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R E S U M O

A descoberta de estrelas que orbitam muito próximas de Sagittarius
A∗, o buraco negro supermassivo no centro galáctico da Via Láctea,
abriu uma nova via para testar o seu campo gravitacional e estudar o
ambiente que o rodeia.

Além disso, os dados recolhidos sobre as estrelas podem ser com-
binados com as imagens obtidas pelo Event Horizon Telescope da
região próxima do horizonte de eventos, produzindo o laboratório per-
feito para testar a teoria da gravidade e restringir modelos de matéria
escura. Esta última representa um dos maiores desafios (actuais) da
física, uma vez que existem várias observações experimentais que
suportam a sua existência no Universo, mas nenhum dos modelos
propostos pode ser considerado conclusivo.

Nesta tese de doutoramento investigamos o movimento geodésico,
i.e., a trajetória de uma partícula de teste num campo gravitacional
específico, com o objetivo de compreender possíveis assinaturas de
um tal fundo. Ao considerar o regime de campo forte, a equação
da geodésica é resolvida para restringir as assinaturas devidas a um
companheiro oculto ou estudar a luminosidade da matéria acretada
por um buraco negro de Schwarzschild.

No contexto das estrelas no Centro Galáctico, investigamos a pos-
sibilidade da matéria escura, sob a forma de um campo ultraleve, se
aglomerar em torno de Sagittarius A∗ criando uma nuvem, e usamos
os dados disponíveis para a estrela S2, uma das mais próximas do
Centro Galáctico, para determinar a massa dessa nuvem.

Exploramos também a possibilidade de existir uma quinta força
no Universo e desta aparecer como uma modificação do potencial
newtoniano do tipo Yukawa no limite do campo fraco. Através de
dados de S2, a intensidade dessa quinta força no centro galáctico é
limitada.

palavras-chave : relatividade geral; buracos negros; centro galác-
tico; matéria escura; mecânica celeste.
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A B S T R A C T

The discovery of stars orbiting very close to the supermassive black
hole at the Galactic Center of the Milky Way, Sagittarius A∗, opened a
new way to test its gravitational field and constrain the environment
around it. Moreover, data collected on stars can also be combined
with the near horizon images taken by the Event Horizon Telescope,
producing the perfect laboratory to test the theory of gravity and
constrain dark matter models. The latter represents one of the major
challenges in physics, since there are several experimental observations
proving its existence in the Universe, but none of the proposed models
can be seen as conclusive.

In this doctoral thesis we investigate the geodesic motion, i.e., the
trajectory of a test particle in a specific gravitational field, with the
aim of understanding possible signatures of such a background. When
considering the strong field regime, the geodesic equation is solved to
either constrain the signatures due to an hidden companion or study
the luminosity of matter accreted by a Schwarzschild black hole.

In the context of stars at the Galactic Center, we investigate the
possibility that dark matter in the form of an ultralight field clusters
around Sagittarius A∗ creating a cloud, and we use the available data
for star S2, one of the closest to the Galactic Center, to constrain the
mass of such a cloud.

We also explore the possibility that a fifth force exists in the Universe
and appears as a Yukawa-like modification to the Newtonian potential
in the weak field limit. By means of S2 data, the intensity of such a
fifth force is constrained at the Galactic Center.

key-words : general relativity; black holes; galactic center; dark mat-
ter; celestial mechanics.
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1
I N T R O D U C T I O N

1.1 gravitational physics as a data-driven field

In the last two decades the gravitational physics field has seen an
enormous increase in the number of available instruments and ob-
servations, turning it from a pure theoretical field to a data-driven
one. As a matter of fact, the first experimental proof that black holes
(BHs) exist in the Universe can be attributed to Giacconi et al. [3], who
observed periodic pulsations in the X-ray that they associated with col-
lapsed rotating stars. However, in the context of BHs physics, the most
considerable achievement is surely represented by the detection of the
first gravitational wave (GW) signal in 2015 by the Laser Interferometer
Gravitational Waves Observatory (LIGO) and Virgo collaborations, pro-
duced by the merger of two black holes (BHs) with masses 36+5

−4 M⊙
and 29+4

−4 M⊙ [4].
This astonishing result was the first (of many) test showing that the

current theory of gravity, General Relativity (GR), correctly predicts the
dynamics of very compact objects in the strong field regime. Indeed,
GR predicts that massive stars at the end of their life collapse under the
gravitational pull and form a BH, a singularity of the spacetime where
the laws of physics as we know them completely fail. Chandrasekhar
once said:

"The only elements in the construction of black holes are our basic concepts
of space and time. They are, thus, almost by definition, the most perfect
macroscopic objects there are in the Universe."

Indeed, astrophysical BHs can be seen as very simple objects, whose
properties are entirely encoded in only two parameters: mass M and
spin j, the latter representing how fast it rotates [1, 5, 6]. This is stated
in the so-called "no hair theorem" [7], which is a consequence of more
general uniqueness theorems [6, 8, 9]. These latter establish that the
only stationary and asymptotically flat solution of Einstein’s field
equations in vacuum are BHs described by the Kerr metric:

ds2 =−
(

1 − 2Mr
Σ

)
dt2 +

Σ
∆

dr2 + Σdθ2

+

(
r2 + j2 +

2Mrj2

Σ
sin2 θ

)
sin2 θdφ2 − 4Mrj sin2 θ

Σ
dtdφ ,

(1.1)

3
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where Σ = r2 + j2 cos2 θ, ∆ = r2 − 2Mr + j2 and j is the dimensionless
spin parameter of the BH, defined as j = J/M, with J being the angular
momentum of the BH (in international units system: J̃ = Jc3/G).

Being stationary and axisymmetric, the Kerr metric admits two
Killing vectors: k = ∂/∂t and m = ∂/∂φ. The former is associated
with the conserved mass M, while the latter is associated with rotations
around the axis of symmetry of the BH and leads to have a conserved
charge J = jM. In order to avoid the formation of naked singularities,
i.e., singularities of the spacetime which are not embedded in an
event horizon, 0 ≤ j/M < 1. The metric in Eq. (1.1) reduces to the
Schwarzschild solution for non rotating BHs in the limit j = 0.

When two BHs merge to form a more massive BH, in events that are
among the most energetic in the Universe, they emit gravitational radi-
ation in the form of GWs, i.e., ripples of the spacetime that propagate
at (almost) the speed of light, already predicted in Einstein’s original
theory.

The gravitational waveform observed by the LIGO-Virgo collabora-
tion was in agreement at 5σ confidence level with the predicted one
from GR, leaving almost no space for misinterpretation. This extraor-
dinary result was a huge breakthrough to understand the strong field
regime of gravity, since previous experiments were only carried out in
the weak field limit, leaving the way open for alternative theories and
speculations.

From that first impressive detection, the number of GW events has
dramatically increased, bringing the total number of candidates to
more than 90 [10]. Looking at the full catalogue, one can see that
these signals can be generated by very different sources: stellar BHs
mergers, neutron stars (NSs) mergers, BH-NS mergers and also, quite
surprisingly, from the merger of a BH with a compact object which is
too light to be a BH and too heavy to be a NS [11]. As always happens
when new regimes are explored, the discovery of this mysterious
object questioned current models for stellar BHs and NSs formation.

The discovery that BHs indeed exist in the Universe and are not
simply mathematical artefacts, opened the way to a new experimental
field of research, with several instruments developed in the last decade
and many in construction, especially in the context of GWs astronomy
[12].

1.1.1 Beyond GWs

Despite their incredible power to probe the strong field regime of
gravity, GWs are not the only available tools to "look" at very compact
objects and unveil the theory that governs their existence. Among
others, the Event Horizon Telescope (EHT) played a significant role
in the development of the field, producing the first "image" of a su-
permassive black hole (SMBH). The EHT is a combination of several
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radio telescopes around the globe aim to create an array such that
the angular resolution is sufficiently small to look at the event hori-
zon of SMBHs. Thanks to the very-long-baseline interferometry (VLBI)
technique, the EHT works as a telescope whose effective aperture is
equal to Earth’s diameter. This advanced technology allowed to look
directly at the environment in the near proximity of SMBHs, where
matter orbits at almost the speed of light, and enabled a new way to
test GR [13, 14].

On September 2019, the EHT collaboration announced the first ever
image of a SMBH at the center of the elliptical galaxy Messier 87,
known as M87∗ [15–20]. From the analysis of the image, M87∗ results
in having a mass of (6.5± 0.2 stat ± 0.7sys) · 109 M⊙ with a gravitational
radius of 3.8± 0.4 µas, located at a distance of 16.8+0.8

−0.7 Mpc from Earth.
Three years later, the first image of the SMBH at the center of our

very own galaxy, Sagittarius A∗ (SgrA*), was also released [21–26].
In both cases the observed images are in good agreement with the

theoretical expectation of a Kerr BH shadow and the authors found no
statistical evidence of deviations from GR, confirming the hegemony
of the current theory of gravity.

Together with those incredible data sources, the Galactic Center
(GC), i.e., the central region of the Milky Way (MW), has also become a
very prominent target for astrophysical and astronomical observations
in the last decades [27]. The discovery of faint stars, the so-called
S-stars cluster, orbiting around SgrA*, allowed to test the weak field
limit of gravity in a completely different environment from the Solar
System, where previous tests were performed [28]. The motion of stars
in the GC will be the main subject of this thesis and it will be explored
in depth throughout this work.

Overall, the outstanding number of observational results collected
in the last twenty years by means of different experiments have made
gravity a research field in which data can no longer be disregarded.
On the contrary, experimental evidences should now drive it, wiping
out any alternative proposal that is not in agreement with.

Nonetheless, as we will see in the next section, there are still fun-
damental questions about the theory of gravity and its interactions
with other forces in the Universe that can not be answered by means
of GR only and need a deeper understanding. Specifically, GR fails,
in the sense that it stops being a reliable predictive theory, at both
high energy scales, i.e., when one approaches scale lengths compara-
ble with the Planck length (ℓP =

√
h̄G/c ∼ 10−35m, where we have

reintroduced fundamental constants for clarity) and low energy, or
cosmological, scales. Since standard quantum field theory approaches
have so far failed to provide a theory of gravitation that is valid
whatever is the length scale considered, this makes GR somehow an
incomplete theory. Moreover, the majority of the matter content in the
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Universe still remains unknown, elusive to any experiment tried so
far to detect it.

1.2 a (very) brief history of dark matter

"Many of our supposed thousand millions stars, perhaps a great majority of
them, may be dark bodies" [29].

The Scottish scientist Lord Kelvin wrote these words in 1884, while
trying to estimate the number of dark objects in our galaxy. The idea
that the Universe is mostly composed of non-luminous matter was
therefore already in the air, and it was firstly postulated by Zwicky
[30] while he was studying the galaxies in the Coma cluster and found
that the "mass from starlight" was roughly 400 times smaller than the
"mass from gravitation". His idea was firstly rejected by most of the
scientific community until, forty years later, a series of observations
showed that bodies in the inner part of a galaxy were moving with
almost the same velocity as outer objects [31, 32]. Those observations
explicitly violated the Newtonian theory of gravity, which instead
predicts that the velocity of objects in a gravitational field should go
as v ∝ r−1/2.

In order to explain such phenomena, two main solutions were
proposed: either Newtonian gravity is not the correct theory of gravity
at large scales [33] or a huge amount of matter constitutes most of the
galactic content in the form of an halo which does not interact with
electromagnetic radiation, i.e., it is dark [34, 35].

Fifty years later these proposals still represent our best guesses to
explain the inconsistencies between observed data and theory. At the
same time, the number of observations confirming that DM somehow
exists in the Universe increased consistently since the late 1970s.

As illustrative examples, there are observations with gravitational
lensing [36, 37], which showed that the gravitational mass of galaxies is
always larger than the luminous mass by a factor 2− 4, and the curious
case of the Bullet Cluster [38], consisting of two colliding clusters of
galaxies, where the center of mass of the system is surprisingly far
from the center of baryonic mass, becoming the strongest evidence in
favour of DM existence and discouraging modified theories [39].

Regarding the MW, the luminous and visible disk is thought to be
embedded in a much larger halo of DM. This halo is supposed to
have a mass in the range (0.5 − 3) · 1012 M⊙, roughly 10 times larger
than the visible matter content (Mvis ∼ (6 − 8) · 1010 M⊙), with a local
density in the Solar System of ρDM

⊙ = 0.39 ± 0.09 GeV/cm3 [40–43].
The latter value depends on the specific model considered to describe
the DM halo, and it has been obtained as an average of the results
reported in the literature with several different methods [44].

Very recent results based on GAIA satellite third data release have
shown that the dynamical mass of the MW may be significantly smaller
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than previous estimates, reaching the value of ∼ 2 · 1011 M⊙ and
finding an absolute upper limit of 5.4 · 1011 M⊙ [45]. Moreover, the
MW shows a rotation curve which is not flat anymore, reproducing
the so-called Keplerian decline. This would imply also a much smaller
DM component in the MW, which would constitute only one third of
the total matter content, as opposed to previous estimates.

1.2.1 The standard cosmological model

During this 50 years journey looking for DM, a plethora of possible
models were proposed. From primordial BHs born due to curvature
fluctuations in the early Universe [46, 47] to ultralight particles with
mass as low as 10−22 eV [48, 49], DM models can span up to 90 order
of magnitude in mass, underlying our complete ignorance about it.

However, in order to combine DM observations with the accelerated
expansion of the Universe, a standard cosmological model, known
as Lambda Cold Dark Matter (ΛCDM) model, was proposed and
commonly accepted. It predicts that DM consists of cold, collisionless,
dissipationless, non-baryonic matter, which contributes up to 26% of
the critical density in the Universe and accounts for 84% of its total
matter content [50].

Λ instead represents the cosmological constant, a parameter intro-
duced ad hoc in Einstein’s field equations to account for the accelerated
expansion of the Universe and often known as dark energy [51]. The
latter is supposed to represent 68% of the current total energy of the
Universe [50]. However, even in the largely accepted ΛCDM model
there are some issues that need to be addressed.

Among others, one of the most well-known problems is the so-
called cuspy halo problem: while numerical N-body simulations of
galaxy clusters showed that CDM halos are characterized by a central
core described by a power law density ρ ∝ r−α, with α = −1 in the
inner region and α = −3 in the outer region [34, 52], the experimental
observations seem to favour a constant density core (α ≃ 0 − 0.4)
[50]. This also implies that numerical simulations predict a central DM

density that is much larger than the one observed in galaxies.
This discrepancy questioned the paradigm of CDM, opening the pos-

sibility for a different DM modelization, e.g. fuzzy [53], self-interacting
[54] or self-annihilating [55] DM, that may suppress the core cusp at
small scales [53, 56].

Specifically, ultralight boson fields have gained a lot of attention
due to their connection with particle physics, as they emerge naturally
in high energy theories, like string theory [49, 57, 58], or as an hidden
U(1) gauge boson which is a generic feature of extensions of the
Standard Model [59, 60]. Their existence has been investigated in the
context of BH imaging, using EHT observations of M87∗ [61], using
rotation curves of low-surface-brightness galaxies (and disfavouring
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models with mψ ≲ 10−21 eV) [62, 63] and using the matter power
spectrum revealed by Ly-α forest analysis (again disfavouring masses
mψ ≲ 10−21 eV) [64–68].

A weaker bound comes from the results of pulsar timing array
measurements [69], where the presence of an ultralight boson can
emerge as a gravitational potential oscillating at nanohertz frequencies
that can affect periodically the times of arrival of pulses from pulsars
[70]. Very recently, the detection of the Gravitational Wave Background
by the Pulsar Timing Arrays groups has confirmed the presence of
low frequency GWs permeating the Universe. Those waves can be
explained in the context of pure GR assuming the coalescence of
SMBHs in the early Universe. However, the observed signal may also
be compatible with the oscillating gravitational potential generated by
an ultralight particle [71–73].

Overall, a complete description of DM is still missing, both in terms
of its density distribution in galaxies and its nature. In this sense,
looking at the inner parsec of our own GC via the motion of stars is a
tantalizing possibility of finding out more about DM distribution. This
argument will be the main topic of the next chapters.

1.3 structure of the thesis

From the famous apple that probably never fell on Newton’s head, to
matter orbiting at the speed of light near SMBHs, studying how light
objects, or test-particles, move in proximity of a much more massive
body has always been the main tool to understand gravity.

This doctoral thesis is indeed devoted to study the geodesic motion
in particular setups, in order to constrain possible signatures induced
by specific gravitational backgrounds.

This work is divided in two main parts: the first one is purely
theoretical, with possible applications to experiments, and devoted
to understand geodesic motion in the strong field regime of gravity,
when specific frameworks are considered. Projects presented in this
part were all done in collaboration with my supervisor, Vitor Cardoso.

The second part is instead focused on fitting the data of star S2 at
the GC, collected using the GRAVITY instrument and other instrumen-
tation at the Very Large Telescope (VLT) in the Atacama desert, Chile.
All works involving S2 data have been done in collaboration with the
GRAVITY consortium members.

Due to the importance of the latter topic, Chapter 2 will be de-
voted to describe the GC and its properties, with a specific focus on
stars orbiting around SgrA*, since their motion will be used to test its
environmental features. In Section 2.6 we will briefly present the ex-
perimental apparatus at VLT that allowed to perform the observations
used in this work.
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In Chapter 3, we will analyse how geodesics in the Schwarzschild
spacetime are perturbed if a companion generating a tidal field is
added to the background metric.

In Chapter 4, we will present a work in collaboration with Dr.
Francisco Duque, where we showed that the appearance of emitting
matter accreted by Schwarzschild BHs is entirely dominated by the
light ring (LR) and not sensitive to the presence of an event horizon.

The second part of this thesis starts in Chapter 5, where the numeri-
cal framework and the methodology used to fit S2 data are presented.

In Chapter 6 the concept of superradiance and the growth of boson
clouds around BHs is introduced. In Sections 6.2-6.3 both massive
scalar and vector clouds around SgrA* will be considered, with the aim
of constraining their mass by making use of S2 orbit.

Finally, in Chapter 7 we considered the specific case of a Yukawa-
like modification of the Newtonian potential that emerges as the weak
field limit of many different Extended Theories of Gravity (ETG) and
represents a deviation due to the presence of a "fifth force" in the
Universe. Again, the data collected for S2 will be used to constrain the
intensity of such a fifth force at the GC. The latter project is still work
in progress and only preliminary results will be presented.



2
T H E G A L A C T I C C E N T E R A S N E W L A B O R AT O RY
F O R G R AV I T Y

2.1 the galactic centre

The GC of the MW has been a major astrophysical target in the past
years and most of its importance resides in the fact that it is relatively
close to Earth (R0 ∼ 8 kpc). This allowed us to study it in depth and
perform astronomical observations that are basically impossible in any
other galaxy.

The few inner parsecs of the MW are a very populated environment,
where one can find young and massive stars [74], hot ionized gas, an
HII region, i.e., composed of ionized atomic hydrogen [75] and also
an X-rays emitting region which correspond to what is supposed to
be a SMBH, SgrA* [76–78]. Due to the presence of interstellar dust, the
GC is not observable in the visible spectrum, hence observations are
performed at different wavelengths, from microwaves to X-rays and
γ-rays.

At a distance of ∼ 1 pc from SgrA* resides the Nuclear Star Cluster
(NSC) that counts up to 6000 stars [79]. The stars in the NSC are mostly
old stars, i.e., red giants or supergiants [80], which are expected in this
kind of systems.

However, starting with the pioneering observations performed at the
end of the 1980s [81, 82], the number of early-type hot stars has con-
sistently increased in the inner parsec of the GC [83–90]. The presence
of young stars in a inhospitable environment such as the one around
a SMBH is surprising and inexplicable with current theories of stellar
formation process [91]. In a nutshell, according to standard scenarios
of star formation, the strong tidal shear of the SMBH would prevent
the formation of stars, while their young age seems to disfavour the
hypothesis that they have migrated there from farther regions. The
latter is a very broad research topic and far from the main subject
of this thesis and for this reason it will not be explored further (for
a comprehensive review we direct the reader to Refs. [91, 92] and
references therein).

However, in the context of this work, it is interesting to note that the
so-called "Paradox of Youth" [93] might be explained by the presence
of DM particles placed inside or in the surrounding environment of

10
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stars, as they can significantly alter their evolution [94–99]. Once again,
DM might play a significant role in explaining the physics happening
at the GC.

2.2 the radio source : sagittarius a*

The idea that extremely compact objects could lie at the center of
galaxies dates back to 1970, with two pioneering works of Lynden-Bell
and Rees [100, 101]. They hypothesized that the release of gravitational
energy in the form of radiation due to matter accreting the BH would
result in a high energy emission in the core of a galaxy.

In 1974 the first radio emission at the GC was detected [102], in
coincidence with the galactic nucleus. This radio emission was lately
confirmed by other observations [103] and in 1982 the radio source
took the name as we know it today, Sagittarius A∗ [104, 105]. Con-
strains from gas dynamics [106–110] and stellar dynamics (particularly
with S-stars, see Sec. 2.3 and references there) enhanced the hypothesis
of a very compact source with mass M• ∼ 4 · 106M⊙ confined within
a very small region of space.

However, the final proof that SgrA* is indeed a BH must come from
the observation of a unique feature of BHs, which is the presence of
an event horizon. In asymptotically-flat spacetimes, a BH is defined
as the set of events from which no future-pointing null geodesic can
reach future null infinity. The event horizon is the boundary of this
region and for non rotating BHs it has a characteristic size given by
the Schwarzschild radius,

rS =
2GM

c2 , (2.1)

where we have reintroduced fundamental constants for clarity.
In 2022, the EHT Collaboration used the VLBI technology to release

the first image of SgrA* at event horizon scale [21–26]. Specifically, they
observed the BH shadow, namely the dark region below the event hori-
zon surrounded by bright material accreting into the BH and emitting
radiation. The intrinsic size of the shadow is mostly determined by
the mass-to-distance ratio of the BH and it only depends weakly on
the BH’s spin [111], while its shape depends on both the spacetime
and the modeling of the accretion process.

