phys. Rev. D 69, 124018 
 



More generally, inspired by these consideration in the contexts of 
string theory and loop quantum gravity, in recent years many authors 
have computed the eigenfrequencies of black hole quasi-normal modes 
in various background spacetimes, both in four dimensions and for higher  
dimensional spacetimes  
  
Cardoso V. and Lemos J.P.S. 2003 Phys. Rev. D  67, 084020; 
Konoplya R.A. 2003  Phys. Rev. D  68, 024018; 
Cardoso V., Lemos J.P.S. and Yoshida S. 2004  Phys. Rev. D 69, 044004 
 
 
 



Stellar oscillations 

As for black holes, they are studied in the framework of perturbation theory; 
 
         Einstein + hydrodynamics equations need to be perturbed 

For non rotating stars the theory can be developed in analogy with 
the theory of Schwarzschild perturbations: 
 
All perturbed quantities (metric functions+hydro variables) are expanded 
in spherical harmonics (scalar, vector and tensor), and the resulting  
equations split in two sets, the axial and the polar; and these equations  
are separable  

REMIND: for  black hole, both the axial and the polar equations are 
reducible to a wave equation with a potential barrier, i.e. the  
Regge-Wheeler and the Zerilli equation. 



Stellar oscillations 
A wave equation for the axial perturbations: fluid motion is not excited  

the  potential barrier depends on how the energy-density and the pressure are distributed  
inside the star in its equilibrium configuration.  For r > R it reduces to the Regge-Wheeler 
potential 
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black holes:  a one-dimensional potential barrier stars: a central potential 
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d2Z�

dr2∗
+ [ω2 − V�(r)]Z� = 0

V�(r) =
e2ν

r3
[�(� + 1)r + r3(ε − p) − 6m(r)], ν,r = − p,r

ε + p

Chandrasekhar S. and Ferrari V. 1991, Proc. R. Soc. Lond.  434, 449 
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 uniform density star, R/M=2.4 

if we look for solutions that are regular at r=0 
and behave as pure outgoing waves at infinity 
 
 
we find  modes which do not exists in Newtonian  
theory 

Z� → e−iωr∗ , r∗ → ∞

    if the star is extremely compact, the potential in the  
      interior is a well, and if this well is deep enough  
      there can exist one or more  
      slowly damped QNMs     (or   s-modes)  
 

Chandrasekhar S. and Ferrari V. 1991, Proc. R. Soc. Lond.  
434, 449 

 Axial perturbations can be resonant! They are pure spacetime modes 
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 uniform density star, R/M=2.4 

    another branch of modes are the w- modes 
      they are associated to the scattering of  GW- waves 
      at the peaks of the barrier. They are higly damped 

Chandrasekhar S. and Ferrari V. 1991, Proc. R. Soc. Lond.  434, 449 
Kokkotas K.S. 1994, MNRAS  268, 1015 
 

if we look for solutions that are regular at r=0 
and behave as pure outgoing waves at infinity 
 
 
we find  modes which do not exists in Newtonian  
theory 

Z� → e−iωr∗ , r∗ → ∞

    if the star is extremely compact, the potential in the  
      interior is a well, and if this well is deep enough  
      there can exist one or more  
      slowly damped QNMs     (or   s-modes)  
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434, 449 

 Axial perturbations can be resonant! They are pure spacetime modes 



Note that:   M= 1.35 M = 
1.35×1.477 = 1.99 km  
 
 R= 2.4 × 1.99  =  4.78 km  
extremely small! 

