Higher-dimensional Black Holes

Roberto Emparan ICREA & U. Barcelona

Motivation: GR as a tool

• Most basic set up: vacuum GR

 $R_{\mu\nu}=0$

- \exists only one parameter for tuning: D

Motivation: GR as a tool

• Most basic set up: vacuum GR

 $R_{\mu\nu}=0$

- \exists only one parameter for tuning: D
- Most basic objects: Black Holes
- This talk:

Stationary black holes of $R_{\mu\nu}=0$

GR as a tool

 Emphasis: instead of quick results with high-yield gain (applications), focus on developing fundamentals (learn from financial crises...)

When first found, black hole solutions have always been "answers waiting for a question"

Stationary black holes of $R_{\mu\nu}=0$

- There are many in D>4!
- Complete classification?
 - Maybe. But might not be feasible or useful, esp. as D grows
- If not classification, understand main features of phase space
 - How phases evolve in solution space, limits...
 How phases are related, connect/bifurcate...
- Search for patterns

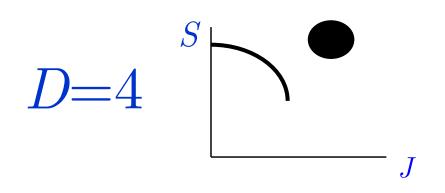
How do we represent different phases?

- Vacuum: $M, J_i i=1,... [(D-1)/2]$
- Sometimes restrict to $J_1 > 0$, $J_{i>1} = 0$ $J_1 = J_2 = ...$
- First law: $TdS = dM \Sigma_i \Omega_i dJ_i$ $S(M, J_i)$
- But M, J_i do not fully specify a bh

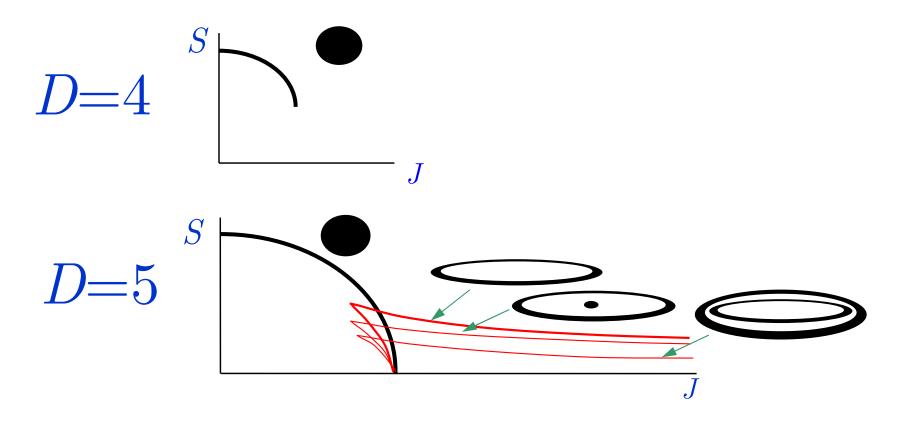
- discrete degeneracies (for single bh phases)

- Fix *M*, plot surfaces $S(J_i)$
- 1-diml curves if only one J

Known exact solutions w/ 1 spin



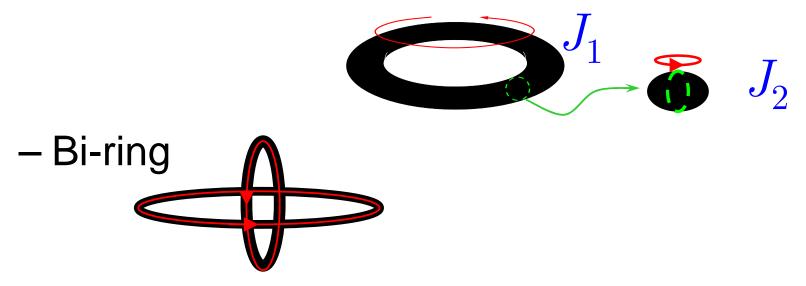
Known exact solutions w/ 1 spin



Known exact solutions w/ 1 spin SD=4JD=5*D*≥6

Known exact solutions >1 spin

- In all D: MP bhs
- In 5D:
 - Doubly-spinning black ring



 Only limited by willingness to include more rings: but we have the pattern

Beyond complete exact solutions

- 1. Large-J phases from blackfold approach
- 2. Zero-mode perturbations at branching points (soft+hard numerics)
- 3. Critical geometries at topology-changing merger transitions