The subsequent analysis of SgrA* shadow showed that the image
is characterized by a bright, thick ring of emission with diameter of
51.8± 2.3 µas, surrounding a deep brightness depression, in agreement
with the predicted shadow of a Kerr BH with mass M• = 4.0+1.1

−0.6 ·
106 M⊙ at a distance of ∼ 8 kpc.

In addiction to this, SgrA* shows flares, i.e., sudden emission of
radiation that last for a short time, in both the NIR and X-ray band,
orbiting at around ∼ 5 rS [112–116]. These events are likely due to
orbiting parcels of hot plasma, or hot spots. It is still unclear what



12 the galactic center as new laboratory for gravity

the cause of these "hot spots" is. Magnetic reconnection in the close
vicinity of the BH is a convincing candidate [117] but other possibilities
are explored as well [118, 119]. GRAVITY is able to measure the
astrometry of these flares with precision of few tens of µas, recently
updating its catalogue with 5 new flares observed from 2019 to 2022
[120]. The analysis of both astrometry and polarimetry of all flares
combined showed that the compact object at the GC resides almost
completely within R = 4.45+0.75

−0.65 rS (∼ 0.38 AU) with an enclosed mass
of M• = 4.2+1.2

−0.9 · 106 M⊙ and inclination of i• = 154.9 ± 4.6◦, ruling
out possible extended models, such as the fermionic DM core with
typical radius of ≈ 10−3 pc ≈ 200AU proposed by Ruffini, Argüelles
and Rueda [121–123].

These observations allowed for the first time to connect dynamical
observations of stars at large scales (103 − 105 rS) with measurements
at event horizon scales performed by different instruments, resulting
in an almost perfect agreement and emphasising the importance of
the GC as the perfect testing ground for gravitational physics.

Observations in the millimeter, X-ray, infrared and radio band
allowed to put upper limits on SgrA* luminosity (L/LEdd ∼ 10−9,
being LEdd the Eddington luminosity1) and accretion rate (Ṁ• ∼
10−9 − 10−7 M⊙yr−1) [91], showing that the SMBH has low luminosity
and it is mostly dormant.

2.2.1 Testing possible alternatives to the black hole model

Up to now, observations performed with different instruments seem
to favour the hypothesis that SgrA* is indeed a SMBH as predicted by
GR [26]. Nevertheless, putting a final word on this topic is a great
challenge due to the existence of the so-called BH-mimickers, i.e.,
compact objects that look exactly like BHs but do not have an event
horizon [124].

One of the most common alternatives to the BH paradigm is the
wormhole, namely a solution of the Einstein’s equations that predicts
no singularity at the center but rather a throat connecting either two
distant regions of the Universe or two different universes [125, 126]. It
has been shown that the presence of a wormhole at the GC would be
potentially detectable using star S2 motion, as long as one is able to
measure its acceleration with a precision of order 10−6 m/s2 [127, 128].
However, the diameter of the wormhole’s expected shadow would be
significantly smaller than the one observed by the EHT and hence it
was basically ruled out by the collaboration [26].

1 The Eddington luminosity corresponds to the maximum luminosity that a body in
hydrostatic equilibrium can achieve and it is defined as LEdd =

4πGMmpc
σT

, where σT
is the Thompson scattering cross-section of the electron and mp is the mass of the
proton.
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A more general model is given by the so called Black Bounce [129],
whose metric can be mapped into different models depending on
the value of the parameter α, which appears in the radial coordinate
as r̃2 = r2 + α2, and reduces to the Schwarzschild metric if α = 0.
Della Monica and De Martino [130] showed that the current precision
in the astrometric measurements of star S2 is not sufficient to detect
any deviation from the Schwarzschild metric, making it impossible to
distinguish between different models.

More recently, a study by Cadoni et al. [131] tested a non singular BH

with super-Planckian hair, where a new length scale ℓ is introduced as
a new parameter describing the BH, responsible for the smearing of the
central singularity. They found an upper bound of ℓ ∼ 0.47M•, while
models with 0.2 ≲ ℓ/M• ≲ 0.3 seem to be favoured by observations.

Quite interestingly, also the idea that SgrA* is a boson star has been
investigated during the years, both using the motion of S-stars and
imaging techniques [132, 133]. Boson stars were firstly introduced in
Refs. [134–137] as solutions of the system described by the action:

S =
∫

d4x
√
−g

(
R

16π
− gµνΨ̄,µΨ,ν −

µ2
SΨ̄Ψ
2

)
(2.2)

where R is the Ricci scalar, gµν is the metric describing the spacetime,
Ψ is a (complex) scalar field and µS is related to the mass parameter
of the field ms via ms = h̄µS/c [124]. Those objects are given by new
fundamental fields either minimally or non-minimally coupled to
gravity, which result in self-gravitating compact objects that may be
dark if interactions of the new field with Standard Model particles
are weak. Grould et al. [138] investigated possible distinctive features
of geodesic motion around boson stars compared to Kerr BHs. They
found that orbits become potentially distinguishable for pericenter’s
distances ≲ 30M•, a region of space that is currently unreachable by
observations. In Ref. [132], S2 orbit was used to constrain both the
mass and the self-interacting coupling constant of the boson field.

In the context of BH imaging, several works have shown how the
boson star shadow can be significantly different from that of a BH

[133, 139, 140], resulting in a total absence of the central brightness
depression. For this reason the mini-boson star model has been ruled
out by the EHT collaboration [26]. However, the argument can not
be taken as conclusive, since spin, compactness and astrophysical
setup can significantly alter the boson star shadow and make it still
compatible with EHT results [141].

Throughout this work, we will assume that the compact dark object
at the GC is indeed a SMBH described by the Schwarzschild metric,
hence non-rotating, and we will not explore further possible alternative
models to it.

This assumption is not driven by observations, which are able to
place only very broad (and apparently in contradiction) constraints
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on SgrA*’s spin [142–145], but is rather based on the fact that spin’s
effect in the motion of S-stars is currently undetectable and hence
can be safely neglected. However, this does not imply that SgrA* is
actually non rotating, or was not rotating in the past. In fact, as we
will see, rotation will play a fundamental role in the development of
superradiant clouds at the GC that we will analyse with S2 data.

2.3 the s-stars

At a distance of ∼ 0.04 − 0.4 pc from SgrA* there is another component
of the NSC, the so-called S-stars cluster [146–150]. This surprisingly
dense group is mainly composed of dwarf B-type stars aged between
6 and 400 Myrs, characterized by randomly distributed orbits with
very high eccentricity (e > 0.5).

Despite their position may suggest that they are just an extension
of the young stellar disk previously mentioned, there are proofs that
S-stars must be seen as a completely different component of the GC

with respect to other population of stars [146, 147]. Despite several
mechanisms have been proposed to explain the formation process of
the S-cluster [151–154], none of them is able to provide a complete
and satisfying description at the moment.

A possible explanation for the age and location of S-stars was firstly
proposed by Hansen and Milosavljevic [155], who hypothesised that
an intermediate-mass BH at the GC may be responsible for dragging
S-stars to their current location from a more suitable location for
stars formation. This idea has been investigated by the GRAVITY
collaboration in Ref. [156] with a full parameter study with S2 orbit.
For the hierarchical case, i.e., S2 orbiting around the binary SgrA*-BH,
intermediate-mass BH with masses > 2000 M⊙ are largely excluded.
When considering the non hierarchical case, meaning that S2 can
intersect the intermediate-mass BH orbit, the system becomes chaotic.
Despite there are combinations of parameters that still allow the
presence of a BH companion to SgrA*, the majority of solutions would
disrupt the S-cluster and do not withstand the reality check. A further
study on the presence of a possible companion to SgrA* with S2 orbit
has been performed by Will et al. [157], who derived bounds on semi-
major axis and mass of the BH companion using both numerical and
analytical methods.

The monitoring of S-stars around SgrA* has started at the beginning
of the 1990s with the New Technology Telescope at VLT [158–160] and
it still continues today with the use of more advanced instruments.
The observations are performed by two independent groups at the
University of California, Los Angeles and at the Max Planck Institute
for Extraterrestrial Physics, whose leading scientists, Reinhard Genzel
and Andrea Ghez, have been awarded the Nobel Prize in physics in
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2020 "for the discovery of a supermassive compact object at the center
of our galaxy".

The study of those stars not only improves the current knowledge
on the cluster formation, but, most importantly in the context of
this thesis, allows to probe the gravitational field of the SMBH with
unprecedented accuracy. S-stars are the main tools to look at the inner
parsec of the GC and can be exploited to test the nature of the central
object, to constrain extended mass distributions around it and to look
for possible companions in its vicinity.

Among the S-stars, a particular attention has been devoted to S2 dur-
ing the last two decades, a 10 − 15 M⊙ star with apparent magnitude
of K ∼ 14 [161–165].

S2 has a roughly 16 years period and very high eccentricity (e ∼
0.88). On May 19, 2018 it passed its pericenter (rperi ∼ 120 AU ∼
1.8 · 1013 m) with an orbital speed of ∼ 7700 km/s. This unique event
allowed the GRAVITY Collaboration team to detect the Schwarzschild
precession (SP) in its orbit for the first time in history, measuring a
precession angle which is perfectly compatible with the expectation
value from GR [166].

S2 orbit, together with other S-stars, also allowed to improve sig-
nificantly the estimates for the properties of SgrA*, showing that their
motion is completely dominated by a potential generated by a dark
object whose mass and distance from Earth are [167]

M• = (4.297 ± 0.012)× 106M⊙ R0 = 8.277 ± 0.009 kpc . (2.3)

2.4 testing the environment around sgra* with s-stars

Due to their close proximity to SgrA*, S-stars are an incredible tool
to look for DM or, more generally, for extended mass distributions at
the GC. Indeed the presence of an extended mass around the central
BH will induce a retrograde precession in an elliptical orbit, due to
the additional acceleration felt by the star, already at Newtonian level
[168, 169].

The extended mass considered may be dark, in the sense that it
can not be directly observed, and it could be composed of stars,
stellar remnants or DM itself. In Ref. [170] the authors made clear
that the precession induced by an extended mass can be separated
from the SP, not only because they act in opposite directions, but
mostly because the former affects the apoastron passage, while the
latter becomes detectable (assuming the current instruments’ precision)
only at periastron. Hence, only a dataset describing a full orbit can
successfully characterize the motion, but once the full orbit is known
the separation of the two effects becomes duable.

In the context of DM research at the GC, several works have tried to
use S-stars to constrain DM models. In the following, we will discuss
some illustrative examples.
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Lacroix [171] tested the DM spike model using S2 orbit, following
the work of Gondolo and Silk [172], where they showed that if a DM

halo exists in the galaxy, then it will be accreted by the central BH,
forming a dense spike at the GC. The density profile of this distribution
is given by

ρ(r) =


0 r < rS ,

ρhalo(Rsp)
(

r
Rsp

)−γsp
rS ≤ r ≤ Rsp ,

ρhalo(r) r ≥ Rsp ,

(2.4)

where ρhalo is given by a generalized Navarro-Frenk-White profile and
Rsp is the radial extension of the spike. Using the publicly available
data for S2, the author was able to exclude Rsp ≥ 103 pc, which
can be translated into a bound on the total environmental mass of
δM ≲ 4 − 5 · 104M⊙, or ∼ 1%M•.

In Ref. [173] the same dataset was used to constrain the presence
of ultralight DM, namely matter in the form of a self-gravitating
scalar condensate around the SMBH. This assumption fixes the den-
sity distribution of the mass profile δM in terms of the scalar parti-
cle’s mass ms. They were able to set an upper bound on the core
mass δM ∼ 5 · 104M⊙ for a fundamental scalar field with mass
ms ∼ 4 · 10−19 eV. For ms ≳ 10−18 eV the core is confined inside S2
periastron and it becomes degenerate with the BH mass.

Also the possibility of a self-gravitating halo at the GC made of
fuzzy DM has been investigated in Ref. [174]. This model predicts that
an ultralight boson field with mass mψ < 10−18 eV and de Broglie
wavelength λψ ∼ 1 kpc forms a central, stationary core (a "soliton")
surrounded by an halo that resembles a CDM halo [175, 176]. The
radial profile of such cores is approximated by [177]

ρs(r) =
ρ0

(1 + Ar2)8 , (2.5)

where A is related to the core radius rc via A = (9.1 · 10−2)/r2
c and ρ0

is the central density of the halo. The core radius can be related with
the virial mass of the halo via [178]

rc = 1.6
( mψ

10−22 eV

)−1
(

Mhalo

109M⊙

)−1/3

kpc . (2.6)

The authors of Ref. [174] used a mock dataset to show that future
measurements of S2 orbit can provide an upper bound on the boson’s
mass of mψ ≲ 10−19 eV at 95% confidence level.

Regarding more general distributions of matter, the GRAVITY Col-
laboration [167] used S-stars orbits to test a Plummer density profile
[179] around SgrA*, as it represents the simplest model to describe
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stellar clusters. The parametrization of the Plummer profile is given
by

ρ(r) =
3 fPLM•
4πa3

PL

(
1 +

(
R

aPL

)2
)−5/2

, (2.7)

where the scale length is set to be aPL = 0.3′′ (roughly correspondent
to S2’s apoastron) and the enclosed mass within R is M(≤ R) =

fPLM•(R/aPL)
3(1 + R2/a2

PL)
−3/2. Fitting the parameter fPL, they de-

rived an upper limit for the extended mass enclosed within the apoc-
enter of S2 of ≲ 3000 M⊙ or ≲ 0.1%M•, currently the most stringent
bound on the mass distribution around SgrA*.

Very recently, Shen et al. [180] used publicly available data of S-stars
to constrain the spike slope γsp of a generalised Navarro-Frenk-White
profile adopting the piece-wise function in Eq. (2.4), for which they
found that γsp ≥ 0.92 is excluded at 95% level. In the same work, the
authors also tested the Einasto profile, which is a commonly used DM

model that better fits the numerical simulations and can be written as

ρEin(r) = ρ0 exp
(
−2

α

[(
r
rs

)α

− 1
])

, (2.8)

where ρ0 and rs are the normalisation and scale radius respectively,
while α characterises the mass concentration of the DM halo. From
this density distribution one can consider different values of the pa-
rameters ρ0, rs and α coming from numerical works. Specifically they
considered both the parameters obtained from the numerical simula-
tions of Navarro et al. [181] and the experimental results coming from
the GAIA satellite [182], deriving a upper limit on the spike radius
Rsp. In the former case Rsp ≲ 30 pc, while in the latter Rsp ≲ 60 pc, at
95% probability.

In this work another setup will be considered, based on the idea
that new fundamental massive fields, either scalar or vector, can de-
velop quasi-bound states around BHs creating a "condensate". In usual
conditions those fields would decay in time leaving no imprints, but
if certain conditions are fulfilled the amplitude of the field can grow
exponentially, extracting rotational energy from the Kerr BH. This
phenomenon is known as superradiance and it will be explored in
Chapter 6.

2.5 testing alternative theories of gravity with s-stars

As mentioned in Chapter 1 two possibilities were (and are) explored
in order to explain those observational effects that are not compatible
with either GR or Newtonian gravity. While in Section 2.4 we explored
the possibility that a new form of matter exists, in this section we will
focus on the second alternative, i.e., the idea that GR is not the final
word on gravity.
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When dealing with extension of GR, one must consider that any ETG

must reproduce GR results in the weak field limit, i.e., at Solar System
scale, where constrains are really stringent [28] and also satisfy the
bounds imposed by GWs astronomy [183]. In other words, it must
reproduce GR in the intermediate scale lengths range 1µm ≲ ℓ ≲
1011 m, where it is well tested, or provide a meaningful explanation
on why possible effects are not visible in such a range [184].

The huge number of theories proposed since 1960, when Brans and
Dicke introduced the first scalar-tensor theory [185], makes impossi-
ble to do a complete review here, so only a brief summary will be
presented (a comprehensive review can be found in Ref. [184]).

The starting point of any ETG is the violation of the Lovelock’s
theorem [186, 187], which states that GR is the only theory of gravity
under some specific assumptions. Specifically, it states:

"In four spacetime dimensions the only divergence-free symmetric rank-2
tensor constructed solely from the metric gµν and its derivatives up to second
order, and preserving diffeomorphism invariance, is the Einstein tensor plus
a cosmological term."

Hence, in order to have an alternative theory to GR, or an extension
of it, one of the assumptions of Lovelock’s theorem must be dropped.
For instance, one can add an extra field to the theory, in both a dy-
namical or non-dynamical way2, include extra (hidden) dimensions or
consider theories that explicitly violate the weak equivalence principle,
i.e., assume ∇µTµν ̸= 0.

The latter states that the trajectory of a free falling body is not
influenced by its internal structure and composition and it has been
tested with increasing precision during the years, reaching the current
precision of one part in 1015 thanks to the MICROSCOPE experiment
[188]. Because of this astonishing finding, theories that violate the
weak equivalence principle are usually not considered as viable ones.

What is probably the most natural extension of GR is the inclusion
of one or more scalar fields coupled to the gravity sector, which take
the name of scalar-tensor theories and whose most general form is
Horndeski gravity [189]. In these theories the Newtonian gravitational
constant G is a dynamical quantity that depends on the coupling
function of the scalar field ω(ϕ) and on its asymptotic value at infinity
ϕ0. In the Brans-Dicke theory, for example, the coupling function ωBD

is assumed to be a constant. The larger is the value of ωBD the smaller
the effect of the scalar field, making it more and more indistinguishable
from GR.

It has been shown that also f (R) theories, namely theories where the
scalar curvature R appearing in the Einstein-Hilbert action is replaced

2 Here the difference between dynamical and non dynamical field depends on whether
the field is introduced directly in the gravity sector, i.e., modifying the Einstein tensor
Gµν and hence the left-hand side of Einstein’s equations, or in the stress-energy tensor
Tµν, such that the identity ∇µTµν = 0 still remains valid.
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by a function of it, are equivalent to some scalar-tensor theories and
hence propagate a new degree of freedom [190–192].

Another class of theories are the tensor-vector-scalar theories, where
a dynamical four-vector field Kα together with a dynamical scalar field
ϕ are included in the action [193].

Despite the evidence supporting the SMBH scenario at the GC is
extremely strong and has passed more tests than other alternatives
[194], testing ETGs with S-stars motion gained a lot of attention recently.
The main reason resides in the fact that one is able to test the weak
field limit of gravity in a setup and environment that is completely
different from the Solar System and studying the nature of their
geodesic motion is one of the best strategies to look for modified
theories [195]. Indeed, in order to make ETG theories compatible with
the intermediate energy scales in which GR has been strongly tested,
many of them suffer from a screening mechanism [196]. How the latter
acts depends on the specific theory considered, but the general idea
behind this reasoning is the fact that additional degrees of freedom
must remain unseen at local scales, otherwise they would have been
already discovered.

As illustrative examples, Borka et al. [197] took the SP measurement
obtained by the GRAVITY collaboration and compared it with the
orbital precession angle of some ETGs, namely power law f (R) theories,
non-local gravity and scalar tensor gravity. For the latter, the precession
angle induced is roughly 10 times larger than in GR and hence it is
not compatible with the observed SP.

In some cases, the modification to the orbital precession is so small
that S-stars do not carry any information about the ETG considered.
This is the case of Einstein-Maxwell-Dilaton-Axion gravity [198] or
Brans-Dicke theory [198, 199].

In Ref. [200] quadratic Einstein-Gauss-Bonnet gravity is considered,
deriving an expression for the gravitational redshift as function of
the theory coupling parameters, i.e., the coupling between the scalar
field and the Gauss-Bonnet invariant G = R2 − RµνRµν + RµναβRµναβ,
where Rµν and Rµναβ are the Ricci tensor and the Riemann tensor,
respectively.

In this doctoral thesis, we will focus on a specific modification of the
Newtonian potential that emerges in the weak field limit whenever a
massive field is included in the theory, namely a Yukawa-like potential
added to the Newtonian one.

2.6 experimental apparatus at the vlt

In this thesis we will make use of astrometric and spectroscopic data
of S-stars, specifically S2, collected by the GRAVITY Collaboration
members at the VLT in Chile, currently the most advanced visible-light
astronomical observatory in the world.
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Astrometric measurements were initially performed by the NACO
camera between 2002 and 2016, which made use of adaptive optics
techniques to resolve the atmospheric turbulence [201]. It was com-
posed by two systems: an adaptive optics system and a Near Infrared
(NIR) camera, and it worked at wavelengths of 0.8 − 2.5 µm.

From 2016 astrometric observations are performed by means of the
GRAVITY instrument, from which the collaboration gets its name, a
pioneering interferometer that combines the light of all four telescopes
at VLT (the so-called VLT Interferometer), each assisted by adaptive
optics [202, 203]. The signal needs to be further corrected from at-
mospheric turbulence and other effects, by making use of a fringe
tracker and technologies such as lasers, optic fibers and integrated
optics. GRAVITY is able to provide images with a angular resolution
of 4 mas, measuring positions of stars with precision of few tens µas
and becoming the most sensitive instrument in the field. It works at
2.0 − 2.4 µm wavelengths.

Spectroscopic measurements, from which one can extract the radial
velocity (RV) of stars, are instead performed by SINFONI, a spectro-
graph located at UT4, one of the four telescopes of VLT [204]. The
instrument is composed by two systems: SPIFFI, an infrared integral
field spectrograph and the SINFONI-AO (adaptive optics) module.
The integral field spectrograph allows to observe the full spectrum
of each pixel of an image, measuring the intensity of light at each
wavelength and deriving the projected velocity of the observed object
from it. Thanks to the adaptive optics module, SINFONI can also
correct from atmospheric turbulence. It also works in the infrared
band, at wavelengths of 1.0 − 2.5 µm.

2.6.1 Towards the future: GRAVITY+

The current performance of GRAVITY is not the ultimate within reach
and a new upgrade of the instrument is on its way [205]. The updated
instrument will be equipped with new adaptive optics facilities that
will significantly increase the flux injection (roughly a factor 10), mak-
ing faint targets more likely to be observed. GRAVITY+ is expected to
measure the flux from objects with magnitude K > 22 mag, in contrast
with the current upper bound of K ∼ 15 − 21 mag.