Until very recently,  the common belief was that w- modes are unlikely to be  excited  
in astrophysical processes. However in 2005 it has been shown that, they are excited 
in the collapse of a neutron star to a black hole,  just before the black hole forms 
 Baiotti L., Hawke I., Rezzolla L. and Schnetter E. 2005,  Phys. Rev. Lett. 94, 131101 

s-modes w-modes black hole
R
M ννν0 in kHz τττ in s ννν0in kHz τττ in s
2.4 8.63 1.5 · 10−3 11.17 1.7 · 10−4 8.93 7.5 · 10−5

– – 14.28 8.0 · 10−5 8.28 2.4 · 10−5

– – 18.22 5.7 · 10−5 7.20 1.4 · 10−5

– – 22.67 4.9 · 10−5 6.01 0.9 · 10−5

2.3 5.62 0.54 11.11 3.0 · 10−4

7.56 1.2 · 10−2 13.04 1.7 · 10−4

9.33 1.0 · 10−3 15.15 1.3 · 10−4

– – 17.44 1.1 · 10−4

2.28 4.43 10.8 10.41 5.5 · 10−4

6.02 2.5 · 10−1 11.91 2.9 · 10−4

7.55 1.4 · 10−2 13.48 2.1 · 10−4

8.99 1.8 · 10−3 15.14 1.7 · 10−4

2.26 2.60 5.4 · 103 10.79 7.6 · 10−4

3.54 1.7 · 102 11.69 5.3 · 10−4

4.48 1.2 · 101 12.61 4.2 · 10−4

5.41 1.4 · 10−1 13.55 3.6 · 10−4

The characteristic frequencies and damping times
of the first four � = 2, s and w axial modes of
homogenoeus stars, with M = 1.35M�, and dif-
ferent values of R/M. The data are compared
with the eigenfrequencies of a black hole with
the same mass.

We shall later see that the frequencies of the w-modes carry interesting 
information on the internal structure of the star. 
 



              
                 POLAR MODES: fluid motion is excited. 
different families of modes can be directly associated with  different core 
physics.    
f (fundamental)- p  (pressure)- and   g (gravity)-  r –modes survive in the relativistic  
regime, but in GR  they belong to complex eigenfrequencies since they are associated  
to GW emission                                      

A mature neutron star also has elastic shear modes in the crust and superfluid  
modes.   Magnetic stars may have complex dynamics due to the internal magnetic field. 

..ωgn < .. < ωg1 < ωf < ωp1 < .. < ωpn ..
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different families of modes can be directly associated with  different core 
physics.    
f (fundamental)- p  (pressure)- and   g (gravity)-  r –modes survive in the relativistic  
regime, but in GR  they belong to complex eigenfrequencies since they are associated  
to GW emission                                      

In GR there exists  new families of  modes for which  fluid motion is negligible   
                                            (spacetime modes) 
w-modes are spacetime oscillations  (high frequency very rapid damping).  
     They exist both for polar and axial perturbations 
s (trapped)-modes (axial modes ; they exist only for ultradense stars) 
 

A mature neutron star also has elastic shear modes in the crust and superfluid  
modes.   Magnetic stars may have complex dynamics due to the internal magnetic field. 

There is a lot of physics to explore! 
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                 POLAR MODES: fluid motion is excited. 
different families of modes can be directly associated with  different core 
physics.    
f (fundamental)- p  (pressure)- and   g (gravity)-  r –modes survive in the relativistic  
regime, but in GR  they belong to complex eigenfrequencies since they are associated  
to GW emission                                      

The modes frequency depends on the equation of state (EOS) of matter in the 
interior,  on the rotation rate, on the phase of life the star is going  through, 
namely on whether  it is old and cold, or young and hot. 
 

In GR there exists  new families of  modes for which  fluid motion is negligible   
                                            (spacetime modes) 
w-modes are spacetime oscillations  (high frequency very rapid damping).  
     They exist both for polar and axial perturbations 
s (trapped)-modes (axial modes ; they exist only for ultradense stars) 
 

A mature neutron star also has elastic shear modes in the crust and superfluid  
modes.   Magnetic stars may have complex dynamics due to the internal magnetic field. 

There is a lot of physics to explore! 

..ωgn < .. < ωg1 < ωf < ωp1 < .. < ωpn ..



Gravitational wave asteroseismology 
 
Suppose that a gravitational signal emitted by a perturbed neutron star is 
detected and, by an appropriate data analysis, we are able to determine 
the frequency of one or more mode:  
will this information allow to constraints  the equation of state of matter 
in the stellar core?  
 