These control overall features of phase space

 starting points for perturbations, or reference for numerics

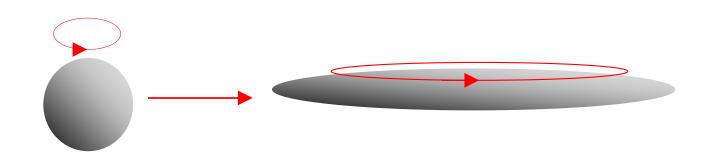
Beyond complete exact solutions

- 1. Large-J phases from blackfold approach
- 2. Zero-mode perturbations at branching points (soft+hard numerics) → OTHER TALKS
- 3. Critical geometries at topology-changing merger transitions

Large J regime of exact solns

- Doesn't exist in D=4
- In D=5: thin black rings (but not MP)

• In $D \ge 6$: MP bhs



Large J regime

• Two length scales

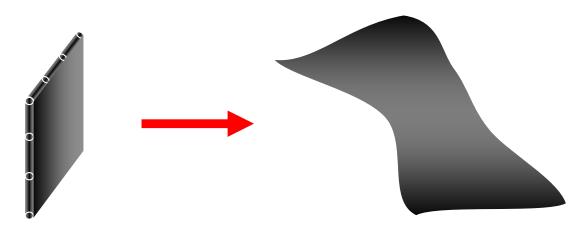
 $\ell_M \sim (GM)^{1/(D-3)} \ll \ell_J \sim J/M$

thickness << spread

- BH spreads along rotation plane
- For $\ell_M / \ell_J \ll 1$, it becomes locally like black string/brane (cannot in D=4)

Black holes as blackfolds

 Blackfold: Black p-brane w/ worldvolume = curved submanifold of spacetime



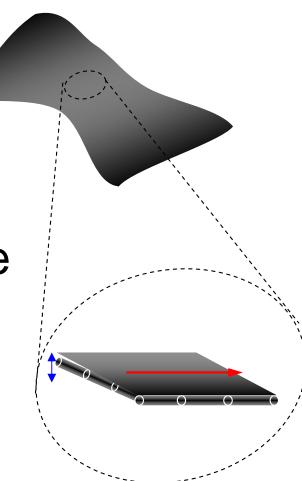
• Eg, black ring as circular black string:

Blackfolds: effective worldvolume theory of black branes

Bent brane

$$X^\mu(\sigma^a)$$
 = embedding geometry

Locally equivalent to black brane $u^{\mu}(\sigma^{a}) =$ wv velocity (local boost) $r_{0}(\sigma^{a}) =$ horizon thickness



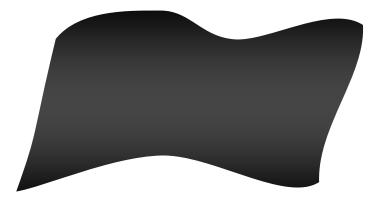
Dynamics

• In probe (test brane) approx

$T_{\mu\nu}$ localized on worldvolume

$$\nabla_{\mu}T^{\mu\nu}=0$$

(from long-wavelength expansion of Einstein's equations)



Dynamics

- Along **worldvolume** directions:
 - $\nabla_{\alpha}T^{\alpha\beta}=0$

⇒Worldvolume Fluid equations

Along transverse directions: Carter

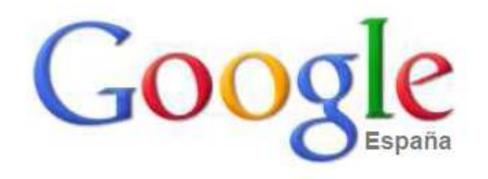
$$\nabla_{\mu}T^{\mu\rho} = 0 \quad \Rightarrow \quad T^{\mu\nu}K_{\mu\nu}{}^{\rho} = 0$$

extrinsic curvature

⇒Generalized geodesic equations

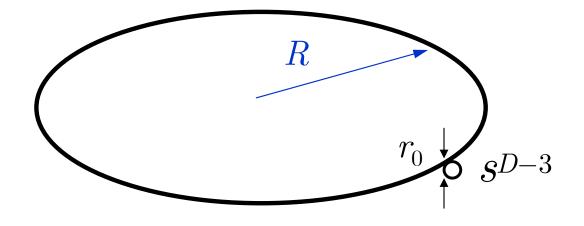
("mass x acceleration = 0")