Moreover, with the new off-axis fringe-tracking mode, GRAVITY+
will be able to measure objects that are far more distant from each
others than in the previous experiment, reaching separations up to
tens of arcseconds. This improvement would lead to observations of
several Active Galactic Nuclei, where SMBHs are expected to lie, up
to a redshift z ∼ 3. Specifically, measurements of SMBH masses at
z ∼ 2 will significantly improve our knowledge on star formation in
the Universe, since this redshift value corresponds to the peak of star
formation [206, 207].
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Regarding the GC, GRAVITY+ is expected to measure fainter stars
around SgrA*. The discovery of a closer (and fainter) star will provide a
way to measure the Lense-Thirring precession [208], namely the secular
precession of the longitude of ascending node and the argument of
periapsis due to the rotation of the central mass and the consequent
frame dragging effect. This secular precession is proportional to the
spin parameter of the BH and hence it will open a way to measure it
[209]. Waisberg et al. [210] determined what are the parameters of a
potential new star needed to detect the Lense-Thirring precession and
those requirements are expected to be fulfilled by GRAVITY+.
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3
G E O D E S I C S A N D Q UA S I N O R M A L M O D E S O F A
T I D A L LY P E RT U R B E D B L A C K H O L E

In this Chapter the effect of a tidal perturber placed in the Schwarzschild
geometry is investigated.

Tidal interactions play a fundamental role in many astrophysical
systems. The best known example are the oceans tides in the Earth-
Moon system, which drive tidal acceleration and longer days, but their
effects are ubiquitous in astrophysics. In the context of GW astronomy,
of tests of fundamental physics and of strong-field gravity, tidal effects
are precious. In a compact binary emitting GWs, tidal deformations
induced by the companion affect the GW phase. The amount of the de-
phasing (relative to that of pointlike objects) correlates to the equation
of state of the inspiralling bodies, hence a precise monitoring of the
GW phase evolution can teach us about the equation of state of NS

binaries [211–213]. BHs have a particularly simple equation of state,
owing to the uniqueness properties in vacuum GR [214, 215]. Hence,
the tidal interactions of compact objects are particularly useful to test
the Kerr nature of BHs [124, 216, 217].

Previous studies explored the potential of tidal interactions to con-
strain the presence of a possible massive companion to the SgrA*

source [218]. Specifically, data collected by the GRAVITY collabora-
tion [166, 219] on the orbital motion of the star S2 was used to constrain
possible orbital parameters of such a companion. It was also shown
that a putative companion may give rise to GW emission potentially
detectable with the future space-based interferometer LISA.

The effect of tidal fields in Newtonian orbits is, of course, well stud-
ied, specially in the restricted three-body problem (see e.g. Refs [220,
221] and references therein).

The aim of this work is to understand the effects of weak tides
in the strong-field region and provide simple analytical results. We
are particularly interested on the effect of tides on the location and
properties of the innermost stable circular orbit (ISCO), and of the
photonsphere. As will be shown in the following, these dictate the
high-energy behavior of accretion disks and the relaxation properties
of BHs [222–225], and so can be useful smoking-guns of companions.
Driven by similar motivations, this problem was studied recently,
albeit in less realistic setups. The position of the ISCO was studied

24
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in a spacetime describing a binary of extremal charged BHs, in par-
ticular the Majumdar-Papapetrou dihole spacetime [226, 227]. The
photonsphere of binary BH spacetimes may help in understanding
the relaxation or ringdown stage of binaries themselves or hold the
key to understanding how the individual components quasinormal
ringdown is affected by the companion. For this reason, it has been the
subject of recent studies [228–230]. These spacetimes include, naturally,
tidal effects, but their effects have mostly been studied numerically.
The aim of this work is to provide simple analytical results of strong
field phenomena.

This chapter is divided as follows: in Sec. 3.1 a metric describing
a tidally perturbed Schwarzschild BH is presented, with a brief intro-
duction about BH perturbation theory. In Sec. 3.2 the specific case of
companions fixed at the BH pole is considered. This implies a conser-
vation of the axial symmetry which allowed to compute the analytic
expression for the fundamental orbits, ISCO and LR (3.2.1), as well as
the quasi-normal modes (QNMs) spectrum (3.2.2). In Sec. 3.3 equatorial
companions are studied. Here, the axisymmetry is broken, and ana-
lytical results are hard to obtain. Hence, null geodesics (3.3.1), static
orbits (3.3.2) and circular timelike geodesics disturbed by the advent of
a companion coming from infinity (3.3.3) are all studied numerically.

3.1 setup : a black hole perturbed by a companion

Consider a non-spinning BH of mass M, perturbed by a companion of
mass Mc at a distance R. For far-away companions, the tide is weak
and one can expand the geometry around its Schwarzschild value,

gµν = gSch
µν + ϵ hµν , (3.1)

where ϵ represents the strength of the tidal perturbation, assumed to
be small (ϵ ≪ 1).

Gravitational perturbation on Schwarzschild background were firstly
studied by Regge and Wheeler for polar (or even) perturbation [231]
and a few years later by Zerilli, for axial (or odd) perturbation [232].
The different classification reflects how the perturbation hµν behaves
under the parity transformation (θ, ϕ) → (π − θ, π − ϕ).

Regge-Wheeler formalism is based on the separation of variables:
each component of the metric hµν can be expressed as spherical har-
monic functions, that now take the name of "Regge-Wheeler spherical
harmonics" and for spin 0 are defined as

Yℓm(θ, ϕ) =
ℓ

∑
m=−ℓ

√
2ℓ+ 1

4π

(ℓ− m)!
(ℓ+ m)!

Pm
ℓ (cos θ) eimϕ , (3.2)

multiplied by a general unknown function of t and r. Specifically, since
they focused on static perturbation, the time dependence of the metric
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perturbation can be expressed as an oscillatory function e−iωt. In their
work, Regge and Wheeler used a gauge choice such that the four
components of hµν that involve angular derivatives of higher order
can be set to zero.

The remaining equations for the radial functions result, in both
Regge-Wheeler and Zerilli case, in a single Schröedinger-like master
equation that in vacuum reads(

d
dr∗

+ ω2 − VZ/RW

)
ΨZ/RW = 0 (3.3)

where the "tortoise coordinate" r∗ is defined as dr∗/dr = 1/(1− 2M/r)
and the effective potentials are

VRW =

(
1 − 2M

r

) [
ℓ(ℓ+ 1)

r2 − 6M
r3

]
(3.4)

for the axial sector and

VZ =
2
r3

(
1 − 2M

r

)
9M3 + 3λ2Mr2 + λ2(1 + λ)r3 + 9M2λr

(3M + λr)2 (3.5)

for the polar sector, having defined λ = (ℓ− 1)(ℓ+ 2)/2. The master
function ΨZ/RW is instead related with the radial functions describing
hµν.

In this work only the polar sector will be considered, which, follow-
ing Regge and Wheeler approach and using the gauge they defined in
Ref. [231], can be written as:

hpolar
µν =


f Hℓm

0 Hℓm
1 0 0

Hℓm
1 f−1Hℓm

2 0 0

0 0 r2Kℓm 0

0 0 0 r2 sin2 θKℓm

Yℓm (3.6)

where Hℓm
i = Hℓm

i (t, r), Kℓm = Kℓm(t, r), Yℓm = Yℓm(θ, ϕ) and

f = f (r) =
(

1 − 2M
r

)
. (3.7)

To continue, consider a companion far away, such that the orbital
timescale is larger than any other scale in the problem and much
larger than the timescale of the internal dynamics of the body. In this
regime, one can focus on static perturbations and hence neglect the
time dependence of the metric functions.

The vacuum Einstein’s field equations for the spacetime in Eq. (3.1)
provide equations for the metric functions H0(r), H1(r), H2(r), K(r),
that should be solved demanding regularity at the horizon. We will
mostly focus on quadrupolar modes (i.e., with ℓ = 2), but the analysis
can be easily extended to higher modes. The tr and θθ components of
the field equations result in

H1 = 0 , H2 = H0 . (3.8)
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The solution for H2 which is regular across the horizon r = 2M for
ℓ = 2 is given by

H2 = c1
3 (2M − r) r

M2 = −3 c1

M2 r2 f (r) , (3.9)

where c1 is an integration constant that must be determined by study-
ing the asymptotic behaviour of the metric (3.1) in the presence of an
external tidal field. This can be done using the definition of multipole
moments developed by Thorne [233, 234].

The effects of an external tidal field are entirely encoded in two
symmetric and trace-free tensors: the polar tidal field EL and the
axial tidal field BL. The polar tidal field can be expanded in spherical
harmonics as ELxL = rℓ ∑m EℓmYℓm(θc, ϕc), where θc and ϕc are the
angular coordinates of the companion in the BH sky [235].

In the most general case, the asymptotic expansion of the metric will
depend on the angular index m. Since in this case it is only needed
to find the value of the constant c1, one can fix m = 0 without loss of
generality and the metric expansion reads

gtt =− 1 +
2M

r
+ ∑

ℓ≥2

(
2

rℓ+1

[√
4π

2ℓ+ 1
MℓYℓ0 + (ℓ′ < ℓpole)

]

− 2
ℓ(ℓ− 1)

rℓ[EℓYℓ0 + (ℓ′ < ℓpole)]
)

,

(3.10)

where Mℓ are the mass multipole moments.
If one considers the dominant quadrupolar contribution with ℓ = 2,

one can match Eq. (3.10) with the tt-component of Eq. (3.1), and find

c1 =
M2 E2

3
, (3.11)

with the explicit value of the tidal moment E2 still to be determined.
This can be done matching the full metric (3.1) with a Post Newtonian
(PN) description of the external spacetime [235, 236]. Parameters cho-
sen in this work are always assumed to be such that the system can
be captured by a PN description.

The gtt component in the PN approximation is [236]:

gPN
tt = −1 + 2U(r, θ, ϕ) . (3.12)

Assuming the companion is a PN monopole of mass Mc and centering
ourselves in the BH frame, the potential can be written as

U =
M
r
+

Mc

|r − R|

=
M
r
+ Mc ∑

ℓm

4π

2ℓ+ 1
rℓ

Rℓ+1 Y∗
ℓm(θc, ϕc)Yℓm(θ, ϕ). (3.13)
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Finally, for ℓ = 2, it becomes

gPN
tt = −1 +

2M
r

+
8πMc

5
r2

R3 ∑
m

Y∗
2m(θc, ϕc)Y2m(θ, ϕ) , (3.14)

and comparing (3.14) with the gtt component of the perturbed metric
one finds that

E2 = −8πMc

5R3 ∑
m

Y∗
2m(θc, ϕc) = − 8πϵ

5M2 ∑
m

Y∗
2m(θc, ϕc) , (3.15)

where in the last step the strength of the tidal deformation has been
defined as

ϵ =
M2Mc

R3 . (3.16)

Eq. (3.15) agrees with the expression for E2 in Ref. [237]. The metric
functions in (3.6) are now completely determined and they read:

H0(r) = H2(r) =
8πϵ

5M2 r2 f (r)∑
m

Y∗
2m(θc, ϕc) , (3.17)

K(r) =
8πϵ

5M2

(
r2 − 2M2)∑

m
Y∗

2m(θc, ϕc) . (3.18)

For completeness, we report that the master function in Eq. (3.3) can
be expressed in terms of the metric functions (3.17)-(3.18) as

ΨZ =
r

λ + 1

[
K(r) +

1 − 2M/r
λ + 3M/r

(H2(r)− r∂rK(r))
]

. (3.19)

3.2 polar companions

We will specialize our calculations to two specific setups, where the
orbits lie in the BH-companion plane or orthogonal to it. Equivalently,
and this is the approach we follow, we restrict to equatorial orbits, and
place the companion either at the equator or at the pole.

We start with the latter case, imposing the angular coordinates of
the companion to be θc = 0, ϕc = 0, which preserves the azimuthal
symmetry of the BH.

3.2.1 ISCO and light ring properties

The four components of the metric with ℓ = 2 on the equatorial plane
are:

gpolar
tt = − f (r)

[
1 + f (r)

r2 ϵ

M2

]
, (3.20)

gpolar
rr = g(r)− r2 ϵ

M2 , (3.21)

gpolar
θθ = gpolar

ϕϕ = r2
[

1 − (r2 − 2M2)

M2 ϵ

]
. (3.22)
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In the equatorial plane, the Lagrangian is found to be

2L = gpolar
tt ṫ2 + gpolar

rr ṙ2 + gpolar
ϕϕ ϕ̇2 , (3.23)

with dots standing for derivatives with respect to the proper time
along the geodesic. The Lagrangian is time and azimuth independent,
giving rise to two conserved quantities, specific energy E and angular
momentum L, such that one can express the quadrivelocities in terms
of these constants of motion,

ṫ =
E

f (r)(1 + ϵ f r2/M2)
, (3.24)

ϕ̇ =
L

r2(1 + (2 − r2/M2) ϵ)
. (3.25)

The equations of motion are easier to handle via an effective radial
potential, which can be obtained substituting (3.24)-(3.25) in the nor-
malization for the quadrivelocity

gµν uµuν = δ , (3.26)

where δ = 0,−1 for null and timelike geodesics, respectively. One
finds,

ṙ2 = E2 − Vδ(r) , (3.27)

where

Vδ(r) =
L2 (2M − r)

(
2Mrϵ − 2r2ϵ + M2(2ϵ − 1)

)
M2r3

+ δ
(2M − r) (M2 − 2Mrϵ + r2ϵ)

M2r
. (3.28)

To understand the ISCO properties, one can expand all relevant
quantities in Eq. (3.28) to first order in ϵ, e.g., rISCO = r(0) + ϵ r(1), with
r(0) = 6M the unperturbed Schwarzschild BH value.

By definition, at the ISCO, E2 −V(δ=−1) = dV(δ=−1)/dr = d2V(δ=−1)/dr2 =

0. One finds

rISCO = 6M(1 − 256ϵ) , (3.29)

EISCO =
2
√

2
3

(1 + 38ϵ) , (3.30)

LISCO = 2
√

3M(1 + 7ϵ) , (3.31)

ΩISCO =
1 + 491ϵ

6
√

6 M
. (3.32)

Note that ΩISCO is simply ϕ̇/ṫ evaluated at the ISCO, and it is the
angular velocity as measured by far away observers.

High frequency photons or gravitons are well described by null
geodesics. Among those, there is one that stands out: a close null
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Numerical results

ϵ r/M E L/M

10−7 5.9998 0.94281 3.4641

10−6 5.9985 0.94284 3.4644

10−5 5.9849 0.94317 3.4671

10−4 5.8657 0.94633 3.4932

Table 3.1: Numerical results for the ISCO properties of a tidally deformed
BH spacetime. The analytical results (3.29)-(3.32) agree with these
values up to the last digit.

geodesic which for non-rotating, isolated BHs is located at r = 3M and
defines the LR or, more broadly, a photosphere. In the presence of a
polar companion, one finds

rLR = 3M(1 + 5ϵ) , (3.33)

bLR = 3
√

3M(1 − 5ϵ)M , (3.34)

ΩLR =
1 + 5 ϵ

3
√

3 M
. (3.35)

where b = L/E is the impact parameter.
These analytical estimates can be compared to a numerical solution

of the geodesic equations. Those results are shown in Table 3.1 for
some selected values of ϵ. The perturbative analytical results agree
with these numbers to all digits listed. These results can be compared
and contrasted to those referring to an extremally-charged BH binary,
the Majumdar-Papapetrou geometry. This is done in Appendix A.

3.2.2 The relaxation of tidally perturbed black holes: light ring modes and
quasinormal modes

Consider now fundamental fields in the BH vicinities, such as gravi-
tational or electromagnetic waves. As stated previously, the dynam-
ical evolution of the field in the simple Schwarzschild geometry is
described by Eq. (3.3). Chandrasekhar and Detweiler [238] found a
one-to-one mapping from polar perturbation to axial perturbations.
Specifically, for even parity there is a radial function that satifies
Eq. (3.3) with exactly the same effective potential as of odd parity.
Because the effective potential is the same, the spectrum of frequencies
ω is also identical in both cases, i.e., the two equations are isospec-
tral [238].

In order to find the spectrum of frequencies ω, one needs to impose
boundaries conditions on Eq. (3.3) at both infinity and at the event
horizon. Those reads:

Ψ = Aine−iω(t+r∗) for r∗ → 2M , (3.36)

Ψ = Aoute−iω(t−r∗) for r∗ → ∞ , (3.37)
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which correspond to purely ingoing waves at the horizon and purely
outgoing waves at infinity. Eq. (3.3) with boundary conditions (3.36)-
(3.37) was firstly solved numerically by Vishveshwara [239] and sub-
sequently in both numerical and quasi-analytical frameworks [238,
240–244].

The resulting spectrum is given by discrete, complex frequencies
ωnℓm = ωR + iωI , each for any mode number (ℓ, m) which are called
QNMs of the BH. The term "quasi" is needed to underline the dissipative
nature of the system, both at infinity and at the event horizon, which
results in having a damping time of the mode τI = ω−1

I . The index
n is the overtone number, with n = 0 representing the fundamental
mode, that usually dominates the ringdown signal of GWs.

A good description of the QNMs frequencies is obtained in the
eikonal limit, i.e., for modes with ℓ ≫ 1 [223, 245]. In this approx-
imation, the early time ringdown of a signal Ψ is an exponentially
damped sinusoid,

Ψ ∼ e−ωLR
I t sin ωLR

R t . (3.38)

Cardoso et al. [223] showed that both the real and the imaginary
part of the frequencies are dictated by the LR, that is, they can be
interpreted as high frequency waves trapped at the unstable null orbit.
Specifically,

ωR = ℓΩLR , (3.39)

where ΩLR is the angular frequency at the LR, and

ωI = −
(

n +
1
2

)
|λLR| , (3.40)

where λLR is the Lyapunov exponent defined as

λLR =

(
Vr(rLR)

′′

2ṫ2

)1/2

. (3.41)

The expression for the radial potential Vr can be taken from Eq. (3.28)
setting ϵ = δ = 0 and evaluating it at the LR. A complete derivation
of the Lyapunov exponent is provided in Appendix B. Despite being
formally valid only for ℓ ≫ 1, the above approximation gives excellent
predictions even for lower values of ℓ [246].

The discussion in Sec. 3.1 on gravitational perturbations can be
naturally extended to any other kind of perturbation. In this Chapter,
we will focus on scalar (s = 0) perturbation. The dynamics of the
scalar field is described by the Klein Gordon equation:

□φ =
1√−g

∂µ

(
gµν
√
−g ∂ν φ

)
= 0 , (3.42)
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with g = det gµν. In the Schwarzschild case, the spacetime admits two
Killing vectors ∂t and ∂ϕ, and one can use the following anzats for the
scalar field:

φ(t, r, θ, ϕ) = ei(mϕ−ωt) ψℓ(r)
r

Yℓm(θ) . (3.43)

Substituting (3.43) into Eq. (3.42) one gets a radial wave equation as
in (3.3) with an effective potential:

Vs = f
[
ℓ(ℓ+ 1)

r2 +
f ′

r

]
, (3.44)

where the prime represents a derivative with respect to the radial
coordinate.

In general, the time evolution of the system is characterized by a
prompt signal, followed by a ringdown which is caused by the "leaky"
boundary conditions at the boundaries. In particular, the LR controls
the early-time relaxation of BHs via Eqs. (3.39)-(3.40), whereas the late-
time ringdown is dictated by boundary conditions (3.36)-(3.37) [124,
223, 224, 245, 247]. For isolated BHs, these two decays coincide and the
dynamical properties of BHs are relatively simple.

When new structure is added, such as a change of boundary con-
ditions at large distances or in the near-horizon region, new features
appear. In case of a tidally perturbed BH, two stages in the dynamical
evolution of fundamental massless fields are expected. Indeed, there is
evidence in the literature for such distinctive behavior [229]. Consider,
first, the LR relaxation.

Here, the ringdown frequency ωLR
R and the damping rate ωLR

I are
given by the angular frequency in Eq. (3.35) and the Lyapunov expo-
nent defined in Eq. (3.41), respectively.

For ℓ = m = 2 those result in

MωR =
2 (1 + 5 ϵ)

3
√

3
, MωI =

(
n +

1
2

)
1 − 10 ϵ

3
√

3
. (3.45)

We thus have a clear prediction for the changes in the early ringdown
of GWs, induced by a companion.

Now, as we mentioned, the late time behavior of the GW signal is
sensitive to the entire geometry and not only to the local properties
around the LR. In order to assess the QNM spectrum one needs to solve
the dynamics. To understand the possible changes, we focus on the
relatively simpler problem of a massless scalar field propagating on a
fixed, background geometry whose components are given by (3.20)-
(3.21)-(3.22).