The  EOS in the inner core of a neutron star is unknown and  the energies 
prevailing in the inner core of a NS  are unaccessible to high energy  
experiments on Earth 

NEUTRON STARS ARE COSMIC LABORATORIES FOR 
EXTREME PHYSICS 



The equation of state  (EOS) in the interior of a neutron star is largely                                  
                                             unknown 

At densities lager than                                                        (equilibrium density of  
nuclear matter )   the fluid is a gas   of interacting nucleons 

ρ0 = 2.67 × 1014 g/cm3

Available  EOS have been obtained within models of strongly interacting matter, based 
on the theoretical knowledge of the underlying dynamics and constrained, as much as 
possible, by empirical data. 
 
                                             Two main, different approaches: 

-   nonrelativistic nuclear many-body theory NMBT  

-  relativistic mean field theory RMFT 
 



                Non Relativistic Nuclear Many-Body  Theory NMBT 

Relativistic mean field theory RMFT 

nuclear matter is viewed as a collection of pointlike protons and neutrons, whose dynamics is 
described by the nonrelativistic Hamiltonian: 

H =
∑

i
p2

i

2m +
∑

j>i vij +
∑

k>j>i Vijk

- The two- and three-nucleon interaction potentials are obtained from fits of existing scattering data. 
- ground state energy is calculated using  either variational techniques or  G-matrix perturbation theory  

-  based on the formalism of relativistic quantum field theory, nucleons are described as Dirac particles  
  interacting through meson exchange.  In the simplest implementation of this approach the dynamics  
  is modeled in terms of a scalar and a vector field. 
-  equations of motion are solved in the mean field approximation, i.e. replacing the meson fields with 
  their vacuum expectation values 
-  the parameters of the Lagrangian density, i.e. the meson masses and coupling constants, can  
 be determined  by fitting the empirical properties of nuclear matter, i.e. binding energy,  
 equilibrium density and compressibility 



                Non Relativistic Nuclear Many-Body  Theory NMBT 

Relativistic mean field theory RMFT 
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described by the nonrelativistic Hamiltonian: 
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- The two- and three-nucleon interaction potentials are obtained from fits of existing scattering data. 
- ground state energy is calculated using  either variational techniques or  G-matrix perturbation theory  

-  based on the formalism of relativistic quantum field theory, nucleons are described as Dirac particles  
  interacting through meson exchange.  In the simplest implementation of this approach the dynamics  
  is modeled in terms of a scalar and a vector field. 
-  equations of motion are solved in the mean field approximation, i.e. replacing the meson fields with 
  their vacuum expectation values 
-  the parameters of the Lagrangian density, i.e. the meson masses and coupling constants, can  
 be determined  by fitting the empirical properties of nuclear matter, i.e. binding energy,  
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NMBT and RMFT can be both generalized to account for the appearance of  hyperons 



A useful way of classifying EOS's is through  their 
stiffness, which can be quantified in terms of the speed of 
sound    vs :  
 
stiffer EOS's correspond to higher  vs .  
    
stiffer EOS’s   correspond to less compressible matter. 
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w-modes  have high frequency and very rapid  damping.  
  They exist both for polar and axial perturbations 
  

Andersson N., Kokkotas K.D, 1998  MNRAS 299 
Benhar O., Berti E., Ferrari V. 1999 MNRAS  310 

Pure spacetime   modes 

EOS A . Pandaripande 1971. Pure neutron 
matter, with dynamics governed by a 
nonrelativistic Hamiltonian containing a 
semi-phenomenological interaction potential.  
 
EOS B. 1971 Generalization of EOS A, 
including protons, electrons and muons in β- 
equilibrium, as well as heavier barions 
(hyperons and nucleon resonances) at 
sufficiently high densities.  
 
EOS WWF. Wiringa, Fiks, Fabrocini 1988. 
Neutrons, protons, electrons and muons in  β-
equilibrium. The Hamiltonian includes two- 
and three-body interaction potentials. The 
ground state energy is computed using a more 
sophisticated and accurate many body 
technique.  
 