Search for non-trivial blackfolds



Artist: M Rasmussen. "Blackfolded form", hand-built stoneware, height 22cm 20x25cm wide - £325.00

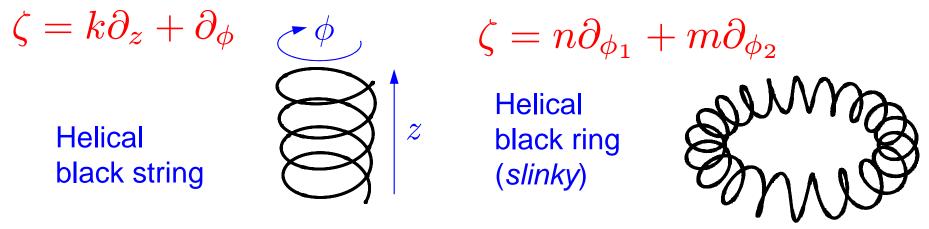
Simplest example: black rings in $D \ge 5$



Horizon $S^1 \ge s^{D-3}$

Helical black rings

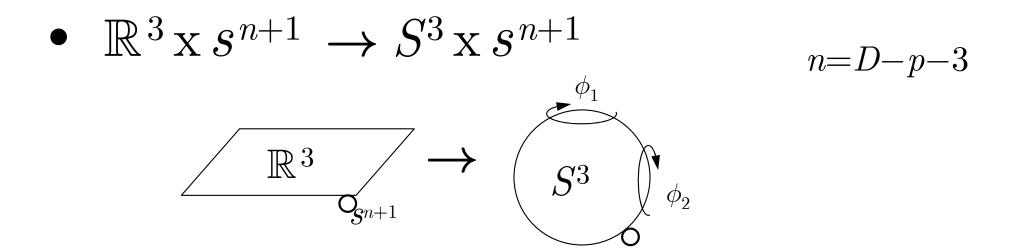
• Black string along an isometry ζ of background



(n.b: profile is static!)

• The orthogonal isometry is broken: Horizon has *only one* spatial U(1)