Since the spacetime keeps its spherical symmetry in this config-
uration, one can still use the ansatz (3.43) to solve Eq. (3.42) with
gµν = gpolar

µν . Doing so, one gets a system of differential equations that
are not separable anymore. Following Ref. [248], one can solve the
problem expanding the box operator in Eq. (3.42) at first order in ϵ:

□ = □(0) + ϵ□(1) , (3.46)
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Figure 3.1: Real (left panel) and imaginary (right panel) part of the frequen-
cies for different values of the "cutoff point" rc in the function
H(r). In this case ϵ = 10−4, k = 100, and ℓ = m = 10. The dashed
line represents the Schwarzschild frequency (not shown in the
right panel since its value |MωI |Sch ≃ 0.09 is out of the range
chosen).
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Figure 3.2: Real (left panel) and imaginary (right panel) part of the frequen-
cies for different values of the "cutoff point" rc in the function
H(r). In this case ϵ = 10−4, k = 2 and ℓ = m = 10. The dashed
line represents the Schwarzschild frequency (not shown in the
right panel since its value |MωI |Sch ≃ 0.09 is out of the range
chosen).

taking into account that the zeroth order part is separable while the
non-separable terms come only from the perturbative correction to the
metric. The explicit form of the operator is

□(0)φm,ω(r, θ) =
1
r2 ∂r (r(r − 2M)∂r φ)

+
1

r2 sin θ
∂θ (sin θ ∂θ φ) +

[
r ω2

r − 2M
− m2

r2 sin2 θ

]
φ , (3.47)

2M2

1 + 3 cos 2θ
□(1)φm,ω(r, θ) =

2M2 − r2

r2 cot θ∂θ φ

+
2M2 − r2

r2 ∂2
θ φ − 2(r − 2M)2

r
∂r φ − (r − 2M)2∂2

r φ

+

(
r2ω2 +

(r2 − 2M2)

r2 sin2 θ
m2
)

φ . (3.48)
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Since the zeroth-order solution for a given ℓ0 is φ(r, θ) = ψℓ0(r)/r Yℓ0m(θ),
it is possible and consistent to assume that any term with ℓ ̸= ℓ0 comes
from the perturbative correction. Hence, the solution can be expanded
such as,

φm,ω(r, θ) =
ψℓ0(r)

r
Yℓ0m(θ) + ϵ ∑

ℓ ̸=ℓ0

ψℓ(r)

r
Yℓm(θ) . (3.49)

Applying the operator in (3.46) to the solution (3.49) and neglecting
terms O(ϵ2) one gets:

□(0)

[
ψℓ0(r)

r
Yℓ0m(θ)

]
+ ϵ ∑

ℓ ̸=ℓ0

□(0)

[
Yℓm(θ)

ψℓ(r)

r

]
+

+ϵ□(1)

[
ψℓ0(r)

r
Yℓ0m(θ)

]
+O(ϵ2) = 0 . (3.50)

Projecting Eq. (3.50) onto Yℓ0m(θ) results in having a single radial
equation that can be solved numerically to find the QNM frequencies:(

□(0) − ℓ(ℓ+ 1)
) ψℓ0(r)

r

+ ϵ
∫ π

0
□(1)

[
ψℓ0(r)

r
Yℓ0m(θ)

]
Yℓ0m(θ)dθ = 0 . (3.51)

The asymptotic behavior of the solutions of the above equation are as
follows,

ψℓ0 ∼ (r − 2M)2Miω , r → 2M , (3.52)

ψℓ0 ∼ e±ωr , r → ∞ . (3.53)

The boundary condition at the horizon is similar to that of isolated
BHs in Eq. (3.36) [244]. However, the boundary behavior at large
spatial distances, imposed by the equations of motion, are completely
different from those of an asymptotically flat spacetime (cfr. Eq. (3.37)).
Indeed, the metric perturbation of the tidally perturbed BH considered
in this work is not asymptotically flat since the diverging piece of the
metric perturbation is used to impose the presence of a companion far
away.

In a complete setup, the companion is at finite distance and the
spacetime is still flat at spatial infinity. In other words, this description
of the binary system is only accurate for distances r ≲ R.

The boundary conditions imposed on us within this setup are simi-
lar to those of asymptotically anti-de Sitter or other spacetimes where
radiation is confined [244, 249]. Accordingly, the confining nature of
the tidal perturbations indicates that one will find a QNM spectrum
which differs substantially from that of a single Schwarzschild BH,
reflecting the fact that perturbations should be less damped as the
only dissipation channel is now the event horizon.
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Thus, the unacceptable behavior at large spatial distances must be
fixed. This will be done without entering the challenge of matched
asymptotic expansions to correctly reproduce the geometry every-
where [229]. Instead, one can simply “cutoff” the tidal effects with an
auxiliary function, which is rather arbitrarily chosen to have the form
H(r) = 1/1 + e2k(r−rc). In other words, the regularization procedure
consists on the replacement

ϵ → ϵ

1 + e2k(r−rc)
, (3.54)

since the ϵ terms are precisely the ones responsible for the divergence
at infinity. In general, results will depend on the smoothness parameter
k and the cutoff point rc. It seems reasonable to ask that rc ∼ R, whereas
k is at least of the order Mc to describe a smooth transition.

Figures 3.1-3.2 show the QNMs for three different values of the cutoff
radius rc/M = 60, 70, 80 and k = 100 (Fig. 3.1) or k = 2 (Fig. 3.2).
Notice that what is shown are the first overtones.

Since the idea is to compare with the eikonal limit, we fix ℓ = m =

10. The tidal parameter is set to ϵ = 10−4, but results for other ϵ are
similar.

As already anticipated, the most salient feature of Figs. 3.1-3.2 is that
the QNM spectrum of a tidally deformed BH is completely different
from that of an isolated BH. Despite our curing the asymptotic behavior
artificially, remains of this behavior remain in the perturbation via
the existence of quasi-bound states. For example, for a perturbation
parameter ϵ = 10−4, one could expect a correspondingly small change
in the QNM spectrum. However, as can be seen in the plots, the QNM

frequencies change by O(1).
These features were seen in the past [124, 224, 250, 251] and are

connected with the asymptotic properties of the effective potential for
wave propagation (and of the corresponding solutions). In fact, the
tidal effects act to create a long-distance "well" that traps low frequency
radiation. This explains why the damping of the lowest modes (see
right panels in Figs. 3.1-3.2) is so much lower than the isolated-BH

counterpart. Once the vibration frequency ωR is sufficiently large for
fluctuations to tunnel out through the LR, ωR ≃ ωSch

R [223], a new
channel for dissipation is open, and the damping timescale decreases.

Numerical results are well described by a real component

ωR ≈ ω
(0)
R + α n , n = 0, 1, 2... (3.55)

where the offset ω
(0)
R corresponds to the fundamental mode n = 0

of this system, and α is a constant, which decreases increasing rc

and it is independent (or only weakly dependent) on ϵ. Our results
indicate a very weak dependence of ω

(0)
R on rc and ϵ. At very small

ϵ the Schwarzschild fundamental QNM is recovered, but it does not
correspond necessarily to the fundamental mode of this perturbed
spacetime.
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This is the spectrum characteristic of a confined system and differs
markedly from that of an isolated BH, for which the (real part) of
the QNM frequencies asymptote to a constant [244]. For k = 100,
α = 0.44, 0.39, 0.35 for rc/M = 60, 70, 80 respectively, while for k = 2,
α = 0.52, 0.48, 0.41.

Regarding the imaginary part of the QNM frequencies, the funda-
mental mode are well described by

Mω
(0)
I ≈ 3M

5 rc ϵ1/8 . (3.56)

As already stressed, these results are sensitive to the cutoff function
and radius chosen. For this reason, we have also investigated the aux-
iliary function H(r) = Θ(rc − r), with Θ being the Heaviside function.
In this case there is no explicit dependence on r and k as in (3.54)
and nevertheless the QNM spectrum shows the same qualitative be-
haviour as in Figs. 3.1-3.2. Although the numerical values are slightly
different, the overall structure is the same, with real frequencies below
the Schwarzschild fundamental mode. Also the transition in the spec-
trum at ωR ≃ ωSch

R is recovered, as before. This lends strength to the
claim that Figs. 3.1-3.2 represent a good qualitative description of the
spectrum.

In conclusion, there are two different stages to consider in the
relaxation of binaries [229]. The first one is associated with a prompt
ringdown phase and the local properties of the BHs LR, which are
affected by the presence of the companion via Eqs. (3.45). This is
a local property of the spacetime and hence is not affected by the
asymptotic structure at infinity.

The second one is associated with the late time decay of the field
which instead strongly depends on the global properties of the space-
time and that can be captured solving Eq. (3.51). Although it is im-
possible for the naive cutoff procedure to fully capture all the physics,
the structure of the spectrum confirms that there is a very different
late-time relaxation induced by the different scales in the problem.
These features have already been seen in the numerical studies of
Ref. [229].

3.3 equatorial companions

The analysis is now specialized to equatorial companions, for which
θc = π/2. Without loss of generality one can impose ϕc = 0. The
presence of the companion, which is still assumed to be at rest, breaks
the axisymmetry of the metric. As a consequence, the orbits that now
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lie on the BH-companion plane, have an explicit dependence on the
azimuthal angle. For ℓ = 2, the metric components read:

geq
tt =

f (r)
2M2

[
−2M2 + f (r) r2ϵ (1 + 3 cos 2ϕ)

]
, (3.57)

geq
rr =

g(r)
2M2

[
2M2 − 2Mrϵ + r2ϵ + 3r(r − 2M)ϵ cos 2ϕ

]
, (3.58)

geq
θθ = geq

ϕϕ

=
r2

2M2

[
2M2(1 − ϵ) + r2ϵ + 3(r2 − 2M2)ϵ cos 2ϕ

]
. (3.59)

3.3.1 Null geodesics

Due to the non-axisymmetry of the spacetime, solving geodesic motion
analytically is challenging. Instead, one can perform a numerical
integration of geodesic equations and find the best fit values for the
motion’s parameters. Consider first null geodesics and the "shape"
of closed null orbits. To calculate these, the geodesic equations are
integrated subjected to initial conditions given by,

xα
0 = (0, r0, π/2, 0) , uα

0 =
(

uϕ
0 /s, 0, 0, uϕ

0

)
, (3.60)

where s =
√
−gtt(r0, π/2, 0)/gϕϕ(r0, π/2, 0). These conditions ensure

that the integration is performed for a null particle. Varying the affine
parameter τ in an interval [0, Υ] one can fine-tune the value r0 ∼ 3M
such that the orbit closes in the same interval. The period (in proper
or affine time) Υ is roughly given by ∼ 2π/uϕ

0 .

Figure 3.3: Graphic representation of the closed null orbit in Eq. (3.64) (solid
line) when the companion is fixed at the equator. The dashed
circle represents the LR in the Schwarzschild spacetime. Not in
scale.

Our results show an interesting, perhaps expected feature (cf. Fig. 3.3):
the null geodesic is no longer circular, but there are closed null orbits,
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ϵ 3 − rnum
0 /M 3 − ran

0 /M

10−6 1.2 × 10−5 1.2 × 10−5

10−5 1.2 × 10−4 1.2 × 10−4

10−4 1.2 × 10−3 1.2 × 10−3

10−3 1.2 × 10−2 1.2 × 10−2

Table 3.2: Coordinate value of r0 at θ = π/2, ϕ = 0 for which the null
geodesic is closed. Both the numerical result rnum

0 and the ana-
lytical prediction ran

0 given in Eq. (3.64) and valid for small ϵ are
represented.

which are elliptical. In fact, one can describe them analytically at small
ϵ, looking for an expansion with the functional form

r(ϕ) = 3M − ϵ(x0 + A cos 2ϕ(τ))M , (3.61)

ϕ(τ) = (c1 + ϵc2)
τ

M
, (3.62)

t(τ) = t0τ + ϵ(t1 + B sin 2ϕ(τ))M . (3.63)

The geodesic equations, together with the normalization for quadri-
velocities, yield the solution

r(ϕ) = 3M − ϵ

(
15
2

+
9
2

cos 2ϕ(τ)

)
M , (3.64)

t(τ) = t0τ +
45
√

3
4

ϵ sin 2ϕ(τ)M , (3.65)

ϕ(τ) = t0

(
1

3
√

3
− 5

6
√

3
ϵ

)
τ

M
, (3.66)

where t0 is a scale-factor of the affine parameter τ, which has no
influence on observables. Table 3.2 reports the values of r0 (at ϕ = 0)
obtained via numerical integration and the analytical prediction of
Eq. (3.64).

Once the radial solution in Eq.(3.64) is known, one can find the
parameters of the ellipse in terms of ϵ. Namely, a = (3 − 3ϵ)M and
b = (3 − 12ϵ)M are the semi-major and semi-minor axes respectively,

while the eccentricity is given by e =
√

6ϵ
1−4ϵ . Imposing ϕ(Υ) = 2π,

one can find the period of the orbit, which in the t-coordinate is

T = t(Υ) = 3
√

3π(2 + 5ϵ) M . (3.67)

3.3.2 Timelike geodesics: particles at rest

The spacetime described by Eqs. (3.57)-(3.59) seems to admit new
types of motion. We also find new results concerning static particles,
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Figure 3.4: Orbital radius of a particle, as function of proper time τ. The parti-
cle is placed initially on a circular trajectory of radius ri = 6.01M
(left panel) and ri = 6.10M (right panel) and perturbed by a
companion such that ϵ(τ) = R0/(1 − e−λ(τ+δ)), with λ = 10−4,
δ = 10−4, R0 = 200M. The inset shows the behaviour of the radial
coordinate on shorter timescales for ri/M = 6.01, 6.10. Oscilla-
tions with periodicity ∼ 45 M can be seen, which correspond to
orbital periods ∼ 90 M in the (r, ϕ)- plane, in accordance with
Fig. 3.5 and Table 3.4. Note that at early times there are some
gaps in the oscillatory behaviour. These gaps are due to a mere
technical problem in drawing the plots and have no physical
meaning.

ϵ rnum
s /M ran

s /M

10−6 80.037 79.713

10−5 37.507 37.195

10−4 17.766 17.479

10−3 8.604 8.372

Table 3.3: Location rs where static equilibrium of particles in a tidally de-
formed BH spacetime is possible. Numerical values are denoted
rnum

s and can be compared against the analytical prediction ran
s of

Eq. (3.69).

i.e., orbits which satisfy ṙ = ϕ̇ = 0. At τ = 0, we set initial conditions
ϕ = 0, r = rs and the radial motion is governed by

ṙ2 = E2 + (2M − rs)

(
1
rs

− 2(rs − 2M)ϵ

M2

)
. (3.68)

Solving ṙ = r̈ = 0, one finds:

rs =

(
2
3
+

1
(2ϵ)1/3

)
M +O(ϵ) , (3.69)

E2 = 1 +O(ϵ) . (3.70)

Estimates in Eq. (3.69) can be tested solving numerically the geodesic

equations imposing ut
0 =

√
−1/geq

tt (rs, π/2, 0) as initial condition.
Table 3.3 reports the results obtained with these two approaches, with
an overall good agreement.

The result in Eq. (3.69) is also in agreement with a Newtonian
solution of the problem [252, 253]. Consider a binary system with
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masses M and Mc separated by a distance R. Let a test particle with
mass µ be located at distance r from the primary mass M. The test
particle will be at rest if the gravitational force exerted by the primary
mass is compensated by the tidal force exerted by the secondary mass
on the primary. Namely,

Mµ

r2 =
Mcµ

(R − r)2 − Mcµ

R2 ≃ 2Mcµr
R3 , (3.71)

where one can exploit the fact that r/R ≪ 1. Solving this equation for
r one finds:

r = R
(

M
2Mc

)1/3

, (3.72)

which is proportional to the value of rs in (3.69) if one substitutes in it
the definition of ϵ given by Eq. (3.16).

3.3.3 Timelike geodesics: disturbing circular motion

An analytical description of the ISCO is challenging to find in these non-
symmetric setups. Without attempting to find an analytical solution
to this problem, it is interesting to show what happens when one
disturbs circular orbits by slowly lowering a companion coming from
infinity. This process could mimic for example the inspiral of a binary
and its effect of the disk of one of them.

To do so, a toy model of a time-dependent perturbation is used,
described by ϵ = M2Mc/R3 with R a time-dependent quantity,

R(τ) =
R0

1 − e−λ(τ+δ)
. (3.73)

This behavior is meant to describe the appearance of a companion
in a smooth way, so that one is able to study the transition from
no-companion to a tidally distorted BH. The results discussed below
are not dependent on δ, and converge to a universal behaviour for
small λ. We set δ = M2λ = 10−4M, so that initially the companion
is at R ∼ 108R0 and asymptotically approaches R = R0. We focus on
R0 = 200M.

The particle is initially placed at r = ri and perform a circular orbit,
i.e.,

uµ
0 =

(√
ri

ri − 3M
, 0, 0,

1
ri

√
M

ri − 3M

)
, (3.74)

and the geodesic equation is numerically integrated up to τ ∼ 10λ−1.
As the companion approaches its asymptotic location R0, the particle

is pulled to a slightly larger orbital radius, while the orbits become
slightly eccentric, as shown in Fig. 3.4. Assuming that the orbit is
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Figure 3.5: Orbits in the (r(τ)− ri, ϕ(τ)) plane for initial radii (from left to
right) ri/M = 6.01, 7, 10, 25 in a single period T. For graphical
reason in the first case the radial coordinate is obtained as r(τ)−
6.025M. In the last panel the blue line represents ∆rmin mentioned
in the main text.

elliptic, one can extract the local maximum and minimum values of
the radial coordinate to compute an eccentricity-like quantity

e =
√

1 − (rmin/rmax)2 , (3.75)

as well as its period T. Specifically, these quantities are evaluated for a
single period T and extracted when the companion is almost steady,
so at late times. Results are reported in Table 3.4. Note that T is to
a good precision the orbital period of a particle in circular motion,
given by Kepler’s law. Not surprisingly, e increases as the particle
moves away from the BH and get closer to the companion. Specifically,
it scales as

e ∝
( ri

M

)1.78
. (3.76)

In fact, the motion is not really eccentric in these coordinates. For
large ri, the motion acquires a peanut-like shape, as shown in Fig. 3.5.
If one takes the ϕ = 0 direction as the apoapsis rmin direction, then
deviations from a perfect elliptic shape are of order ∆rmin/rmin ∼
10−3 (blue line in the last panel of Figure 3.5). As a consequence,
the eccentricity-like parameter e can still be considered an adequate
measure of deviation from circularity.

Likewise, both the period T and the shapes of the orbits in Figure
3.5 are unaffected by the change in the final position. The only relevant
difference is in the numerical values of rmin and rmax, as well as in
their ratio. Indeed, as expected, these values become larger (smaller) if
the companion is at R0/M = 100 (300). As a consequence, orbits have
a larger (smaller) value of the parameter e, though its scaling with ri
is still well described by Eq. (3.76). To be more precise, the exponent
is 1.71 for R0 = 300 M and 1.88 for R0 = 100 M.

The final position of the particle, due to the presence of a companion,
is dependent both on the strength of the perturbation and the initial
radius. Denoting by rfin the average value between rmin and rmax,
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ri/M T/M e

6.01 92 0.0055

6.05 95 0.0055

6.10 96 0.0057

6.50 104 0.0063

7 116 0.0074

8 142 0.0099

10 198 0.0148

15 363 0.0317

20 562 0.0522

25 786 0.0759

Table 3.4: Period T in time coordinate and eccentricity-like parameter
e =

√
1 − (rmin/rmax)2 of the orbits performed by a timelike par-

ticle starting with initial radius ri when the companion is slowly
approaching from infinity to R0 = 200M.

extracted when the companion is now steady, one finds that for radii
ri ≥ 10 M the displacement ∆r = rfin − ri is given by

∆r
ri

≈ A
( ri

M

)3
ϵ , (3.77)

with the constant A of order unity.

3.4 discussion

The understanding of accretion disks or of the orbital motion of
stars is a fundamental aspect in the interpretation of astrophysical
observations. In addition, the location and properties of the LR around
BHs are crucial in the understanding of the dynamics in the strong-
field regime. Thus, peculiarities in motion in deep strong-field regions
could indicate either new physics or simply the presence of an unseen
companion [218]. Motivated by this possibility, we studied the geodesic
motion of both null and timelike orbits when tidal perturbations
induced by an external companion are present.

There are several new features of tidally distorted BH geometries
relative to BHs in isolation. When the orbital plane is orthogonal to
that of the BH-companion, one is able to analytically quantify the
linear deviations in the characteristic orbits induced by the companion.
Specifically, with respect to the unperturbed configuration, the LR has
larger radius and orbital frequency, while the ISCO is located closer
to the BH and, consequently, has a larger angular frequency. In this
framework the QNM frequencies are also obtained for the ℓ = m = 2
modes, finding that the ringdown frequency (the damping rate) is
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shifted to a slightly larger (smaller) value with respect to that of a
Schwarzschild BH.

Instead, studying the late-time behaviour of the field showed that
the structure of the modes of such a geometry is noticeably different
from that of a single BH and is instead typical of confined systems.
These properties had already been observed previously [229]. How-
ever, in order to correctly capture all the physical properties of the
relaxation stage, it is necessary to construct a spacetime which cor-
rectly reproduces the asymptotic behaviour at infinity [229]. Further
investigations in this direction are left for future work.

On the other hand, when orbits lie in the same plane as that of
the BH-companion system, a numerical study is needed. It has been
shown that the LR is still a closed orbit but with an elliptical shape
characterized by eccentricity and axes proportional to ϵ (cfr. Fig. 3.3).
Timelike orbits displayed a similar behaviour but other effects took
place as well. The companion induces a relaxing of the orbit of point
particles, which moves toward larger radii and are tidally distorted as
seen in Fig. 3.5. The possibility for the spacetime to admit static orbits
was also explored and an expression for their initial radius rs was
found, in agreement with the Newtonian treatment of the problem.

Recently, this work has been extended to a more general setup
describing a binary in a tidal environment generated by a Kerr BH

by Camilloni et al. [254]. Their results generalise (and recover, in the
weak tidal field limit) the estimates found above for the photonsphere.



4
T H E L U M I N O S I T Y O F M AT T E R A C C R E T E D B Y A
S C H WA R Z S C H I L D B L A C K H O L E

In most of the physical processes involving BHs there is a notion of a
stationary “background” spacetime, on which “matter probes” move
and evolve. These setups are particularly appropriate at providing
detailed information of the geometry and underlying theory. In these
circumstances, the geometry is effectively fixed and can be inferred by
measuring accurately the motion of probes.

Examples are ubiquitous. The gravitational multipole moments of
the Earth, for example, can be determined in this way by studying the
motion of orbiting satellites [255–257].

In astrophysics, accretion flows around supermassive, otherwise
isolated BHs, can also be well described as flows on a fixed Kerr
background. The reason is simply that the matter content and density
outside the BH is so small that its backreaction can be neglected for all
practical purposes [215]. Thus, a fixed Kerr geometry is sufficient to
understand and study the physics associated with observations by the
EHT [15] or GRAVITY [166].