EOS L. Pandaripande & Smith1975. Neutrons 
interact through exchange of  mesons (ω,ρ, σ). 
The exchange of heavy particles (ω,ρ) is 
described in terms of nonrelativistic 
potentials, the effect of  σ-meson is described 
using relativistic field theory and the mean-
field approximation. 

dashed lines: polar w-modes 
continuous lines: axial w-modes 
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Pure spacetime   modes 

about the EOS compressibility:   
- B softest (more compressible) 
- L  stiffest 
 
 

dashed lines: polar w-modes 
continuous lines: axial w-modes 

- axial and polar w-modes 
 depends essentially on the  
stiffness of the equation of state. 
 
- axial w-mode frequencies 
 range within intervals that  
 are separated;  
 for each  EOS  
 is nearly independent of M/R 
 

w- modes are excited in the collapse of 
a neutron star to a black hole,  just 
before the black hole forms 

 Baiotti et al 2005,  Phys. Rev. Lett. 94, 131101 
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Pure spacetime   modes 

about the EOS compressibility:   
- B softest (more compressible) 
- L  stiffest 
 
 

dashed lines: polar w-modes 
continuous lines: axial w-modes 

- axial and polar w-modes 
 depends essentially on the  
stiffness of the equation of state. 
 
- axial w-mode frequencies 
 range within intervals that  
 are separated;  
 for each  EOS  
 is nearly independent of M/R 
 

unfortunately w-mode frequencies are too high 
to be detected by interferometric GW detectors 

w- modes are excited in the collapse of 
a neutron star to a black hole,  just 
before the black hole forms 

 Baiotti et al 2005,  Phys. Rev. Lett. 94, 131101 



  Equations of state considered 
                     Inner core        ρ   >   ρ  0      ρ  0 = 2.67 x 1014 g/cm3     

APR2::    n  p  e-  μ-    3-body interaction  phenomenological Hamiltonian 
                  2-body potential= Argonne v18,  3-body potential=Urbana IX 
                  Schroedinger equation solved using variational methods   
                  including  relativistic corrections  
                  Akmal A., Pandharipande V.R, Ravenhall D.G., Phys. Rev C58, 1998 
 
APRB120/200:  APR2+ interacting quarks confined to a finite region (the bag) 
             whose volume is limited by a pressure B said the bag constant 
              (B=120 or 200 MeV/fm3,            α_s=0.5 ms=150 MeV) 
 
BBS1:       n  p  e-  μ-  3-body interaction  phenomenological Hamiltonian 
            2-body potential= Argonne v18,  3-body potential= Urbana VII   
                    (no relativistic corrections );  Schroedinger equation solved using perturbative      
            methods   Baldo M., Bombaci I., Burgio G.F., A&A 328, 1997 
 
BBS2:        same as  BBS1+  heavy barions Σ--   and  Λ0  (no relativistic corrections ) 
             Baldo M., Burgio G.F., Schulze H,J, Phys. Rev. C61, 2000 
 
G240:  e-  μ-   and the complete octet of baryons; mean field approximation is used to  
            to derive the equations of the fields        Glendenning N.K.                
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 Different ways of modeling hadronic interactions affect the  

pulsation properties  of neutron stars 

Polar Quasi Normal Modes which are coupled to fluid motion: frequencies 
are smaller than for those of the w-modes. 

Previous works: 
Lindblom, Detweiler 
ApJ Suppl, 1983 
 
Andersson, Kokkotas,   
 MNRAS, 1998 



 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

f (
 K

H
z 

)

M/Mo

f-mode frequency

hyperons 
many body theory 

heavy barions 
rel. mean field theory 

many body theory 
relativistic corrections 
ground state energy: 
variational tech. 

many body theory 
no relativistic corr. 
ground state energy: 
perturbation theory 

1  

1 

1 

2 

APR2
APRB200
APRB120

BBS1
BBS2
G240

Benhar, Ferrari, Gualtieri, Phys. Rev. D (2004) 
 
 

Polar Quasi Normal Modes which are coupled to fluid motion: frequencies 
are smaller than for those of the w-modes. 