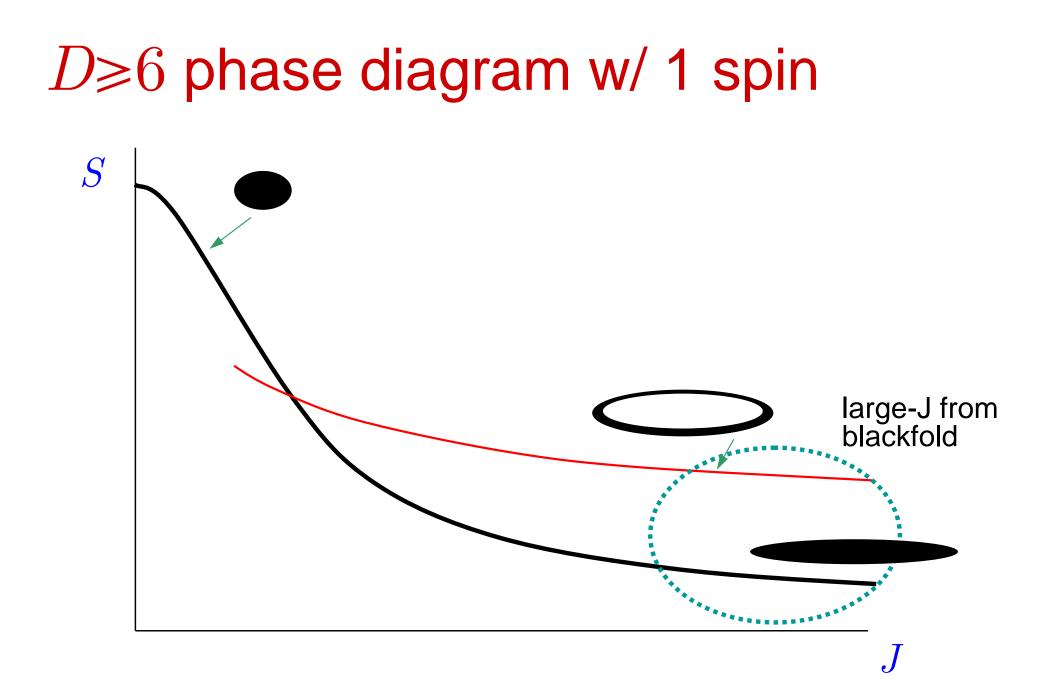
Products of spheres



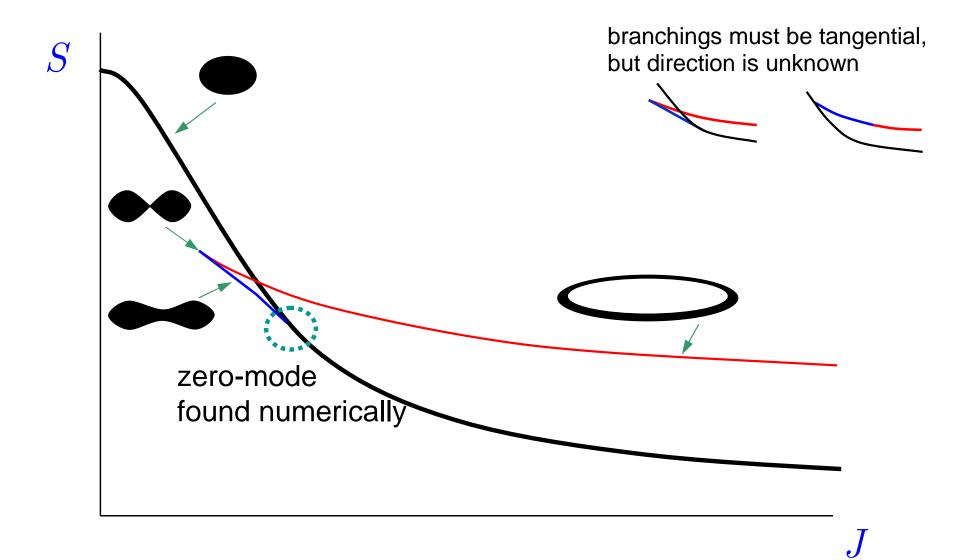
Can do it for any product of odd-spheres

$$\prod_{p_a \in \text{odd}} S^{p_a} \times s^{n+1} \qquad \overbrace{S^3} \qquad \overbrace{S^1} \qquad \overbrace{S^5} \qquad \overbrace{S^{n+1}} \qquad \overbrace{S^{n}} \qquad \overbrace{S^{n+1}} \ \overbrace{S^{n+1} \ \overbrace{S^{n+1}} \ \overbrace{S^{n+1}} \ \overbrace{S^{n+1} \ \overbrace{S^{n+1}} \ \overbrace{S^{n+1}} \ \overbrace{S^{n+1} \ \overbrace{S^{n+1} \ \overbrace{S^{n+1}} \ \overbrace{S^{n+1} \ \overbrace{S^{n} \ {$$