The appearance of BHs, when illuminated by external sources, such
as an accretion disk, is of course dictated by those photons reaching far-
away observers [258–263]. It is therefore no surprise that the separatrix
between photons escaping to infinity and those eventually plunging
into the BH horizon plays an important role in BH imaging.

In particular, photons sent in from large distances with a decreas-
ing impact parameter will be deflected with a larger angle, probing
stronger-gravity regions before being scattered to observers far-away.
Below a critical impact parameter, such photons simply fall onto the
BH. At the critical value of impact parameter, the photon circles the BH

an infinite number of times. These trajectories asymptote to a closed,
unstable, photon orbit, which we will call the LR. As we have seen in
the previous Chapter, for non-rotating BHs with mass M, it is located
at areal radius rLR = 3M.

The LR thus controls the amount of information that one can gather,
related to the BH geometry. But this fact concerns only matter external
to the LR itself. Here, we are interested in the appearance of luminous
matter as it falls down a BH.

44
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As mentioned in Chapter 2, such events seem to occur periodically
in the vicinities of the SgrA* source [116, 264]. Similar events were also
reported in the past in connection with the Cyg X-1 BH. In particular,
dying pulses from BH accretion were discussed in the context of Cyg
X-1, some years ago [265, 266]. The dynamical appearance of bright
sources was studied by Zeld’ovich and Novikov [267], Podurets [268],
and Ames and Thorne [269], but the analysis was based on a number of
approximations and restricted to spherically symmetric gravitational
collapse. Here, we investigate how a pointlike source, emitting GWs or
electromagnetic waves, fades out as it is accreted by a Schwarzschild
BH.

4.1 light-rings : the key to compact objects

Consider a non-spinning BH of mass M described in standard
Schwarzschild (t, r, θ, φ) coordinates

ds2 = − f dt2 + f−1dr2 + r2(dθ2 + sin2 θdφ2) , (4.1)

with f = 1 − 2M/r. Take high-frequency radiation (both electromag-
netic or GWs), which is described by null geodesics in this limit. The
motion of null particles in the Schwarzschild spacetime is given by

gµν
dxµ

dλ

dxν

dλ
= 0 , (4.2)

where λ is the affine parameter of the geodesic. Due to spherical
symmetry, one can set θ = π/2 (θ̇ = 0) and obtain the following
equations of motion:

ṫ =
E
f

,

φ̇ =
L
r2 ,

ṙ2 = E2
(

1 − f
b2

r2

)
≡ V ,

b =
L
E

,

(4.3)

where b is the impact parameter of the null particle, E and L are
conserved energy and angular momentum of the null particle, respec-
tively. Dots stand for derivative with respect to the affine parameter of
the geodesic λ.

The radial equation in (4.3) allows for a closed circular geodesic at
some r = rc. Circularity requires that

ṙ = r̈ = 0 , (4.4)

and one finds

b2 =
r2

c
f

,

rc f ′ − 2 f = 0 ,
(4.5)
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where the prime represents a derivative with respect to the radial
coordinate. In Schwarzschild spacetime, the solution is

rc = 3M , bcrit = 3
√

3M . (4.6)

This orbit has an angular frequency, measured by asymptotically far
observers, ΩLR ≡ dφ/dt = 1/(3

√
3M). Such coordinate position de-

fines, on the equatorial plane, a so-called LR. Since this is a spherically
symmetric spacetime, it defines more broadly a photon sphere. This
is the only closed null orbit outside the horizon and high-frequency
photons or GWs can be trapped at this location. However, as shown in
Appendix B, it is an unstable trapping, since any small perturbation δ

will grow exponentially as

δ ∼ eλLt , (4.7)

with λL = 1/(3
√

3M) = ΩLR. In other words, a null ray slightly
displaced off the light ring will orbit on a timescale t ∼ log δ/λL.
During this timescale, the null particle does a number of orbits

n ∼ Ωt
2π

= − log δ

2π
, (4.8)

close to the LR. For further details and refined estimates see Chan-
drasekhar’s classical work [238].

Due to the above trapping properties and critical impact parameter
for absorption onto a BH, LRs play a crucial role in our understanding
of BHs. As already mentioned, LRs are responsible for features of BH

imaging but they also dictate the stability of the spacetime [270, 271].
Moreover, the timescale reported in Eq. (4.7) dictates the "relax-

ation" stage of BHs, after they have been perturbed and vibrate at the
QNMs frequencies. In Chapter 3 it has been shown that the ringdown
stage can be interpret as high-frequency waves trapped at the LR that
fade out at infinity. The real part is determined by the LR frequency
ΩLR, while the imaginary one is related with the instability timescale,
namely how fast particles can escape form the LR [223, 240, 272].

In the following we will show that the LR also dictates the late-time
behaviour of the luminosity of sources falling into the BH, as observed
at infinity.

4.2 how do bright bodies fade out?

4.2.1 An outward-pointing beam

In order to understand how bright objects fade out when falling into
a BH, one can start with a single, collimated light source which free
falls from rest into a Schwarzschild BH, and points radially outward.
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In Schwarzschild coordinates, one finds the emitter four-velocity to
be

vµ
e =

dxµ
e

dτe
=

(
1
f

,−xe, 0, 0
)

, (4.9)

xe ≡
√

2M
re

. (4.10)

In these conditions, the position of the laser pointer as function of
proper time is

re = 2M
(
− 3τe

4M

)2/3

, (4.11)

and the coordinate time at the laser pointer position is given implicitly
by

dt
dτe

=
1
f
=

1
1 − 2M/re

. (4.12)

Assume that a photon is emitted at proper time τe with proper fre-
quency ωe = −(vµkµ)e, with kµ being the photon 4-momentum and
v the laser pointer four-velocity. The photon is observed when it in-
tersects the observer world-line, and it is observed with frequency
ωo = −(vµkµ)o. For a static observer at large distances from the BH,
the spacetime is flat and its four-velocity is vµ

o = (1, 0, 0, 0). Radial null
geodesics are described by the momentum

kµ = E
(

1
f

, 1, 0, 0
)

, kµ = E
(
−1,

1
f

, 0, 0
)

. (4.13)

and thus

ωo = ωe(1 − xe) . (4.14)

If one wants to compute the redshift as seen by a distant observer as
function of the time coordinate t, one needs to take into account that
the null particle is being emitted by a source which is getting closer
to the horizon, and which also needs time to reach the observer. An
outward-directed photon obeys

dttravel

dr
=

1
f

. (4.15)

Integrating the equation above allows to find the arrival time of the
null particle as measured by a far-away observer

to = te + (ro − re) + 2M log
ro − 2M
re − 2M

. (4.16)

Using Eqs. (4.14) and (4.16) one can obtain the behaviour of the emitter
when it is close to the BH by solving

dre

dte
= −

√
2M
re

fe , (4.17)
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for sources close to the horizon, re ∼ 2M.
We find that te ∼ −2M log(re − 2M) and substituting it in Eq. (4.16)

one gets re − 2M ∝ e−to/(4M), ωo ∼ re − 2M and thus a redshift

ωo ∼ e−to/(4M) , (4.18)

at late times. The total luminosity dEo/dto can be calculated in a
similar way. At late times it behaves as dEo/dto ∼ e−to/(2M).

Figures 4.1-4.2 show the numerical solution of this problem. An
emitter starts falling at ri = 30.65M and emits 20000 null particles, one
every (proper) time interval δτ = 4 × 10−3M. This corresponds to a
monochromatic source of frequency ωe = 2π/δτ. An observer located
at ro = 100M collects these photons. Our numerical results show that
at late times the frequency as measured by far-away observer decreases
exponentially as described by Eq. (4.14).

Note that the frequency measured by the observer at ro is always
redshifted. The luminosity, i.e., energy per second collected by this same
observer, measured in units of proper luminosity, is shown in Fig. 4.2.
At late times, it falls exponentially as just described.

4.2.2 An isotropically-emitting star

Most sources are not collimated and do not appear as laser beams. The
simplest object that can simulate a realistic source is a isotropically
emitting one. Assume this source emits in its rest frame with total
luminosity Le while it falls radially toward the BH. To compute the
observed luminosity at infinity, one needs to track any particle emitted.
Again, since the system is spherically symmetric, one can assume the
particle is on the equatorial plane θ = π/2 without loss of generality.

Null geodesics are characterized by their energy E and their angular
momentum L computed at infinity, that can be obtained from

pφ ≡ r2 φ̇ = L , (4.19)

−pt ≡ f ṫ = E , (4.20)

ṙ2 ≡ f (pr)
2 = E2 − f

L2

r2 . (4.21)

Those conserved quantities need to be related with observables in
the local free-falling frame of the particle, where they have energy ωe

and are emitted with an angle α with respect to the radial direction.
One finds the redshift and the impact parameter to be

ωo = ωe (1 + x cos α) , (4.22)

b ≡ L
E

= re
sin α

1 + x cos α
. (4.23)

A detailed calculation on how to obtain Eqs. (4.22)-(4.23) is reported
in Appendix C. One can study the infall of such a source shooting
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null particles uniformly distributed in α and collecting them at some
radius ro where the observer is located.

Those particles for which

b < bcrit = 3
√

3M , (4.24)

will fall into the BH and are not considered in the calculation.
Eqs. (4.22)-(4.23) can be solved for the redshift of particles with

b = bcrit. One finds

ωo

ωe
=

r3
e +

√
2M
√

r5
e − b2r2

e (re − 2M)

2Mb2 + r3
e

, (4.25)

The solution is shown in Fig. 4.3. It shows that as the star falls, radia-
tion with near-critical impact parameter is blueshifted for values of
around 1.2 − 1.3 for most of the fall (in particular, it is larger than 1.2
for 6.7M < re < 49M). The blueshift peaks at re = 12M and crosses
unit at re = b, i.e.,

ωo

ωe

∣∣∣∣
max

=
4
3

, r = 12M , (4.26)

ωo

ωe
= 1 , r = 3

√
3M , (4.27)

in agreement with previous results [273].
Now one can distribute 1600 particles uniformly in α and repro-

duce the same analysis of the laser beam. Our results are summa-
rized in Figs. 4.1-4.2. The first important aspect is that light from an
isotropically-emitting object (or other general source) reaches far-away
observers with a range of different redshifts as Fig. 4.1 shows. The
lower part of the region agrees very well with the collimated “beam”
curve, meaning that the most redshifted null rays are those emitted
radially.

On the other hand, blueshifted rays can also be produced during
infall. For example, a ray with a near-critical impact parameter can
be bent by π, i.e., it can make a U-turn and be reflected back. This
is similar to what was observed in Ref. [261], where they studied a
moving source and a mirror, and they found null rays to be blueshifted.
Note that as the critical impact parameter is approached, the rays linger
longer closer to the light ring, and take longer to reach the observer.

The redshift distribution discussed above and reported in Fig. 4.1
refers to particles collected in the whole sky, at fixed radial coordinate
ro = 100M. To understand what specific observers see, one can select
among all of the outgoing photons, those that reach the observer
with cos φ > 0.99 (which are labeled with “φ = 0”) and those with
cos φ < −0.99 (which are labeled with “φ = π”). The corresponding
distribution is shown in Fig. 4.4 for observers at ro = 100M. Observers
with “φ = 0” see the BH behind the star, and the three lie on the same
axis. Observers with “φ = π” see the star behind the BH.
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At early times, the former observer ("φ = 0") only sees radially-
moving particles because they reach the observer first. In terms of
actual observations, this initial stage will not be visible to an observer
at infinity, who only sees late-time phenomenology. After some time,
photons with near critical impact parameter have circled the BH and
can reach the observer too. Those photons will be blueshifted, leading
to a sort of "phase transition". The delay time of blueshifted particles
with respect to the first ones is ∆1t ∼ TLR/2 + 60M ∼ 76M, with
TLR/2 being the time it takes to circle the LR and come back in the
opposite direction.

On the other hand, an observer on the opposite side of the BH would
see the first null particles to be always blueshifted, since the observer
see a moving, approaching source, a time ∆2t ∼ 60M after the first
signal arrives at the φ = 0 observer. These estimates do not take into
account Shapiro delay, but the estimate ∆1 − ∆2 ∼ TLR/2 ∼ 16M
should be more reliable. All these features are apparent in Fig. 4.4.

The total luminosity L, which corresponds to the flux integrated
across sky, is shown in Fig. 4.2 and follows the same trend. Note that
due to the finite number of "photons" used in the numerical study, the
total luminosity shown in Fig. 4.2 is not smooth. The jagged features
carry no physical information and are purely a result of the numerical
method used to estimate the luminosity. We opted to "bin" 20 particles
at a time, explicitly checking that larger binnings produce smoother
luminosity functions, as it should. For realistic sources the true curve
is single-valued and smooth, while the numerical approximation is
thick and rough and approximates the real curve when the flux in the
rest-frame increases. At late times our results are consistent with a
decay L ∼ e−to/(3

√
3M).

4.2.3 An isotropic, scalar emitting body

Once the geometric optics limit is mastered, one can try to solve the
full problem of wave propagation on Schwarzschild background. To
do so, we consider a toy model representing a source with scalar
charge q emitting scalar waves. This results in having a Klein-Gordon
equation for massless scalar field sourced by the trace of the stress
energy tensor T describing a pointlike source with mass me, vibrating
at a (constant) proper frequency ωe. The source thus emits spherically
symmetric waves in its rest frame [274, 275] and it couples to the scalar
field though a scalar charge q,

□Ψ = q T sin (ωeτe(t)) . (4.28)

Denoting the worldline of the pointlike body by

zµ(τe) = (te(τe), re(τe), θe(τe), φe(τe)) , (4.29)
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Figure 4.1: Redshift of two different sources as they plunge radially into a
Schwarzschild BH, emitting null particles (e.g. photons, gravitons)
of fixed proper frequency ωe. The source, located in the equatorial
plane at θ = π/2, φ = 0 begins from rest at infinity, but (for nu-
merical purposes) starts emitting only when it crosses r = 30.65M.
Beam: this source emits only radially outwards. The observer is
located at ro = 100M, θ = π/2, φ = 0, and receives particles
whose frequency/energy decreases with time. At late times, the
frequency ωo measured by the observer decays exponentially
as ωo ∼ ωee−t/(4M), according to our analytic prediction (4.14).
Isotropic star: the second source is a pointlike “star” emitting
isotropically in its local rest frame. At a fixed instant, far-away ob-
servers distributed along the sphere at ro = 100M receive a wide
range of redshifts. The lower part of the curve is due to radially
propagating null particles, whereas the top part of the curve is
due to particles with a near critical impact parameter bc ≈ 3

√
3M

that linger close to the LR, which can be blueshifted [261].

the explicit form of the stress-energy tensor is

Tµν = me

∫ +∞

−∞

δ(4)(xα − z(τ)α)√−g
dzµ

dτ

dzν

dτ
dτ , (4.30)

where one can take me ≪ M. Since all results scale trivially with q and
me, both are set to 1 henceforth. The scalar star has non-zero angular
momentum Le and it is put along the equatorial plane, again with no
loss of generality due to spherical symmetry.

Its equations of motion are

dre

dt
= −

√
E2

e −
(

1 − 2M
re

)(
1 +

L2
e

r2
e

)
, (4.31)

dφe

dt
=

Le

Ee

1 − 2M/re

r2
e

. (4.32)
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Figure 4.2: Normalized luminosity (L = dE/dt) of the two different sources
discussed in Fig. 4.1. The observed luminosity of the radial beam
scales as L ∼ e−t/(2M) at late times, again in agreement with our
prediction. The luminosity of the isotropic star was calculated by
“binning” null particles in packets of 20, to avoid large scatters.
At late times, the luminosity is dominated by those particles
lingering on the LR, hence L ∼ e−t/(3

√
3M).

Eq. (4.28) is solved using a time domain code that smoothens
the pointlike source and was previously developed, tested and re-
ported [276–280].

Fig. 4.5 shows the total luminosity for this system for a monochro-
matic source with Mωe = 2.5, with and without angular momentum.
The flux of energy at spatial infinity is computed through

Ė∞ = Lo = lim
r→∞

∫
2S

dΩ
√
−gTtr

Φ =

= lim
r→∞

∫
2S

dΩ r2 sin θ ∂tΦ ∂rΦ . (4.33)

Even though the source is now emitting radiation whose wavelength
is comparable to the BH size, the late time behavior is still described
by the exponential decay, Lo ∝ e−to/(3

√
3M), independently of whether

the body falls with non-zero angular momentum or not.
The luminosity per solid angle at different angular positions is

presented in Fig. 4.6. The global LR decay is the same but one can notice
the presence of additional structure. In particular, there are periodic
oscillations whose period may differ for different observers. Their
frequency is a multiple of half of the frequency of the LR, MωLR ≈
0.192 (corresponding to a period TLR ≈ 32.6M). Each of these LR

pulsations is succeeded by a sharp, fast transition, lasting for ∼ 5M, a
behavior and a timescale that are not fully understood.

As we might have anticipated, the spectral content is dominated
by blueshifted radiation emitted in the past with a near-critical an-
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Figure 4.3: The blueshift distribution of photons with near-critical impact
parameter, emitted from a object freely-falling onto a BH. The
blueshift is maximum, ωo = 4ωe/3 at re = 12M, and is unit at
re = 3

√
3M (see also Ref.[273]).

gle, which is absorbed by the LR and re-emitted later. Referring to
Fig. 4.3, such radiation is blueshifted to ωo ∼ 1.2 − 1.3ωe, in this case
corresponding to Mωo ∼ 3.0 − 3.1 during most of the infall.

4.2.4 A gravitational-wave emitting binary

As final case, a binary system emitting GWs as it falls into the BH is
considered. This system is composed of two masses orbiting each
other, for instance stellar BHs, both small enough to be negligible
compared to the BH mass. Thus, the binary system can be studied as a
perturbation of the background geometry and can be represented by
two pointlike particles with stress energy tensor given by Eq. (4.30).
In this way, it constitutes a hierarchical triple system [280].

Emission of GWs can be studied using Teukolsky’s master equa-
tion [281]

LsΨ = T , (4.34)

where Ls is a second-order differential operator, s refers to the “spin
weight” of the perturbation field (s = −2 for GWs), and T is a spin-
dependent source term [281] built from the stress-energy tensor in
Eq. (4.30). A detailed explanation on how to solve Teukolsky’s equation
is given in Refs. [279, 280].

For the binary motion, we follow the framework of Cardoso et
al. [280] and take the binary to be on a very-eccentric orbit around
its center-of-mass (CM), while the CM itself is on a radial plunging
trajectory, according to Eqs. (4.9)-(4.11). The motion of the binary
around its CM can be parametrized by

r± = rCM(t) , θ± = θCM(t) , (4.35)

φ± = φCM + ϵ sin(ωeτe) , (4.36)
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Figure 4.4: The redshift distribution of light emitted by an infalling (isotropic)
star as measured by observers at r = 100M on the infalling
axis. For φ = 0 the star is between the BH and the observer,
whereas observers at φ = π only see the star due to gravitational
lensing, as the BH sits between them and the star. Note the delay
with which the φ = π observer receives the first signal, with
respect to φ = 0. Note also that the signal is mostly Doppler
blueshifted for φ = π, as the observer sees light emitted from an
approaching source. Some of the details of this figure, in particular
the graininess and isolated points, are due to insufficient number
of null particles being sent from the star.

where ± refers to the two bodies composing the binary and ϵ = ϵ(rCM)

defines the axis of the very eccentric ellipse defined by the binary

ϵ =

(
1 − 2M

rCM

)
δr

rCM
, (4.37)

where δr is the proper length of the axis of the binaries’ motion around
its CM and it is chosen to be δr = 0.1M. Results are independent of
the choice of δr. These two point particles both enters as source term
of Teukolsky’s equation (4.34).

The flux of energy carried by GWs at infinity is given by

Ė∞ = lim
r→∞

r2

4π

∫
2S

dΩ
∫ ∞

−∞
dt′Ψ(t′, r, θ, φ) . (4.38)

Fluxes at different angular locations are shown in Figs. 4.6-4.7.
Notice that the emission mechanisms and details vary depending

on the angular position of the observer. For example, it is impossible
to decouple the motion of the CM induced by GW emission from that
of the binary itself. Nevertheless, all these sources give rise to the same
late time global exponential decay Lo ∼ e−t/(3

√
3M).

The peculiar nature of gravity is manifest on the low-frequency com-
ponents in Fig. 4.7: these are CM contributions. Superposed on these
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Figure 4.5: Total luminosity in scalar waves (s = 0) and GWs (s = −2) from a
source plunging into a Schwarzschild BH, and emitting at fixed
proper frequency Mωe = 2.5. The source is located on the equa-
torial plane at θ = π/2, φ = 0 and starts from rest at r = 35M.
We consider both a radial (Le = 0) plunge and one with finite
angular momentum (Lz ̸= 0, for which we fix Le = 3.0M). For
both types of waves and plunging process, the luminosity follows
the exponential decay dictated by the LR Lo ∼ e−t/(3

√
3M) at late

times, as seen in the geometric optics limit for the isotropic star in
Fig. 4.2. The differences in features between scalar and GWs can be
explained by the difference in the source structure. In particular,
the low frequency oscillations in the GW spectrum are due to the
plunge of the CM of the binary system (they are a consequence
of the first 5 multipolar modes). The high-frequency content of
the signal for both scalar and GWs is dominated by frequencies
around Mωo ∼ 3.0, higher than the proper frequency of emission
by a factor ∼ 1.2, consistent with these waves having been emitted
during infall and trapped at the LR, cf. Fig. 4.3.

low-frequency components one can find the high frequency signal
from the binary. Thus, for certain directions, such as θ = π/2, ϕ = 0, π,
the high frequency contribution coming from the binary dominates
the spectrum whereas for other angles the signal is controlled by the
lower frequencies coming from the plunge of the CM.