The presence of a quark core does not affect the f-mode frequency 
(except for higher massess) 
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Polar Quasi Normal Modes which are coupled to fluid motion: frequencies 
are smaller than for those of the w-modes. 

Compare purple and jellow for M=1.2 solar mass: hyperons soften 
the EOS average density increases,  νf    increases 



 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

f (
 K

H
z 

)

M/Mo

f-mode frequency

hyperons 
many body theory 

heavy barions 
rel. mean field theory 

many body theory 
relativistic corrections 
ground state energy: 
variational tech. 

many body theory 
no relativistic corr. 
ground state energy: 
perturbation theory 

1  

1 

1 

2 

APR2
APRB200
APRB120

BBS1
BBS2
G240

Benhar, Ferrari, Gualtieri, Phys. Rev. D (2004) 
 
 

Polar Quasi Normal Modes which are coupled to fluid motion: frequencies 
are smaller than for those of the w-modes. 

Mean field EOS (green curve) has a completely different behaviour 
which reflects a different relation between mass and central density 



Can stars be entirely made of quarks ?   (Bodmer 1971,Witten 
1984) 
     MIT Bag model  :   

Fermi gas of up, down, strange quarks confined in a region with volume 
determined by pressure= Bag constant B. The interactions between quarks 
are treated perturbatively at first order in the coupling constant ααs 
 
From Particle Data Book    
                 mu  ~  md   ~ few MeV       ms  = (80-155) MeV 
                                 
                                    3 parameters    αs  , ms  , B 
 
 

                              
 

Can we say something on the absolute ground state  
of matter    using gravitational waves? 

-   Hadron collision experiments               0.4  ≤   αs    ≤   0.6 
 
-  High energy experiments                    57  ≤  B ≤ 350 MeV/fm3 
   (hadron mass, magnetic moments, charge radii measurements) 
 
-  The requirement that SQM is stable at zero temperature  implies 
that B  ≤  95  MeV/fm3 

We choose         57  ≤  B ≤ 95 MeV/fm3 

 



strange stars (yellow region) 
modeled using MIT bag model 
 
 

Benhar, Ferrari ,Gualtieri   Phys. Rev.  D 70,  2004 
Benhar, Ferrari ,Gualtieri, Marassi   Gen. Rel. Grav 39 ,  2007 ms ∈ (80 − 155) MeV

αs ∈ (0.4 − 0.6)
B ∈ (57 − 95) MeV/fm3

The fundamental mode frequency  of  old, cold  neutron stars  
is plotted for different EOS  versus the mass of the star. 
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The fundamental mode frequency  of  old, cold  neutron stars  
is plotted for different EOS  versus the mass of the star. 

Strange stars cannot emit GWs with  
        νf < 1.7 kHz    , for any values 
 of the mass in the range we consider 
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B ∈ (57 − 95) MeV/fm3

The fundamental mode frequency  of  old, cold  neutron stars  
is plotted for different EOS  versus the mass of the star. 

There is a small range of frequency where 
neutron/hybrid stars are indistinguishable 
from strange stars.  
However, there is a large frequency region 
 where only strange stars can emit. 

Strange stars cannot emit GWs with  
        νf < 1.7 kHz    , for any values 
 of the mass in the range we consider 
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Benhar, Ferrari ,Gualtieri   Phys. Rev.  D 70,  2004 
Benhar, Ferrari ,Gualtieri, Marassi   Gen. Rel. Grav 39 ,  2007 ms ∈ (80 − 155) MeV

αs ∈ (0.4 − 0.6)
B ∈ (57 − 95) MeV/fm3

The fundamental mode frequency  of  old, cold  neutron stars  
is plotted for different EOS  versus the mass of the star. 

There is a small range of frequency where 
neutron/hybrid stars are indistinguishable 
from strange stars.  
However, there is a large frequency region 
 where only strange stars can emit. 