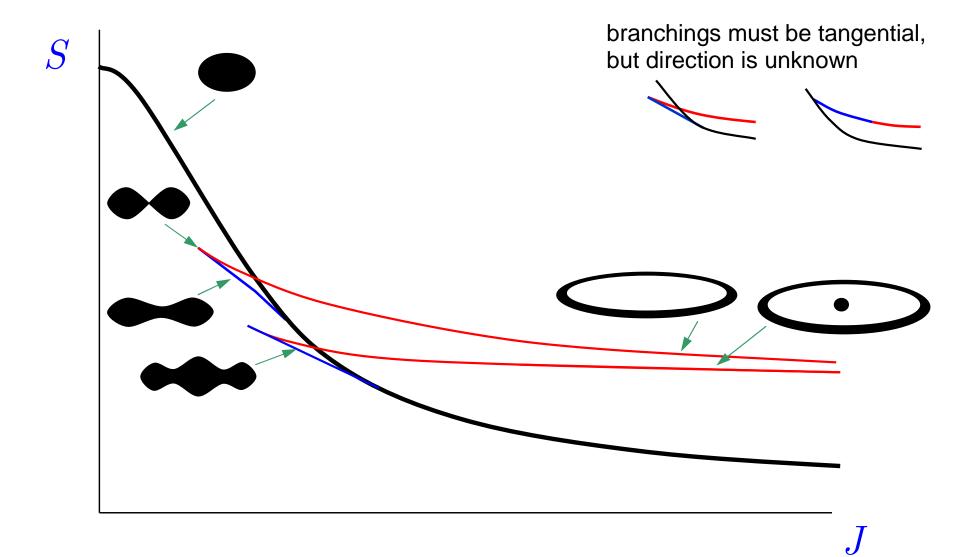
$D \ge 6$ phase diagram w/ 1 spin SJ



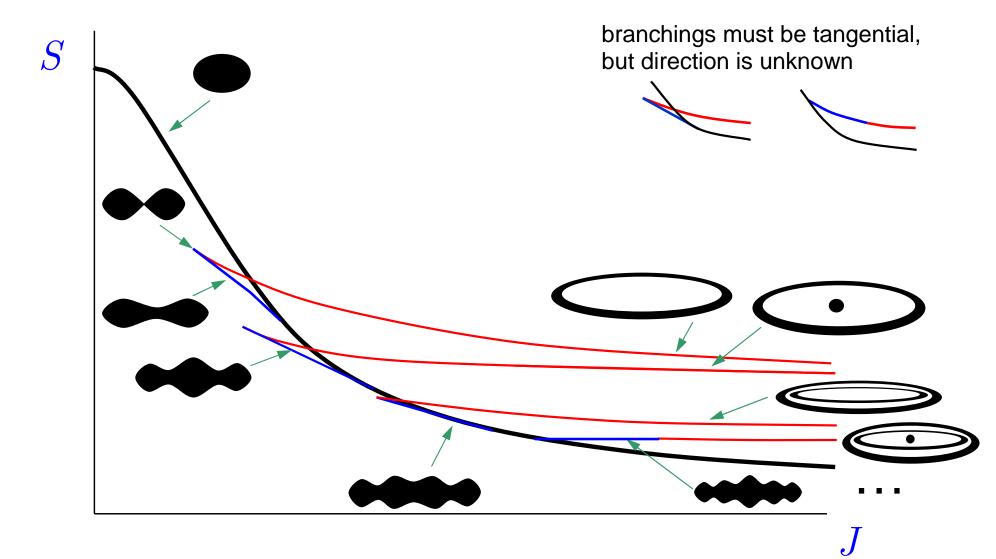
$D \ge 6$ phase diagram w/ 1 spin



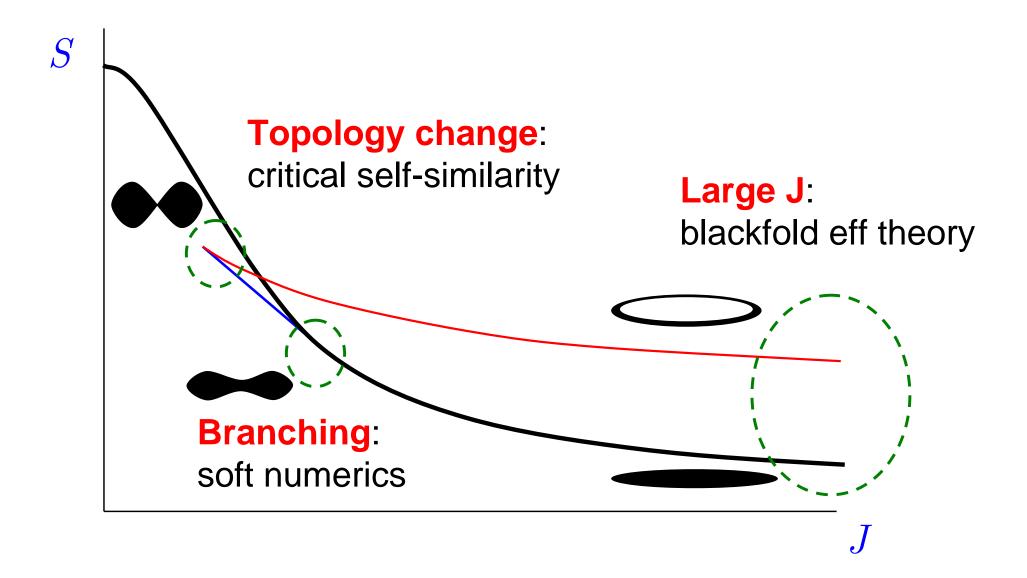
$D \ge 6$ phase diagram w/ 1 spin

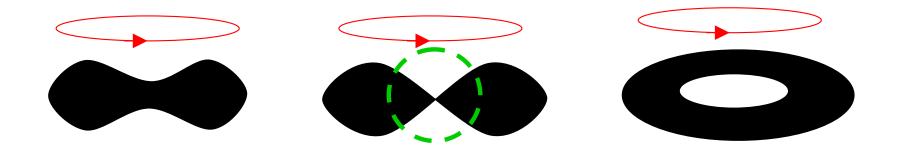