4.3 testing the event horizon

Previous results strengthen the point of view that the late-time appear-
ance of BHs illuminated by matter is tightly connected to the photon
sphere. Light rings control the way that dynamical processes look like
to an outside observer. One can take this program a step further and
ask how these results change when the near horizon region changes,
or equivalently if the source is affected close to or within the LR. To
do so, two different types of processes are considered:
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Figure 4.6: Energy flux for a scalar source plunging radially into a BH (from
re = 30M as in Fig. 4.5), extracted at specific angular positions on
the equator. Results are normalized in units of qme. All signals
exhibit the same global exponential decay dictated by the LR

as seen in Figs. 4.2 and Fig. 4.5. Observers see now a periodic
structure, whose period may differ for different observers (notice
that at φ = π/2 the period is half that at φ = 0, π). These features
could mimic “revivals” reported in the literature [265, 266], but
are independent of the motion of source, and rather related only
to the LR properties. Once again, the high frequency content of the
spectrum corresponds to waves with of Mωo ∼ 3.0, in accordance
with the blueshift predictions of Fig. 4.3.

• First, the source is turned off after it reaches a selected radius
(e.g. r = 4M, 2.5M). This could represent a merging binary
before its CM plunges on the BH or - in case of scalar waves - it
simply stops shining. Results are summarized in Figs. 4.8-4.9.
The spectrum is mostly independent of the cutoff radius as long
as this is located close or inside the LR, for both scalars and
GWs. Overall, the flux of energy only shows a mild change in the
amplitude. The late-time decay is still given by the exponential
law observed previously, which reinforces the interpretation
that it really describes waves trapped close to the LR (which
accumulated during the infall), and are slowly leaking out to
infinity (and the horizon). This result also indicates that two
different compact objects with similar LR structures may be hard
to distinguish based on observations of matter surrounding it,
whether they possess a horizon or not.

• In the second case the source becomes suddenly brighter, in-
creasing its proper luminosity after it falls within some radius.
Fig. 4.8 shows results when the proper luminosity is increased
by a factor of 100. As before, the late-time behavior decay is un-
altered and the change in the luminosity measured by far-away
observers is small when the burst occurs inside the LR.
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Figure 4.7: Same as Fig. 4.6, but for a source emitting high-frequency GWs.
The source is a binary, and is plunging radially onto a mas-
sive BH, while emitting GWs of proper frequency Mωe = 2.5.
The frequency of the signal measured by far away observers is
blueshifted to Mωo ∼ 3.

The results of this section indicate that it is indeed the LR and not
near horizon details that are relevant for how matter accreted onto
a BH appears to distant observers at late times. In other words, what
happens inside the light ring stays inside the light ring.

4.4 discussion

In this Chapter the role of the LR was investigated in the context
of BH imaging, namely the appearance of matter accreted onto a
Schwarzschild BH. The LR can be seen as a region where high-frequency
waves are trapped with a timescale given by the LR frequency itself
∼ 3

√
3M or larger. When a source emitting radiation falls into the

BH, it transfer its energy to the LR, heating it up. When the source
crosses the photonsphere, the transfer of energy is maximum. After-
wards, the source gets redshifted and the emission is dominated by
emission from the LR. An external observer located far away from the
source will only see the late-time appearance of infalling matter as it
is dominated by the LR cooling process: the signal would be slightly
blueshifted with respect to its proper frequency and would have a
luminosity decay given by

L ∼ e−t/(3
√

3 M) . (4.39)

This behavior is best understood within a null-particle approach.
Instead, literature on waves around BHs usually discusses a mode
analysis where the late-time behavior is dominated by quasinormal
ringdown and power-law tails [242, 244]. GWs, for example, are emitted
by coherent motion of sources, and usually excite only a few of the
modes (specifically, the LIGO-Virgo-Kagra Collaboration has only
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Figure 4.8: Left panel: Luminosity in scalar waves for the system studied
in Section 4.2.3. Now, the source is turned off below a certain
radius (either r = 2.5M or r = 4M). When the source is turned
off inside or close to the LR, the flux is nearly unchanged, as it
is controlled by waves emitted in the past and lingering close to
the photonsphere. Right panel: Luminosity for the scalar system
studied in Section 4.2.3 but whose source is suddenly increased
by a factor of 10 at the same radii as in the left panel. In flat
spacetimes, this would correspond to a luminosity 100 times
higher. However, since the process takes place close to the LR,
the luminosity is very weakly affected and has the same global
exponential decay. As expected, when the increase in amplitude
occurs deep inside the light ring, the increase in the luminosity is
less significant.

confirmed the presence of the fundamental ℓ = m = 2 mode in its
ringdown catalog [282, 283]).

For high-frequency sources, however, a large number of multipoles
are excited. The QNM frequencies at large mode number ℓ, are de-
scribed by ωQNM = ΩLR (ℓ+ 1/2 − i/2) [244]. In the ringdown stage
the field amplitude is Φ ∼ ∑ℓ e−iωQNMt. If one plugs the asymptotic
expression above in this sum over all the multipoles, one obtains a
ringdown stage with a global modulation given by Φ ∝ e−ΩLR t/2,
which in the Schwarzschild case corresponds exactly to the observed
decay in luminosity (L ∝ |Φ|2). In other words, both the geometric
optics and wave propagation results are compatible.

Finally, tails are extremely challenging to observe in the presence of
these sources, as their amplitude is expected to be many orders of mag-
nitude below the ringdown signal [284]. Consequently, they should
only appear at later timescales than the ones probed in this work and
for this reason are not expected to be astrophysically relevant.

The decay timescale depends on the BH spin. Here only non-spinning
BHs were considered, but geometric-optics approximation can be used
to predict that rapidly spinning BHs will show a much larger relax-
ation timescale, and a breaking of degeneracy with respect to different
angular directions [223, 245]. This raises the interesting property of
determining the BH spin from the ratio of amplitudes of different
redshifts, but requires significant further work.
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Figure 4.9: Luminosity in GWs from the system described in Section 4.2.4, for
which the binary is shut off below a certain radius, signaling for
example a sudden merger of the binary. In line with the findings
for scalar waves in Fig. 4.8, near-horizon details are irrelevant for
the appearance of these objects, and it is the LR that controls the
late time signal.

Dying pulses from BH accretion were discussed in the context of
Cygnus X-1, years ago [265, 266]. These works assume that light from
such pulses mimics the motion of the source, which as we discussed
is not correct. It is challenging to explain such observations through
LR properties, since timescales seem to be off by almost an order of
magnitude. Nevertheless, these observations show how LR relaxation
could show up in observations with enough precision. This is relevant
for BH imaging [15, 21, 262, 285], in particular for the next generation
EHT [286, 287]. This collaboration plans to add 10 new observation
points to the current EHT, which will increase the precision of current
images and open the possibility of producing movies monitoring the
evolution of matter being accreted by BHs, which could be compared
with our general results for the luminosity decay.
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5
D ATA A N D N U M E R I C A L M E T H O D S

Since their discovery, S-stars at the GC have played an important role
in determining the parameters describing SgrA* and its environmental
features. In this doctoral thesis we focus on the orbit of star S2, one of
the closest to the GC and the one that has been monitored the longest.
In this Chapter we present the set of available data and explain the
numerical methods used in the fitting procedure. Indeed, for any
model considered in this thesis, both the numerical integration of the
equations of motion and the fitting method are performed in the same
way, the only difference being the number of fitted parameters and
their physical interpretation.

5.1 available data

The available data for star S2 can be divided in two different sets: the
astrometric measurements in the plane of the sky, i.e., right ascension
(RA) and declination (DEC), expressed in arcseconds, and the radial
velocity (RV) measurements, that come from the analysis of the shift
in the spectral lines of S2 and correspond to the total space velocity of
the star in its reference frame v =

√
v2

x + v2
y + v2

z , projected onto the
line of sight. The latter is measured in km/s.

At the moment of writing the dataset D counts the following data
points:

a) Astrometric data DEC, R.A.

– 10 data points collected using the SHARP camera at the
New Technology Telescope between 1992 and 2002 (accu-
racy ≈ 4 mas);

– 118 data points collected at the NACO imager at the VLT

between 2002 and 2019 (accuracy ≈ 0.5 mas);

– 76 data points collected by GRAVITY at VLT Interferometer
between 2016 and April 2022 (accuracy ≈ 50 µas).

b) Spectroscopic data VR

– 2 data points collected by NIRC2 at Keck in 2000 and 2002;

62
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– 100 data points collected by SINFONI at the VLT between
2002 and March 2022 (accuracy in good conditions ≈ 10 −
15 km/s).

5.2 numerical integration

Most of S2 motion happens in a weak field regime, since the star
orbits quite far from the central SMBH, its orbital range being between
≈ 1400 rS and ≈ 22500 rS. For this reason, the initial conditions for
the motion can be borrowed from the Keplerian two body problem
solutions. Specifically, one can define the SMBH reference frame in
which S2 motion happens via the usual spherical coordinates {r, θ, ϕ},
where the origin corresponds to the location of SgrA*. Following this
convention, the six initial conditions necessary to solve the equations
of motion are computed at the time of apoastron passage, i.e., the
point of farthest approach, tapo = t0 = 2010.356 and they read:

r0 =
a(1 − e2)

1 + e cos ϕ0
,

θ0 =
π

2
,

ϕ0 = 2 arctan

(√
1 + e
1 − e

tan
E
2

)
,

ṙ0 =
2πea sin E

P(1 − e cos E) ,

θ̇ = 0 ,

ϕ̇0 =
2π(1 − e)

P(e cos E − 1)2

√
1 + e
1 − e

,

(5.1)

where the dot represents the derivative with respect to time and e is
the eccentricity of the orbit, a the semi-major axis, P the period and
E the so-called eccentric anomaly. The latter can be obtained solving
Kepler’s equation:

E − e sin E −M = 0 , (5.2)

where M is the mean anomaly and it is defined as the angular
distance at time t from the periastron passage tp: M = n(t − tp),
with n = 2π/P being the mean angular motion of the body. Ke-
pler’s equation can be only solved numerically and for the spe-
cific case at t = t0 (M = π) we solved it using a Python’s root
finder (scipy.optimize.newton) which implements a Newton-Raphson
method. The latter solves Eq. (5.2) with precision of O(10−16).

Moreover, the observational dates are different from the actual
emission dates of the signal due to the finite value of the speed of
light. In order to keep this into consideration one needs to solve
numerically the Rømer’s equation:

tobs − tem − zobs(tem) = 0 , (5.3)
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that can be approximated with its first order Taylor expansion around
tem:

tem = tobs −
zobs(tobs)

1 + vzobs(tobs)
. (5.4)

The difference between Eq. (5.3) and its approximation in Eq. (5.4) is
at most ∼ 4 s along S2 orbit and therefore negligible. The Rømer effect
affects both the astrometry and the spectroscopy, with an impact of
≈ 450 µas on positions and ≈ 50 km/s at periastron on RV. Our results
recover the previous estimates for this effect computed in Refs. [219,
288].

Once the numerical integration is performed at the emission dates,
the coordinates of the star are expressed in a Cartesian form, using
the usual transformation:

xBH = r cos ϕ sin θ

yBH = r sin ϕ sin θ

zBH = r cos θ

(5.5)

where the notation "BH" means that those coordinates are still evalu-
ated in the BH reference frame. The transformation of coordinates from
the orbital plane {xBH, yBH, zBH} to the observer frame {xobs, yobs, zobs}
is carried out introducing the three Euler angles needed to perform
a rotation of the reference frame, namely the longitude of ascend-
ing node Ω, the inclination i, the argument of periastron ω, and the
so-called Thiele-Innes parameters [288, 289]:

A = cos Ω cos ω − sin Ω sin ω cos i

B = sin Ω cos ω + cos Ω sin ω cos i

F = − cos Ω sin ω − sin Ω cos ω cos i

G = − sin Ω sin ω + cos Ω cos ω cos i

C = − sin ω sin i

H = − cos ω sin i .

(5.6)

The transformation then reads:

xobs = AxBH + FyBH vxobs = AvxBH + FvyBH

yobs = BxBH + GyBH vyobs = BvxBH + GvyBH

zobs = −(CxBH + HyBH) vzobs = −(CvxBH + HvyBH) ,

(5.7)

where vzobs = VR, i.e., it corresponds to the measured RV of the star.
With this convention, the z-axis is pointing from Earth toward the
SMBH.
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The final step in order to obtain the measured DEC and RA, is to
convert the physical distances into angular distances. This can be
achieved introducing the GC distance R0 via:

DEC = arctan
(

xobs

R0

)
≈ xobs

R0
,

RA = arctan
(

yobs

R0

)
≈ yobs

R0
.

(5.8)

5.2.1 Relativistic corrections to the radial velocity

As previously stated, the RV measurements are mostly performed
using SINFONI, which is a NIR integral field spectrograph. Hence, in
order to analyse correctly those data one needs to consider possible
shifts in the spectral lines due to relativistic effects.

Specifically, in the region near the periastron, S2 reaches a total
space velocity of v ≈ 10−2, which means that both the relativistic
Doppler shift and the gravitational redshift affect the measurements
in a significant way. Quantitatively, the combination of the two effects
counts up to ≈ 200 km/s difference at periastron passage, while it
remains lower than ≈ 10 km/s near apoastron, with respect to the
same RV computed without relativistic effects.

The direct measurement of the gravitational redshift on S2 motion
was the first proof that the orbit is inconsistent with a pure Newtonian
model and it is instead well described by a Post Newtonian (PN) orbit
[219]. The contribution due to the relativistic Doppler shift reads:

1 + zD =
1 + vzobs√

1 − v2
, (5.9)

while the gravitational redshift is given by

1 + zG =
1√

1 − 2M/rem
, (5.10)

where rem means that the radial coordinate is evaluated at the time of
emission. Following Grould et al. [288] the two shifts can be combined
in a single expression for the RV as

VR ≈ 1√
1 − ϵ

· 1 + vzobs /
√

1 − ϵ√
1 − v2/(1 − ϵ)

− 1 , (5.11)

where ϵ = 2M/rem.

5.2.2 The Schwarzschild precession

In 2020, the GRAVITY collaboration published a paper announcing
the detection of the SP for the first time, in correspondence of the
periastron passage of S2 on May 19, 2018 (2018.38) [166].
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The shift in the position angle of the star in the plane of sky
δϕ = arctan(RA/DEC) is parametrized using the Parametrized Post
Newtonian (PPN) formalism developed in Ref. [290] and the variation
per orbital period can be written as [1]:

∆ϕ = fSP
3πrS

a(1 − e2)
= fSP × 12.1′ , (5.12)

where the parameter fSP is introduced ad hoc and it is equal to 1 in
GR and 0 in Newtonian theory. To include the SP in the equations of
motion the collaboration used the formalism developed by Will [291],
neglecting both the terms due to the quadrupole moment Q2 and the
spin J, in which the acceleration reads:

a1PN =
M•
r2

[(
2(γ + β)

M•
r

− γv2
)

r
r
+ 2(γ + 1)ṙv

]
. (5.13)

In terms of the new parameter fSP, Eq. (5.13) becomes:

a1PN = fSP
M•
r2

[(
4M•

r
− v2

)
r
r
+ 4ṙv

]
. (5.14)

There is no exact comparison between fSP and the PPN parameters γ

and β, since the parameter fSP only quantifies how relativistic the orbit
is. However, since the orbit of S2 is highly eccentric, the precession
induces an almost instantaneous change in the pericenter angle ω. In
the limit where one only compares the orbit pre and post pericenter
passage, 3 fSP = 2 + 2γ − β.

In the SP paper, the GRAVITY collaboration measured fSP = 1.11 ±
0.21. The latter measurement improved in Ref. [167] where multiple
stars in the S-cluster (S29, S38 and S55) were included in the fit, finding

fSP = 0.99 ± 0.15 , (5.15)

and hence excluding a pure Newtonian motion at 7σ confidence level.
In this thesis the SP will be always included in the fit, adding the

1PN acceleration in Eq. (5.14) to the equations of motion and assuming
fSP = 1, unless otherwise stated.

Before proceeding, it is important to address the issues that emerge
when one considers the relativistic acceleration in Eq. (5.14) and per-
forms the projection of the orbit via Eqs. (5.7), which instead is ob-
tained working in a Euclidean space. Indeed, while the equations
of motion in Euclidean space are valid whatever is the system of
coordinates considered, the 1PN correction in Eq. (5.14) is derived
assuming harmonic, or isotropic, coordinates. Hence, the expression
for a1PN depends explicitly on the system of coordinates used and
the Euclidean projection performed via Eq. (5.7) is in principle no
longer valid, leading to an ambiguous determination of the orbit in a
semi-Riemannian space [292].
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How to treat astrometric measurements in relativistic settings is a
long-standing problem [293–296] that the Collaboration is addressing
at the time of writing. Preliminary results on the topic suggests that
the error computed in performing an Euclidean projection while using
the 1PN acceleration in Eq. (5.14) is of order of few tens of µas in
the astrometry of S2 and overall negligible [297]. However, with the
advent of GRAVITY+ and the consequent possible discovery of stars
closer to SgrA*, these effects may become very significant and alter
consistently the determination of the orbital parameters of stars [292].
Consequently, a common strategy must be adopted and a possible
solution to this dilemma is to determine the angular separation of the
star as a coordinate-independent quantity [297].

5.3 monte carlo markov chain analysis

The fitting method employed to analyse S2 data relies on Markov
Chain Monte Carlo (MCMC) sampling. The latter is not a fitting method
per se but instead it is a sampler. This means that the sampling pro-
cess does not provide with a best-fitting parameters vector Θ, but
rather with a sample of parameters that reasonably describe the model
considered.

In the context of Bayesian inference, the MCMC process requires the
knowledge of the prior distributions of the parameters in order to
calculate their posterior distributions P(Θ|D). The aim of the MCMC

is to maximize P(Θ|D), i.e., it is to select the parameters that are more
likely to describe the data. The posterior can be calculated via the
well-known Bayes’ theorem:

P(Θ|D) =
P(D|Θ)P(Θ)

P(D)
, (5.16)

where

• P(D|Θ) is the likelihood function, i.e., the probability of the
data given the model. In general, the latter produces a curve that
aims to fit the data and, in the specific case considered here, it
returns positions and RV that describe the trajectory of S2.

• P(Θ) is the prior distribution of the parameters Θ, i.e., the
knowledge a priori on the parameter itself. Generally, Gaussian
distributions are used as priors when the parameter is well
constrained by independent experiments/observations, while
flat (or uniform) priors are used where no prior knowledge is
available and only an interval of possible values is known.

• P(D) is the evidence or marginalised likelihood, i.e., the prob-
ability of the data. This is a single number that represents the
likelihood of the observed data given a certain model. Once the
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model is chosen, it is independent of the set of parameters Θ,
which are integrated out. This quantity is not included in the
fit, since it is possible to sample P(Θ|D) without computing it,
unless the aim is to compare two different generative models
(see Section 5.4).

The MCMC estimates (samples) the LHS of Eq. (5.16) numerically
integrating the RHS for some given value of the parameters Θ.

A sampling ΘT
t=1 from some Probability Density Function (PDF)

P(Θ|D) is a set of T values of Θt that are drawn from the PDF. If
T is huge, the histogram of the sampling will look like the original
function P(Θ|D).

Given P(Θ|D), the conditioned expectation value for Θ is

E[Θ|D] =
∫

ΘP(Θ|D)dΘ , (5.17)

which correspond to the mean values of Θ. Since the integral on the
RHS of Eq. (5.17) is generally impossible to compute analytically, it is
replaced by

E[Θ|D] ≈ 1
T

T

∑
t=1

Θt . (5.18)

A good sampling is one for which, in the limit T → ∞, the approxi-
mation in Eq. (5.18) becomes exact.

A family of MCMC methods with the affine invariant property was
introduced in Ref. [298]. A sampler is affine invariant if the sampling
is invariant under linear transformations of the parameters, i.e., the
algorithm samples equally well a posterior that depends on Θ and one
that depends on f (Θ), for any linear function f . As a consequence, the
algorithm proposed in Ref. [298] produces independent samples with
a much shorter autocorrelation time with respect to standard MCMC

algorithms, such as the Metropolis-Hastings, and it can easily run
in parallel, making it faster. In this work, the affine invariant MCMC

sampling has been performed by means of the Python package emcee,
developed by Foreman-Mackey et al. [299].

The process of running a MCMC with emcee is the following:

1. Set a function that outputs a model given the set of input pa-
rameters Θ. The set of parameters will be specified in each
chapter, according to the different models tested. However, in
any fit there will be 13 parameters that will always be included,
namely:

Θ = {e, a, Ω, i, ω, tp, M•, R0, x0, y0, vx0, vy0, vz0} , (5.19)

where e, a, Ω, i, ω and tp characterize the orbit of S2, R0 and
M• describe the central SMBH and {x0, y0, vx0, vy0, vz0} are offset
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parameters needed to make the origin of the observer refer-
ence frame coincide with the position of SgrA* for some specific
datasets (NACO and SINFONI data). For completeness, the
best-fit values of the parameters in Eq. (5.19) are reported in
Tables 5.1-5.2 together with their prior distributions, which are
assumed to be flat for all the physical parameters and Gaus-
sian for the offsets [300]. Those values are obtained in the non
perturbative case, i.e., when the system is described by the 1PN

equations of motion.

2. Set an ensemble of K walkers, each one defined by a D-
dimensional vector Θ that contains a set of initial guesses for
the parameters. Those vectors are generally obtained spreading
the walkers around a single initial guess Θ, which we choose to
be the set of parameters that minimize the χ2. In this way a grid
with dimension K × D is created.

3. Each walker explores the parameters space by moving toward a
new value of Θ and generating a model with that Θ. The newly
generated model is then compared to the given data via the
likelihood function. In this work a Gaussian likelihood is always
implemented, defined as:

P(D|Θ) = exp

[
−1

2

(
(xdata − xmodel)

2

∆x2
data

+
(ydata − ymodel)

2

∆y2
data

+
(vdata − vmodel)

2

∆v2
data

)]
,

(5.20)

where xdata = DEC, ydata = RA and vdata = RV.