Strange stars cannot emit GWs with  
        νf < 1.7 kHz    , for any values 
 of the mass in the range we consider 

Since νf is an increasing function of the 
bag constant B, detecting a GW from a strange  
star would allow  to set constraints on B much  
more stringent than those provided by the  
available experimental data  
 



do we have a chance to detect a signal from an old, cold neutron star 
oscillating in its fundamental mode? 

A typical GW signal from a neutron star pulsation mode has the form of a damped sinusoid 

A ≈ 7.6 × 10−24
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ΔE� = ΔEGW /M�c2 = total energy

A

h(t) = A e−(t−t0)/ τd sin[2π f (t − t0)] for t > t0A



do we have a chance to detect a signal from an old, cold neutron star 
oscillating in its fundamental mode? 

A typical GW signal from a neutron star pulsation mode has the form of a damped sinusoid 
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How much energy would need to be channeled into a mode? 
For mature neutron stars  we can take as a bench-mark the energy involved in a typical pulsar 
glitch, in which case 

ΔEGW = 10−13M�c2

Assuming f ∼ 1500 Hz, τd ∼ 0.1 s, d = 1 kpc, A ≈ 5 × 10−24A
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h(t) = A e−(t−t0)/ τd sin[2π f (t − t0)] for t > t0A

How much energy would need to be channeled into a mode? 
For mature neutron stars  we can take as a bench-mark the energy involved in a typical pulsar 
glitch, in which case 

ΔEGW = 10−13M�c2

Assuming f ∼ 1500 Hz, τd ∼ 0.1 s, d = 1 kpc, A ≈ 5 × 10−24A

3rd generation detectors are needed to detect signals from old neutron stars 



Oscillations from newly-born neutron stars are 
more promising : more energy can be stored into 
the modes. 



Gravitational waves from newly born, hot neutron stars 
 V. Ferrari, G. Miniutti, J. Pons, MNRAS 2004 

F. Burgio, V. Ferrari, L.Gualtieri, H-J, Schultze, Phys. Rev D 2011 

We studied how the frequencies and damping times of the QNMs 
change                 for   0.2 s < t < 50 s 
after the bounce the star is composed of 
          • low entropy, lepton rich  core with trapped υs 
             • high entropy, low density, accreting mantle 
             • after Sn explosion, in a few tens of seconds extensive neutrino losses reduce lepton pressure  
          and the mantle contracts: the radius of the PNS is now ~ 20-30 km 
 
To describe this part of the evolution (t      0.2 s)  dynamical simulations are needed 
(Muller,Dimmelmeier,Zwerger, Font…)  
 
for t       0.2 s a quasi stationary description is adequate  (Burrows, Lattimer, Miralles, Pons…) 

�

�



♣   Neutrino processes dominate the first minute of the evolution:Neutrino diffusion deleptonizes the core on a time         
scale of 10-15 s:    the star heats up and the core entropy increases, reaching a maximum at the end of the 
deleptonization epoch. 

Gravitational waves from newly born, hot neutron stars 
 V. Ferrari, G. Miniutti, J. Pons, MNRAS 2004 

F. Burgio, V. Ferrari, L.Gualtieri, H-J, Schultze, Phys. Rev D 2011 

A NEUTRON STAR IS BORN 

We studied how the frequencies and damping times of the QNMs 
change                 for   0.2 s < t < 50 s 
after the bounce the star is composed of 
          • low entropy, lepton rich  core with trapped υs 
             • high entropy, low density, accreting mantle 
             • after Sn explosion, in a few tens of seconds extensive neutrino losses reduce lepton pressure  
          and the mantle contracts: the radius of the PNS is now ~ 20-30 km 
 
To describe this part of the evolution (t      0.2 s)  dynamical simulations are needed 
(Muller,Dimmelmeier,Zwerger, Font…)  
 
for t       0.2 s a quasi stationary description is adequate  (Burrows, Lattimer, Miralles, Pons…) 

�
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 ♦♦       For  t     15 s, the PNS becomes lepton poor, but it is still hot: the average neutrino energy decreases, and the 
neutrino mean free path increases.  After approximately 50 s, the mean free path becomes comparable to R, and the 
star is finally transparent to neutrinos. 
 