$D \ge 6$ phase diagram w/ 1 spin

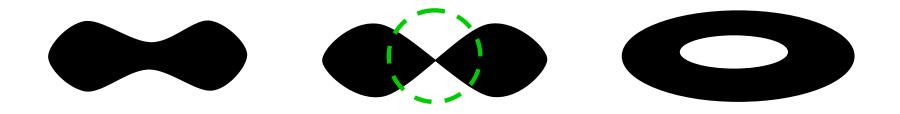


Patterns in the phase diagram

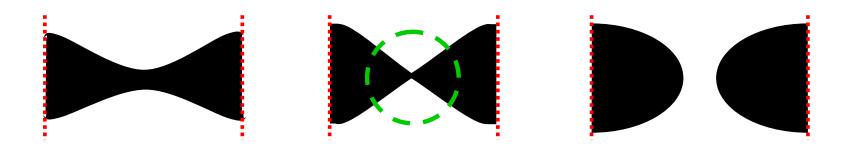


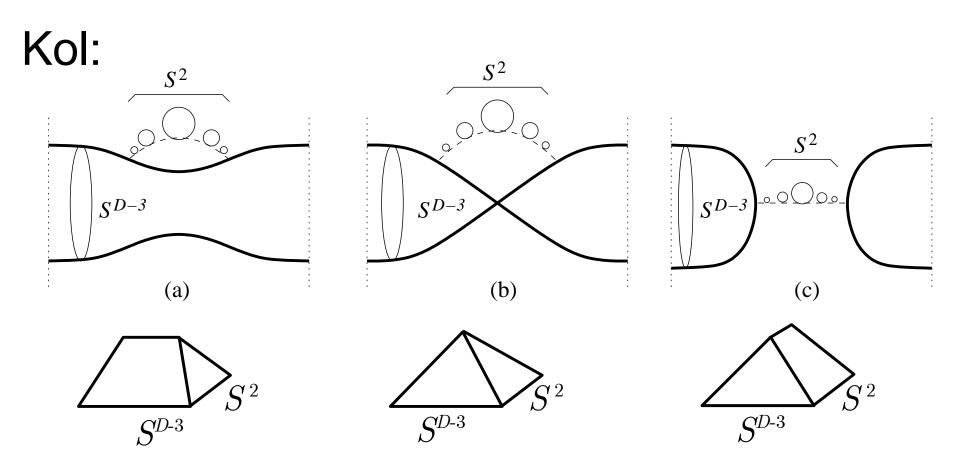


(NB: evolution in solution space, not dynamical)