4. The stretch move. How each walker moves in the parameter
space is dictated by the algorithm of Ref. [298]. Given an ensem-
ble of K walkers S = {Xk}, the proposal move for one walker k
depends on the positions (in the parameter space) of the K − 1
walkers in the complementary ensemble S[k] = {Xj, ∀j ̸= k}. For
each walker Xk a walker Xj is randomly extracted from S[k] and
the new (proposed) position is:

Xk(t) → Y = Xj + Z
[
Xk(t)− Xj

]
, (5.21)

where Z is a random variable extracted from the distribution
g(z = Z):

g(z) ∝

 1√
z if z ∈

[ 1
a , a
]

0 otherwise
(5.22)
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with a = 2. The proposed move will be accepted with probability
given by

q = min
(

1, ZD−1 P(Y|D)

P(Xk(t)|D)

)
. (5.23)

This means that a random number n will be extracted in the
interval [0, 1] and if n ≤ q then the new position Y is accepted
and the walker moves there, otherwise it is discarded, the walker
remains in the same position and a new move is proposed to
another walker.

Parameter Best-fit value Lower bound Upper bound

e 0.88441 ± 0.00007 0.83 0.93

a[as] 0.12497 ± 0.00013 0.119 0.132

iorb [
◦] 134.69 ± 0.03 100 150

ωorb [
◦] 66.28 ± 0.03 40 90

Ωorb [
◦] 228.19 ± 0.03 200 250

tp[yr] 2018.37902 ± 0.00009 2018 2019

M [106 M⊙] 4.299 ± 0.013 4.1 4.8

R0 [103 pc] 8.28 ± 0.01 8.1 8.9

Table 5.1: Best-fit values (with 1σ uncertainty) for the physical parameters
involved in the fit, together with uniform priors used in the MCMC

analysis.

Parameter Best-fit value ξ σ

x0 [mas] −0.24 ± 0.07 −0.055 0.25

y0 [mas] −0.618 ± 0.095 −0.570 0.15

vx0 [mas/yr] 0.059 ± 0.006 0.063 0.0066

vy0 [mas/yr] 0.074 ± 0.009 0.032 0.019

vz0 [km/s] −2.46 ± 1.47 0 5

Table 5.2: Best fit values (with 1σ uncertainty) and Gaussian priors used in
the MCMC analysis of the offset parameters. ξ and σ represent the
mean and the standard deviation of the distributions, respectively,
taken from [300].

Steps 3 and 4 will be repeated by all K walkers in the ensemble, N
iterations each.

In our fits, K = 64 walkers and N = 105 iterations are used. Since the
MCMC starts at the minimum of the χ2 found by the Python package
optimize.minimize, the initial 20% of moves were discarded for the
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burning-in phase while the last 80% of the chains is used to compute
mean and standard deviation of the posterior distributions.

Since the samples in the MCMC are not independent from each other,
one can define the autocorrelation time τf as the number of steps
needed in order to have independent chains. Foreman-Mackey et al.
[299] defined the autocorrelation time as:

τf (M) = 1 + 2
M

∑
τ=1

ρ f (τ) , (5.24)

for some M ≪ N, with ρ f representing the normalized autocorrelation
function of the stochastic process that generates the chains. Using a
finite chain ΘN

n=1, the latter can be estimated as follows:

ρ f (τ) =
ĉ f (τ)

ĉ f (0)
, (5.25)

where

ĉ f (τ) =
1

N − τ

N−τ

∑
n=1

(Θn − µ f )(Θτ+n − µ f ) (5.26)

and

µ f =
1
N

N

∑
n=1

Θn . (5.27)

In emcee it is generally sufficient to run N iterations such that N ≫
50 τf in order to assure the convergence of the chains.

The numerical framework described above and used in this the-
sis has been tested and compared with other codes independently
developed by the GRAVITY collaboration members.

5.4 model selection

When a new theory describing a certain system is proposed, it is
necessary to understand if and how much the new model better fits
the data if compared to the old one. In the specific cases considered in
this thesis, the idea is to compare the BH model in vacuum described
by 1PN equations of motion (that we call model M0), which results in
having the S2 orbit described by the parameters in Table 5.1, with the
perturbative models described in Sec. 6.2-6.3 (that we call model M1).

This can be achieved by considering the theories as Bayesian models
and compare their predictive power via the so-called Bayes factor [301,
302]. The latter is defined as

K =
P(D|M1)

P(D|M0)
, (5.28)
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i.e., it corresponds to the ratio of the evidences of the two models
being compared. Hence, in order to determine the Bayes factor, the
evidence must be computed. This is defined as

P(D|Mm) =
∫

P(D|Θm, Mm)P(Θm|Mm)dΘm m = 0, 1 , (5.29)

where Θm is the vector of parameters in model m and P(Θm|Mm) is
its prior density. Getting an estimate of the integral in Eq. (5.29) is
generally far from being easy and some analytical approximations
have been proposed [302].

In our case, emcee does not allow to compute the evidences auto-
matically and hence in order to perform the integral we made use of
the Python library MCEvidence developed by Heavens et al. [303]. The
code takes as an input the posterior distributions and the likelihoods
generated by emcee and returns the logarithm of the marginalised
likelihood using the kth nearest neighbour distances algorithm.

As a consequence, one can evaluate the logarithm of the Bayes factor
as

log10 K = log10(P(D|M1))− log10(P(D|M0)) (5.30)

and compare the result with the table in Ref. [301] in order to check
whether or not the new model is preferred by observations.



6
B O S O N I C C L O U D S AT T H E G A L A C T I C C E N T E R

6.1 black hole superradiance

The term superradiance was firstly coined by Dicke in 1954 in the con-
text of coherent emission of quantum optics [304] and lately extended
to BH physics by Press and Teukolsky [305, 306]. The authors showed
that when a spinning BH is immersed in a radiation field, it can both
absorb waves or amplify them, depending on the angular mode and
the frequency of the wave.

In a pioneering work, Teukolsky showed that linear perturbations
on the Kerr geometry described by the line element in Eq. (1.1), could
be described by a single master equation that only depends on the
spin s of the field, using the Newman-Penrose formalism [307]. In
Boyer-Lindquist coordinates, Teukolsky’s equation reads:

[
(r2 + j2)2

∆
− j2 sin2 θ

]
∂2

t Ψ − ∆−2∂r

(
∆s+1∂rΨ

)
4jMr

∆
∂t∂ϕΨ + 2s

[
r +

M(j2 − r2)

∆
+ ij cos θ

]
∂tΨ

− 1
sin θ

∂θ(sin θΨ)− 2s
[

j(r − M)

∆
+

i cos θ

sin2 θ

]
∂ϕΨ

−
[

1
sin2 θ

− j2

∆

]
∂2

ϕΨ +
(
s2 cot2 θ − s

)
Ψ = 4πΣT ,

(6.1)

where T is the source term and corresponds to the trace of the energy-
momentum tensor.

In vacuum, i.e., T = 0, because of the axi-symmetry of the Kerr
metric, one can use the following ansatz for the field Ψ

Ψ(t, r, θ, ϕ) =
1

2π

∫
dωe−iωteimϕS(θ)R(r) (6.2)

and the master equation in (6.1) becomes separable in a radial and
angular part. These read

∆−s d
dr

(
∆s+1 dR

dr

)
+

(
K2 − 2is(r − M)K

∆
+ 4isωr − λ

)
R = 0 (6.3)
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and

1
sin θ

d
dθ

(
sin θ

dS
dθ

)
+

(
j2ω2 cos2 θ − m

sin2 θ
− 2jωs cos θ

−2ms cos θ

sin2 θ
− s2 cot2 θ + s + Asℓm

)
S = 0 ,

(6.4)

where K ≡ (r2 + j2)ω − jm and λ ≡ Asℓm + j2ω2 − 2jmω.
The solutions to the angular equation (6.4) are known as spin-

weighted spherical harmonics eiωϕS ≡ Ssℓm(jω, θ, ϕ), which reduce to
the spin-weighted spherical harmonics Ysℓm(θ, ϕ) when jω = 0, and
for spin 0 fields are given by the expressions in Eq. (3.2) [308].

Introducing the tortoise coordinate r∗ as dr/dr∗ = ∆/(r2 + j2), the
radial equation in (6.3) has asymptotic solutions given by

Rsℓm ∼ T ∆−se−ikHr∗ +OeikHr∗ for r → r+ ,

Rsℓm ∼ I e−iωr

r
+R eiωr

r2s+1 for r → ∞ ,
(6.5)

where kH = ω − mΩH and ΩH = j/(2Mr+) is the angular velocity of
the BH horizon r+ = M +

√
M2 − j2.

These boundary conditions correspond to an incident wave with
amplitude I from spatial infinity which is reflected back with ampli-
tude R and transmitted at the horizon with amplitude T . For BHs the
presence of a one-way membrane at the horizon r = r+ implies O ≡ 0,
meaning that there is no outgoing flux across the horizon.

Since the background is stationary, the field equations are invariant
under the transformation t → −t and ϕ → −ϕ. Hence, there exist a
linearly independent solution Ψ̄ that satisfies the complex conjugate
boundary conditions. This implies that their Wronskian is constant and
thus independent from the radial coordinate r∗, since both solutions
satisfy Eq. (6.3). Thus, the Wronskian evaluated at the horizon must
be equal to the Wroskian evaluated at infinity. This condition implies
(for the specific case considered with O = 0) that

|R|2 = |I|2 − kH

ω
|T |2 . (6.6)

From Eq. (6.6) one can see that |R|2 < |I|2 when kH > 0, as it
is expected from absorbers. However, when kH < 0, then |R|2 >

|I|2, meaning that the reflected wave is amplified with respect to the
incident wave. The condition kH < 0 is equivalent to

ω − mΩH < 0 , (6.7)

which is exactly the superradiance condition. It is interesting to note
that this result is valid whatever is the spin of the field considered
and hence can be applied to scalar (s = 0), vector (s = ±1) and tensor
(s = ±2) fields, indistinctly.
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It can be shown that BHs satisfying the superradiant condition in
Eq. (6.7) and confined within a closed system trigger instabilities due
to the exponentially increasing pressure of the field on the boundary,
and this process takes the name of black hole bomb [305]. In a real-
istic scenario, massive fields provide a natural confinement of low
frequency radiation because of the Yukawa-like suppression ∼ e−µr/r,
being µ the mass of the field.

6.1.1 Black holes as particle detectors

As mentioned in Chapter 1, ultralight bosons are among the possible
candidates for DM and have gained a lot of attention due to their
connection with particle physics. An example of such a light boson
is the Peccei-Quinn axion, which was firstly introduced to solve the
strong CP problem in quantum cromodynamics [48]. The mechanism
proposed by Peccei and Quinn is based on a spontaneous symmetry
breaking associated to a new particle, the axion, similarly to the Higgs
mechanism. Axions also arises naturally in string theory, which is
currently the most developed theory for quantum gravity [49].

As we have seen, the frequencies ω that appears in the ansatz (6.2)
are generally complex numbers, due to the boundary conditions im-
posed at the event horizon and at infinity. The superradiant instability
is triggered when the eigenfrequency has ωI > 0, which always
happens if the real part of the frequency satisfies the superradiant
condition in Eq. (6.7), i.e., ωR < mΩH.

When this condition is fulfilled, the field grows exponentially in
time, with a timescale dictated by τI = 1/ωI . In general, the instability
timescale depends on the coupling of the two fields α = µM, on
the spin of the BH j and on the mode numbers (ℓ, m, n). The fastest
growing mode is the fundamental one (n = 0), which is characterised
by different quantum numbers depending on the spin of the field, and
its growth goes faster the more the BH is spinning. The dimensionless
coupling α can be written as (reintroducing fundamental constants for
clarity)

α =

[
GM
c2

] [ms,v c
h̄

]
= 0.752

(
M

106M⊙

)(
ms,v

10−16 eV/c2

)
, (6.8)

where ms,v represents the mass of the scalar or vector field.
During the instability growth, the field extracts mass and angular

momentum from the BH, until they saturate to specific values. Indeed,
due to the loss of spin by the BH, the angular frequency ΩH decreases,
until it reaches the value ΩH(M f , J f ) = ωR/m, where M f and J f are
the BH mass and angular momentum at the end of the instability
phase. At this point, the field is entirely described by a single mode
with real frequency ωR ∼ ΩH and the growth stops [309–312]. The
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final BH spin J f can be estimated in the small coupling limit (α ≪ 1)
as

J f ≈
4mM3

f µ

m2 + 4M2
f µ2

, (6.9)

and assuming no other processes happen during the instability phase,
the mass of the cloud at the end of the superradiant process is given
by

M f
cloud = Mi − M f = −δM = −ωR

m
δJ (6.10)

where Mi is the initial BH mass and δJ is the variation of the BH

angular momentum, which is negative if superradiance occurs (δJ < 0
therefore implies M f

cloud > 0) [313].
Hence, the superradiant instability leads to the formation of a boson

cloud around the BH that can extract up to 10% of the initial BH’s
mass [311, 314]. In the specific case of Proca fields, it has been shown
that the final stage of superradiant growth corresponds to a stationary
"hairy" BH solutions found in Ref. [315], where the authors constructed
a solution corresponding to a rotating BH surrounded by a complex
Proca field that oscillates with frequency ω = mΩH , but still generates
a stationary stress-energy tensor (and hence circumventing the no-hair
theorem).

When the BH spin reaches the value in Eq. (6.9), the boson cloud
starts to slowly decay due to the emission of GWs on a timescale
τGW = M f

cloud/ĖGW(t = 0), where t = 0 is defined as the moment in
which the cloud has mass M f

cloud. The exact GW flux can be computed
solving Teukolsky equation numerically, but in the small coupling
limit can be approximated as

ĖGW ≈ Aℓms

(
Mcloud

M

)2

α4ℓ+4s+10 , (6.11)

where the constant Aℓms depends on the spin of the field.
The possibility that boson clouds can grow around BHs open a

new way to detect and constrain new fundamental fields in the Uni-
verse, with particular attention to those candidates that have escaped
detection in Earth-based accelerators.

In the following sections we consider the hypothesis that a boson
(scalar and vector) cloud clustered around SgrA* by means of super-
radiance or other processes. It is a tantalizing possibility that SMBHs
might then be used as particle detectors, a possibility that we explore,
using the motion of S2 as a probe of the matter content to constrain
the mass of such a cloud at the GC. These fields might be a significant
component of DM, or simply as-yet unobserved forms of matter.

The suggestion that the stars’ motion can be used to probe light
fields around BHs is not new [316–318], but here it is explored explicitly
with the inclusion of data from the GRAVITY instrument.
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6.2 constraining scalar clouds using s2 motion

Thus far, the profile of the matter distribution at the GC has been
mostly ad-hoc, clear examples being the Plummer profile in Ref. [167]
or the spike density distribution in Ref. [171]. Here, the possibility
that new fundamental fields exist and "condense" in a bound state
around the BH is explored. It can be argued that also in the context of
fuzzy DM, composed of an ultralight scalar, the near-horizon region is
controlled by BH physics, hence governed by the same type of profile
considered in this work [319].

6.2.1 The setup

Consider a particle moving in a potential given by a central mass M•
surrounded by a scalar field cloud. Our starting point is the setup
developed in Ref. [320]. For clarity, we will reintroduce fundamental
constants in the following.

A system composed of a central BH with mass M• and a scalar field
minimally coupled to the gravity sector is described by the action

S =
∫

d4x
√
−g
(

R
16πG

− 1
2

gαβψ∗
,aψ∗

,b −
µ2

2
ψψ∗

)
, (6.12)

where R is the Ricci scalar, gµν and g are the metric and its determinant.
As already mentioned, we assume that the BH spins along the z−axis,
with adapted spherical coordinates (t, r, θ, ϕ), and θ = π/2 defining
the equator. The scalar field ψ(t, r, θ, ϕ) is a complex field, and µ is a
mass parameter related to the physical mass ms via µ = msc/h̄ and to
the (reduced) Compton wavelength of the particle via λC = µ−1.

The principle of least action results in the Einstein-Klein-Gordon
system of equations, which in general must be solved numerically
to obtain the dynamics of a test particle in such a setup. However,
since the final aim is to fit S2 orbit, which happens to be in weak field
region of space, there is no need to proceed in this way and perform
expensive numerical computations.

Instead, one can compute the energy-momentum tensor of the scalar
field as

Tµν =
1
2

[
ψ,µψ∗

,ν + ψ,νψ∗
,µ − gµν

(
ψ,σψ∗

,σ + µ2|ψ|2
)]

(6.13)

and obtain the energy density taking the T00 component of (6.13) in
the low-energy limit, i.e., neglecting terms of O(c−4). In this approxi-
mation, the energy density of the field reads

ρ =
m2

s c2

h̄2 |ψ|2 = µ2|ψ|2 =

(
α

M•

)2

|ψ|2 , (6.14)

where the dimensionless mass coupling α was introduced in Eq. (6.8).
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From now on, we will continue using geometric units.
In the limit of small coupling (α ≪ 1) and assuming the same

ansatz for the field of Eq. (6.2), the radial part R(r) is proportional to
the generalised Laguerre polynomials L2l+1

n , while the angular part
reduces to Sℓm(θ) = Pm

ℓ (cos θ), where Pm
ℓ (cos θ) are the associated

Legendre polynomials. In this approximation, the fundamental mode
n = 0, ℓ = m = 1 of the scalar field is given by [321]

ψ = A0e−i(ωt−ϕ) r
M•

α2e−
rα2

2M• sin θ . (6.15)

As already mentioned, generally the frequencies ω of the field in
equation (6.15) are complex numbers, characterised by a real and
an imaginary part. The imaginary part quantifies the exponential
growth of the scalar profile, while the real part is associated with
the oscillations frequency of the field. However, the former has an
associated timescale given by τI = 1/ωI ∼ M•α−9, while the latter has
τR = 1/ωR ∼ M•α−1. This results to have τR ≪ τI and consequently
one can neglect the exponential growth phase and focus only on the
dynamics of the scalar field oscillations (i.e., assuming ω = ωR), as
already done in Refs. [317, 320, 321].

The amplitude of the field A0 can be related to the mass of the cloud
via

Mcloud =
∫

ρs2 sin θdθdsdϕ =
64πA2

0
α4 M• , (6.16)

and the density takes the form:

ρ =
Λ

64πM4
•

r2α10e−rα2/M• . (6.17)

Being S2 in the weak field regime, the energy density of the field in
Eq. (6.17) can be used as source term in Poisson’s equation ∇2Usca =

4πρ. The latter can be solved using the spherical harmonic decom-
position implemented in Poisson and Will [236], i.e., expanding all
quantities in spherical harmonics Yℓm = Yℓm(θ, ϕ).

For the energy density computed in Eq. (6.17) the only non-zero
terms that contribute to the scalar potential Usca are the ℓ = m = 0
and ℓ = 2, m = 0 terms, resulting in a potential given by

Usca = 4π
[q00

r
Y00 + p00Y00

]
+

4π

5

[q20

r3 Y20 + p20r2Y20

]
= Λ

(
P1(r) + P2(r) cos2 θ

)
,

(6.18)

where Λ = Mcloud/M• is the fractional mass of the scalar field cloud
to the BH mass,

P1(r) =
M•
r

+
3M3

•
r3α4 − e−

rα2
M•

16M2
•r3α4

(
48M5

• + 48M4
•rα2 + 40M3

•r2α4

+20M2
•r3α6 + 6M•r4α8 + r5α10

)
,
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Figure 6.1: Energy density of Eq. (6.17) for different values of the coupling
α. Only for some specific values of α the peak of the density
distribution intersects S2 orbital range, represented by the orange
vertical band. Here Λ = 10−3.

(6.19)

and

P2(r) = −9M3
•

r3α4 + e−
rα2
M•

(
9M•

2r
+

9M3
•

r3α4 +
9M2

•
r2α2 +

3α2

2

+
3rα4

8M•
+

r2α6

16M2
•

)
.

(6.20)

The energy density in Eq. (6.17) is plotted in Fig. 6.1 for different
values of the mass coupling α and Λ = 10−3, together with S2’s orbital
range represented by the orange vertical band.

In Ref. [320] the authors showed that a scalar field cloud described
by the potential in Eq. (6.18) can leave imprints in the orbital elements
of S2 if its mass coupling constant is in the range

0.005 ≲ α ≲ 0.05 , (6.21)

which corresponds to a mass of the field in the range 10−20 eV ≲
ms ≲ 10−18 eV, if one assumes a fixed direction of the BH spin axis
with respect to the plane of the sky. This result is related with the
behaviour of the density displayed in Fig. 6.1, which indeed shows a
maximum that only intersects S2 orbital range for some specific values
of α, namely the range reported in (6.21).

However, Kodama and Yoshino [322] showed that for a SMBH with
the mass of SgrA*, the allowed range of effective masses that can engage
a superradiant instability on a timescale shorter than the cosmic age
is 10−18 eV ≲ ms ≲ 10−15 eV, correspondent to 0.01 ≲ α ≲ 10. Hence,
if a scalar cloud exists and leaves detectable imprints in the orbit of
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S2, then its formation and existence must be explained by means of a
different physical process.

One possibility is that the scalar soliton existed on its own, for
example, if it is part of DM, in which case the placing of a BH at its
centre will lead to a long-lived structure (a “cloud”) which on BH

scales resembles the superradiant bound states [319, 323]. In this work
we will be agnostic regarding the origin of the scalar structure, but
we will use our knowledge about the spatial profile of bound states
around BHs.

Whatever is the origin of the scalar cloud, since the variations in the
orbital elements of S2 induced by the cloud are potentially detectable
with the current precision of the GRAVITY instrument, it is worth
comparing these theoretical expectations with the available data. In
particular we are interested in fitting the fractional mass of the cloud
Λ = Mcloud/M• for fixed values of the mass coupling constant α.