By this time,     T ~ 1010 K.      

�



 
 

We use the models of Proto Neutron Star evolution obtained by  
Pons, Reddy, Prakash, Lattimer, Miralles, Ap.J.  1999, Pons, Miralles, Prakash, Lattimer, 
Ap.J. 2000 Pons, Steiner, Prakash, Lattimer, Phys. Rev. Lett. 2001 

The evolution is treated as a sequence of quasi-stationary states: 
the thermodynamical variables and the lepton fractions are determined by solving evolution 
equations (for instance Boltzmann's equation to model neutrino transport), whereas at each 
time-step the stellar structure is found by solving the equations of stellar equilibrium. The 
equation is obtained within the mean field approach. 
 

 In Ferrari, Miniutti,  Pons, MNRAS 2004 
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In  Burgio,  Ferrari, Gualtieri, Schultze, Phys. Rev D 2011 

We model the NS interior with an equation of state obtained within the  
Brueckner-Hartree-Fock nuclear many body approach extended to the finite 
temperature regime. 
 Different phases of the stellar evolution are modeled varying the lepton fraction and the 
entropy profiles. 



 
 

In both cases we solve the equations of stellar perturbations for each quasi-stationary 
 configuration and compute  the frequencies and  the damping times of the 
 quasi-normal modes during the evolution 
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Remember that  for a cold Neutron Star: 

ννf  ≈ 2 kHz     scales as ∝(M/R3)1/2 
            νp1  ≈ 7 kHz      

            νw1  ≈ 11 kHz 

         NO g-modes        
 

The oscillation spectrum evolves in the early phases of a PNS life 
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For a HOT Proto-Neutron Star: 
At very early time  the  frequencies of the f- p1- and   w1- modes are much lower  
than  those of a cold Neutron Star. 
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Remember that  for a cold Neutron Star: 

ννf  ≈ 2 kHz     scales as ∝(M/R3)1/2 
            νp1  ≈ 7 kHz      

            νw1  ≈ 11 kHz 

         NO g-modes        
 

In a hot, proto-neutron star   g-modes appear: WHY? 

For a HOT Proto-Neutron Star: 
At very early time  the  frequencies of the f- p1- and   w1- modes are much lower  
than  those of a cold Neutron Star. 

HOT proto-neutron star 

The oscillation spectrum evolves in the early phases of a PNS life 

Ferrari ,Miniutti, Pons   MNRAS, 342  2004 



Pons, Reddy, Prakash, Lattimer, Miralles, Ap.J.  1999 

During the first minute of a PNS life, strong entropy gradients characterize  
the theromdynamical evolution : this is why g-modes appear 
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The oscillation spectrum evolves during the observation: 

The frequencies of the fundamental mode, and of the 
first g-, p- and w- modes 
of an evolving proto--neutron star are 
plotted as  functions of the time elapsed from the  
gravitational collapse, during the first 5 seconds. 

Ferrari ,Miniutti, Pons   MNRAS, 342  2004 

Having ν(t) and τ(t), we can 
estimate the amount of energy 
 ΔEGW that should be stored in  
a given mode for the signal to be 
detectable with an assigned SNR  
by a given detector. 



If the newly born star is oscillating in the f-mode:
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A newly born NS oscillating in the f-mode (in the Galaxy)

 h0 = 2.e-22 

 E = 1.6 10-9 Msun c2

Adv Virgo
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f - mode

If we assume that

ΔEGW = 1.6 · 10−9 M�c2

is stored into the f-mode, the
signal would be detected with

SNR= 8              by   Advanced Virgo/LIGO 



•  GWs emitted by a black hole oscillating in its QNMs 
would probe the strong field region near the horizon 

 

CONCLUSIONS 

•  GWs emitted by a neutron star oscillating in its 
QNMs provide information on the EOS prevailing 
in the inner core, on which no much is known 