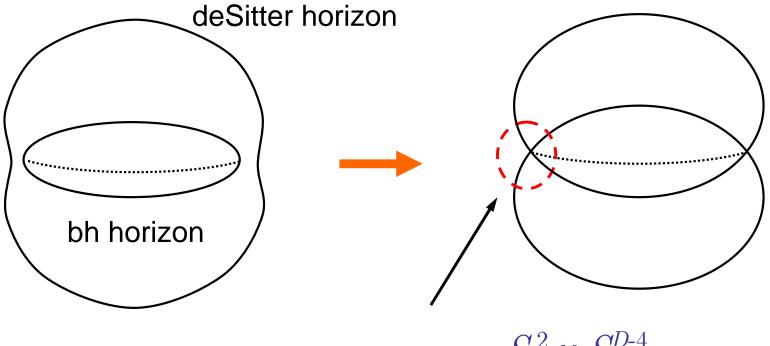
Paradigm: black hole/black string transition





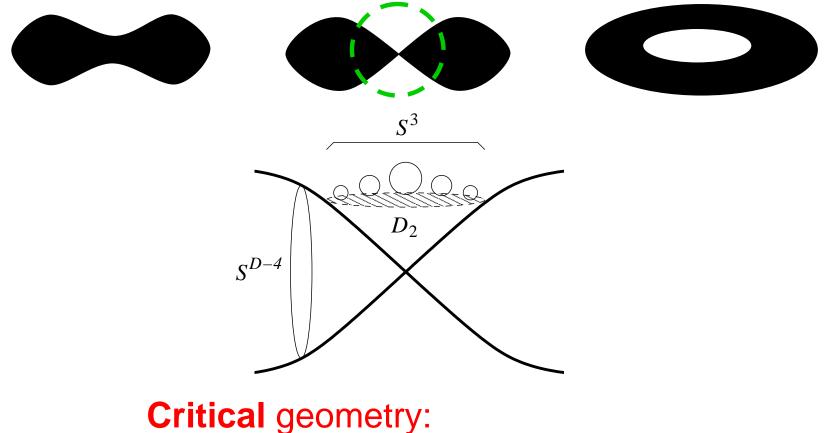
Critical geometry: self-similar cone over $S^2 \ge S^{D-3}$

An exact example: Kerr-deSitter in D≥6



cone over $S^{\,2}$ x S^{D-4}

Black ring pinch:



self-similar cone over $S^3 \ge S^{D-4}$

Where do we stand now?

- In 5D: close to a complete picture
 - We have identified (very likely) all relevant solutions:
 - MP bhs (exact)
 - planar black rings (exact)
 - helical black rings (approx)
 - combinations into black Saturns, multi-rings...
 - Possible to classify them
 - Few details missing, eg,
 - branching to helical rings
 - stability of black rings

Where do we stand now?

- In D≥6:
 - single spin: general pattern
 - missing details: order of phase transitions

2nd

- several spins: emerging overall patterns
 - many new large-J phases uncovered
 - zero-modes found, many-parameter families
 - criticality at topology change identified
 - but:

many phases still not identified

Hi-D BHs: opportunities for Numerical Relativity and HEP

- NR: clearly a lot of opportunities
 - search for new stationary solutions
 - investigate instability: onset & evolution
 - explore topology-changing transitions
- HEP: violations of cosmic censorship
 → quick route to Planck scale

HEP and cosmic censorship

 CC: from smooth initial data, GR evolution does not lead to naked singularities

- Believed to hold in D=4
- Violated in D≥5

HEP and cosmic censorship

- Naked singularity: region of (trans)Planckscale curvature visible for asymp observers
- CC: classical evolution won't take system to Planck-scale region
- Quantum evolution does take BH into Planck scale
- Classical evolution: **fast**: causality $t \sim R$
- Quantum evolution: **slow**: $t \sim R(R/L_{\rm Pl})^2$

HEP and cosmic censorship

- Violation of CC allows macroscopic (astrophysical?) system to get to Planck scale quickly
- But, to do so, system must probe extra dimensions
- eg, sub-mm-size black hole (primordial?) could do that in LXD
- other possibilities?