6.2.2 The equations of motion

To obtain the equations of motion of a particle moving in a central
potential plus the toroidal scalar field distribution described by the
profile in Eq. (6.15), the starting point is the Lagrangian

L =
1
2
(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2)+ U(r, θ) , (6.22)

where

U(r, θ) =
M•
r

+ Λ
(

P1(r) + P2(r) cos2 θ
)

, (6.23)

is the sum of the Newtonian potential generated by the SMBH and
the perturbation induced by the scalar cloud. Solving Euler-Lagrange
equations translates into having the following equations of motion,

r̈ = −M•
r2 + r

(
θ̇2 + sin2 θϕ̇2)+ Λ

(
P′

1(r) + P′
2(r) cos2 θ

)
,

θ̈ = cos θ sin θϕ̇2 − 2
r

ṙθ̇ − ΛP2(r) sin 2θ

r2 ,

ϕ̈ = −2ϕ̇

r
(
ṙ + cot θ rθ̇

)
,

(6.24)

where the dot represents a derivative with respect to time.
At those equations of motion one should add the 1PN contribution

reported in Eq. (5.14). We followed the procedure described in Chap-
ter 5 to obtain the astrometry, DEC and RA, and the RV of S2 in this
framework.

6.2.3 Constraints on the scalar cloud’s mass

We fit the datasets reported in Sec. 5.1 with the scalar cloud model,
adding the fractional mass Λ to the list of parameters in (5.19).
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Figure 6.2: Best fit values of Λ with 1σ uncertainty when α is fixed and it is
varied over the range [0.0006, 0.1]. The dashed grey line represents
Rpeak as a function of α as illustrated in (6.25). The yellow band
represents the orbital range of S2 delimited by its apoastron and
periastron positions. Although a nonzero value of Λ is apparent
for a restricted range of α, the statistical significance of this finding
is not significant, see Table 6.1.

Before running the MCMC algorithm following the procedure in
Sec. 5.3, we used the Python library optimize.minimize to minimise
the χ2 and evaluate the best-fit values of Λ and how accurately one
can constrain the scalar cloud mass. Results are summarised in Fig. 6.2.
For very small (α ≲ 0.0035) or large ( α ≳ 0.045) values of α, Λ has
very large uncertainties, and the results are all compatible with Λ = 0,
i.e., having a vacuum environment.

Uncertainties on Λ become much smaller in the range 0.01 ≲ α ≲
0.04, that roughly corresponds to the range in (6.21), predicted by
Ref. [320]. The underlying reason can be understood computing the
effective peak position of the scalar density distribution,

Rpeak =

∫ ∞
0 ρr̄dr̄∫ ∞
0 ρdr̄

=
3M•

α2 . (6.25)

For the range of α above, one finds

3000M• ≲ Rpeak ≲ 30000 M• , (6.26)

which means that the peak Rpeak is located between S2’s apoastron
and periastron and hence the star is crossing regions of higher scalar
density. This is also shown in Fig. 6.2, where the behaviour of Rpeak
as dictated by Eq. (6.25) is represented by a dashed grey line, and
compared with S2’s apoastron and periastron.

Notice that Fig. 6.2 seems to indicate that the motion of S2 is com-
patible with a cloud of scalar field for 0.01 < α < 0.03. However, as we
now discuss, the statistical evidence for a nonzero Λ is not significant.
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Figure 6.3: Posterior probability densities P(Λα|D) for different values of α.
Red dashed lines represent the mean value of Gaussian distri-
butions (which coincides with the MLE Λ̂), while orange bands
correspond to 1σ confidence level, i.e. ≈ 68% of P(Λα|D) lies in
that region.

MCMC results confirm the trend observed in Fig. 6.2 but provide
more insights into how Λ is distributed when one fixes the value of α

and hence the cloud’s position. In particular, once the posterior dis-
tributions P(Θ|D) are obtained from the MCMC, one can look for the
Maximum Likelihood Estimator (MLE) of Λ, i.e., Λ̂ = arg maxL(Λ; D).
Because of the flat priors implemented and the use of the Gaussian
likelihood in Eq. (5.20), looking for the MLE of Λ corresponds to find
the value that maximises the posterior distribution P(Λα|D).

Results of the MCMC analysis are shown in Figure 6.3, which repre-
sents the one-dimensional projection of the (marginalised) posterior
distributions of Λ for any value of α reported in Table 6.1.

Correlations between S2’s parameters in the fit are shown by means
of corner plots in Appendix D.1, for two illustrative cases α = 0.01
and α = 0.001.

One can firstly focus on the range 0.006 ≤ α ≤ 0.045, where the
posteriors P(Λα|D) are normal distributions. Here the MLE Λ̂ and
associated uncertainties coincide with mean and standard deviation of
the distributions, and they are roughly the same reported in Fig. 6.2.
In Fig. 6.3 the mean and the 1σ confidence interval are represented by
a red dashed line and an orange band, respectively.

As soon as one moves away from this range of α, the posteriors start
to be peaked around zero and Λ̂ does not coincide with the mean value
of the distribution anymore, as a result of the prior bounds imposed
on Λ. Since in these cases Λ̂ is always very close to zero, and hence
induces changes in the orbit far below what can be currently measured
with data, we estimated Λ1 and Λ2 such that P(Λα < Λ1|D) ≈ 68%
and P(Λα < Λ2|D) ≈ 99% of the posterior P(Λα|D). In this way one
is able to obtain a rough upper bound on the fractional mass at 1 and
3σ confidence levels, respectively, and those values are reported in
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α Λ̂ log10 K

0.00065 ≲ (0.470 , 0.980) 0.09

0.001 ≲ (0.470 , 0.980) 0.08

0.002 ≲ (0.440 , 0.978) −0.06

0.0035 ≲ (0.140 , 0.780) −10.58

0.006 0.34671 ± 0.13666 1.44

0.01 0.00361 ± 0.00147 1.29

0.015 0.00101 ± 0.00042 1.24

0.02 0.00075 ± 0.00030 1.33

0.025 0.00068 ± 0.00028 1.35

0.03 0.00073 ± 0.00029 1.33

0.045 0.00328 ± 0.00135 1.27

0.075 ≲ (0.0013 , 0.0052) 0.0001

Table 6.1: MLE Λ̂ with associated 1σ error and Bayes factors log10 K for dif-
ferent values of α. The measurements for each α are not inde-
pendent (the same orbit was used to derive them) and therefore
cannot be combined to derive a more stringent upper limit. For
non-normal distributions we report Λ1 and Λ2 defined such that
P(Λα < Λ1|D) ≈ 68% and P(Λα < Λ2|D) ≈ 99% of P(Λα|D).

parenthesis in Table 6.1. In Fig. 6.3 the 1σ confidence interval evaluated
as explained above is again represented by an orange band.

To be more specific, for α ≤ 0.0035, the posterior P(Λα|D) starts to
flatten out, showing the difficulties of finding a meaningful MLE Λ̂,
and basically no relevant information can be extracted from those con-
fidence intervals when Rpeak is far from S2’s apoastron (cfr. Table 6.2).

On the other hand, when α = 0.075, which corresponds to Rpeak ≈
530 M•, i.e., a cloud which is entirely confined within S2’s periastron,
we found that Λ ≲ 5 · 10−3 at 3σ confidence level, roughly recovering
the upper bound δM ≲ 10−3 M• found in Ref. [167].

As mentioned at the beginning of this discussion, when the posteri-
ors are normal the MLE is roughly Λ̂ ∼ 10−3, and hence the motion is
compatible with a cloud having mass Mcloud ∼ 0.1%M•. In order to
determine the statistical significance of these results we computed the
logarithm of the Bayes factor K as described in Sec. 5.4.

According to Kass and Raftery [301] if 1 ≤ log10 K ≤ 2 there is a
strong evidence that model M1 is preferred over model M0, while if
log10 K > 2 the strength of evidence is decisive. Negative values of
log10 K correspond to negative evidence, i.e., M0 is preferred over M1.

As expected, log10 K ≪ 1 every time the cloud is located far away
from S2 orbital range. In contrast, when rapo,S2 ≲ Rpeak ≲ rperi,S2 there
is only mild evidence that M1 is preferred over M0, since log10 K < 2
always.
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To summarise, scalar clouds with mass couplings in the range
α ∈ [0.01, 0.045] can be ruled out, for cloud masses Λ ≳ 0.1% of the
central SMBH mass (equivalent to δM ∼ 4000 M•). This is similar to
the result of Ref. [167], who provided a 1σ upper bound of 0.1% of
M• on the observational dark mass within the orbit of S2 assuming a
Plummer profile for the density distribution.

For certain scalar couplings α, observational data are well fitted
by a non-zero value of Λ of order 10−3. However, all these values
of Λ are consistent with zero within the 3 σ confidence interval. The
computation of the Bayes factor showed that this perturbed model
is only mildly preferred over the non-perturbed model predicting a
single central BH in vacuum.

In conclusion, the evidence is no strong enough to claim the exis-
tence of a scalar cloud around SgrA* as described by this setup.

6.2.4 Discussion

Stronger constraints on the scalar cloud’s mass require more years of
observations or the inclusion of other stars of the S-cluster in the fit.
However, since the potential describing the cloud is non-spherically
symmetric, the inclination of stars with each other plays a fundamental
role - at least in theory - and this same analysis can not be performed
straightforwardly.

For the same reason, we were forced to set an initial angular position
for S2 co-planar with the BH equator (θ = π/2). This is the simplest
choice but also the one that maximises the scalar potential in Eq. (6.18),
i.e., the chances to actually detect the cloud. One can try to quantify the
error in setting the initial angular position of the star by looking at the
difference in the orbits for two different initial inclinations: θ = π/2
and θ = 0, focusing on the interesting range of α: 0.01 ≤ α ≤ 0.045.
The maximum relative (percentage) difference in the astrometry is
achieved for α = 0.01, where ∆DEC ∼ ∆R.A. ≈ 25%, while the
maximum difference in the RV is found to be ∆VR ≈ 15% for α = 0.045.

Although these differences may seem significant, one should notice
that: (i) they would be smaller for any values of θ ∈ [0, π/2] and (ii)
they are only reached in correspondence of the two periastron pas-
sages, while they remain much smaller over the rest of the orbit. Hence
we are relatively confident that there will be no significant changes in
the best-fit parameters we found for different initial inclinations of S2.

In addition, Ref. [320] showed that also the inclination of SgrA*’s
spin with respect to the observer frame plays an important role in
the effects the cloud has on S2 motion. Indeed, results including the
motion of other S-stars and SgrA*’s spin direction are left for future
works.

The increased sensitivity of GRAVITY+ and the patrol field of view
of ERIS strongly increase the prospects of detecting and tracking
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further stars in inner orbits, allowing to test also those values of the
mass coupling α that would be compatible with a superradiant growth
of the cloud.

6.3 constraining vector clouds using s2 motion

In the previous section, the possibility that a massive scalar field
clusters around SgrA* in the form of a cloud was investigated. Here,
we focus on a similar system: a massive vector cloud. As scalar fields,
massive vector fields can form bound states around Kerr BHs, giving
rise to stationary clouds.

At the linear level and using the small coupling approximation,
it has been shown that the superradiant instability is triggered on
a timescale τI ∝ α−7 for vector clouds when compared to the scalar
case of τI ∝ α−9 [324–327]. Hence, vector clouds grow faster than their
scalar counterparts and the field’s mass mv needed to make them grow
in a timescale shorter than the cosmic age is much smaller, making
them more likely to be observed.

6.3.1 Setup

A massive vector field, or Proca field, Aµ is described by the La-
grangian

L = −1
4

FµνFµν − 1
2

µ2Aµ Aµ , (6.27)

with Aµ being the electromagnetic four-potential and satisfying the
Proca equation of motion

DµFµν = µ2Aν , (6.28)

where Fµν ≡ ∂µ Aν − ∂ν Aµ is the usual electromagnetic tensor. Usually
the Proca equation (6.28) can only be solved numerically if evaluated
on Kerr metric. However, if the Compton wavelength of the vector
field is much larger than the Schwarzschild radius rS, the bound states
of the field are said to be non relativistic and have an hydrogen-like
spectrum. Specifically, these states oscillate with frequency ω f ≃ µ

and the four-potential can be written as [328]

Aµ(t, x) =
1√
2µ

(
Ψµ(x)e−iω f t + c.c.

)
. (6.29)

In the limit r ≫ rg, one can assume that the field Ψµ varies on a
timescale µ−1 and hence that the components of its momentum are
non relativistic. In this approximation, the Proca equation becomes a
Schröedinger-like equation,(

ω2
f − µ2

)
Ψν ≃ −∇2Ψν + ω2(1 + g00)Ψν , (6.30)
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where the 00 component of the metric is given by g00 = −(1 − rS/r).
Hence, the equation takes its Schröedinger-like form which describes
the motion in a 1/r potential,

(ω f − µ)Ψν ≃ −∇2

2µ
Ψν +

α

r
Ψν , (6.31)

where we have introduced the dimensionless mass coupling α defined
in Eq. (6.8). Because of the Lorentz condition ∂t A0 ≃ ∂i Ai, the Ψ0

component can be expressed in terms of Ψi and one can solve Eq. (6.31)
only for the spatial components. Since the radial part of the potential
is spherically symmetric, Ψi can be decomposed as

Ψi = Rnℓ(r)Yℓ,jm
i (θ, ϕ) , (6.32)

where the Yℓ,jm
i (θ, ϕ) are the so-called pure-orbital vector spherical har-

monics and are the eigenfunctions of the orbital angular momentum
operator −r2∇2Yℓ,jm

i = ℓ(ℓ+ 1)Yℓ,jm
i [233, 329]. The radial functions

Rnℓ are instead hydrogen-like wavefunctions, labeled by the orbital
angular momentum index ℓ and the overtone number n.

The fundamental mode of the field, which is also the mode that
grows fastest due to superradiant mechanisms [328], is given by ℓ = 0,
m = j = 1 and n = 0. At leading order in α the term A0 can be
neglected and one can consider only the spatial components of the
field, which can be written as [330]

A1011
i = Ψ0e−

α2r
M• (cos(µt), sin(µt), 0) . (6.33)

Once the profile is known, the energy-momentum tensor can be com-
puted following Ref. [315], whose general form is given by

Tµν =
1
2
(

Fµσ F̄νγ + F̄µσFνγ

)
gσγ − 1

4
gµνFστ F̄στ

+
1
2

µ2 (Aµ Āν + Āµ Aν − gµν Aσ Āσ
)

.
(6.34)

Assuming the field is real (cfr. Eq. (6.33)) and taking the leading order
in α, i.e., neglecting all the spatial derivatives, one obtains

Tµν ≈
(

µΨ0e−α2r/M•
)2

×


1 0 0 0

0 cos(2µt) sin(2µt) 0

0 sin(2µt) − cos(2µt) 0

0 0 0 0

 . (6.35)

As done in Sec. 6.2, the energy density can be obtained taking the 00
component of Tµν and it reads

ρ =
Ψ2

0α2

M2
•

e−
2α2r
M• , (6.36)
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which coincides with the expression derived in Ref. [330].
One can integrate the energy density in (6.36) to relate the amplitude

of the field Ψ0 with the mass of the vector cloud, obtaining

Mcloud =
πΨ2

0M•
α4 . (6.37)

In Fig. 6.4 we report the density in Eq. (6.36) for different values of
α and Λ = 10−3, compared with S2 orbital range. As in the case of
scalar clouds, ρ only reaches its maximum in correspondence of S2
orbital range for some specific values of the coupling α.
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Figure 6.4: Energy density of Eq. (6.36) for different values of the coupling
α. As in the case of scalar cloud, ρ reaches its maximum in cor-
respondence of S2 orbital range only if specific values of α are
considered. Here Λ = 10−3.

Again, from the energy density in Eq. (6.36) one can get the potential
generated by the cloud solving Poisson’s equation: ∇2UV = 4πρ and
using the spherical harmonic decomposition of Ref. [236] to get:

UV =
Λ
r

(
M• − e−2rα2/M•

(
M• + rα2)) . (6.38)

6.3.2 Effects of the cloud on S2 orbit with osculating elements

We start our analysis of the effects of vector cloud on S2 motion
applying the method of osculating elements, following the treatment
of Poisson and Will [236]. The basic idea is to treat the effect of the
vector cloud as a perturbation of the Newtonian acceleration, assuming
that the Keplerian description of the orbit is still approximately true.

In this way, one is able to express the equations of motion in terms of
the Keplerian elements e, a, i, ω, Ω,M0 (that we recall to be eccentricity,
semi-major axis, inclination, argument of the periastron, longitude
of the ascending node and mean anomaly at epoch, respectively),
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which would be constant in a pure Newtonian setup, and see how the
perturbing force modifies them.

In order to do so, one needs to introduce a vectorial basis adapted
to the orbital motion of the binary system BH-S2: (n, λ, ez), where
n = r/r, ez = h/h with h := r × v, and λ is orthogonal to both n and
ez. One can also safely assume that the mass of the star is negligible
compared to the BH mass M• (their ratio being mS2/M• ∼ 10−5).

The perturbing force can be decomposed as:

f = Rn + Sλ +Wez . (6.39)

The variation of the orbital elements in terms of the perturbing force
components is given by [236, 331]

da
dt

= 2

√
a3

M•(1 − e2)
[e sin ϕR+ (1 + e cos ϕ)S ] , (6.40)

de
dt

=

√
a(1 − e2)

M•
[sin ϕR

+
2 cos ϕ + e(1 + cos2 ϕ)

1 + e cos ϕ
S
]

, (6.41)

dω

dt
=

1
e

√
a(1 − e2)

M•

[
− cos ϕR+

1 + 2e cos ϕ

1 + e cos ϕ
sin ϕS

−e cot i
sin(ω + ϕ)

1 + e cos ϕ
W
]

, (6.42)

di
dt

=

√
a(1 − e2)

M•

cos(ω + ϕ)

1 + e cos ϕ
W , (6.43)

sin i
dΩ
dt

=

√
a(1 − e2)

M•

sin(ω + ϕ)

1 + e cos ϕ
W , (6.44)

dM0

dt
= −

√
1 − e2

(
dω

dt
+ cos i

dΩ
dt

)
−
√

a
M•

2(e2 − 1)
(1 + e cos ϕ)

R, (6.45)

where the radial coordinate has been expressed as r = a(1 − e2)/(1 +
e cos ϕ).

Once the variation in time of the orbital elements is known, one can
compute the secular change of the orbital element µa over a complete
orbit using:

∆µa =
∫ 2π

0

dµa

dϕ
dϕ , (6.46)

where

dµa

dϕ
=

dµa

dt
dt
dϕ

(6.47)
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and

dϕ

dt
=

√
M•

a3(1 − e2)3 (1 + e cos ϕ)2 . (6.48)

Due to the spherical symmetry of the energy distribution in Eq. (6.36),
the only non-zero component of fV is the radial one:

RV =
Λ

M•r2

[
−M2

• + e−2rα2/M•
(

M2
• + 2M•rα2 + 2r2α4

)]
, (6.49)

while SV = WV = 0.
In Figure 6.5 the variation of the orbital elements ∆µa/Λ due to the

presence of the vector cloud for different values of the coupling α is
shown. The secular change is negligible for both the eccentricity e and
the semi-major axis a.

The change in the mean anomaly at epoch M0 is instead propor-
tional to α, increasing monotonically. M0 is directly related to the
time of pericenter passage tp: a larger mean anomaly at the epoch
corresponds to a later pericenter passage. The only meaningful change
in the orbital elements is found in ∆ω, which quantifies the precession
effect on the orbit. First of all, one can observe that ∆ω < 0 always.
This is a consequence of the fact that the presence of an extended mass
within the orbit of S2 would produce a retrograde precession in the
orbit [170].

Unsurprisingly, its maximum variation is found in the range

0.003 ≲ α ≲ 0.03 . (6.50)

Indeed, as in the case of scalar clouds, this behaviour is expected if
one computes the effective peak position of the energy distribution in
Eq. (6.36),

Rpeak =

∫ ∞
0 ρrdr∫ ∞
0 ρdr

=
M•
2α2 , (6.51)

which, for the values of α reported in Eq. (6.21), corresponds to

500 M• ≲ Rpeak ≲ 50000 M• , (6.52)

i.e., it roughly matches the orbital range of S2 (3 · 103 M• ≲ rs2 ≲
5 · 104 M•). This result shows that the maximum variation in ω is
found when the star crosses regions of higher (vector) density, while
its orbit remains basically unaffected if the cloud is located away from
its apoastron or too close to the central BH mass.

It is interesting to see how the previous results change if one in-
cludes the first PN correction to the equations of motion via Eq. (5.14).

This corresponds to have a total acceleration

a = −M•r
r3 + aV + a1PN , (6.53)
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Figure 6.5: Variation of the orbital elements ∆µa/Λ over an entire orbit for
different values of the coupling constant α when only the vector
cloud is present. The maximum variation in ∆ω/Λ is roughly
found in the range 0.003 ≲ α ≲ 0.03.

The decomposition of the acceleration in Eq. (5.14) into the basis
(n, λ, ez) has been done in Ref. [236] and it reads

R1PN =
M•
r2

(
4ṙ2 − v2 + 4

M•
r

)
,

S1PN =
M•
r2 (4ṙrϕ̇) ,

W1PN = 0 .

(6.54)

In order to express everything in terms of the orbital elements, one
can use the expression for the velocities reported in Ref. [236], i.e.,

ṙ =

√
M•

a(1 − e2)
e sin f , (6.55)

and

rϕ̇ =

√
M•

a(1 − e2)
(1 + e cos f ) (6.56)

where f is the true anomaly defined as f ≡ ϕ − ω.
In this second case Λ = 10−3 is set, which corresponds to the current

upper limit obtained by the GRAVITY collaboration for the fractional
mass of an extended mass distribution around SgrA* (see previous
Section and Ref. [167]).

In Figure 6.6 we show the variation of the orbital elements when the
first PN correction is included in the equations of motion. Opposite to
the previous case, here, the variation of the argument of the pericenter
∆ω can be either positive or negative, according to the value of α.
Indeed now the retrograde precession induced by the vector cloud is
compensated by the (prograde) Schwarzschild precession due to the
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Figure 6.6: Variation of the orbital elements ∆µa over an entire orbit for
different values of the coupling constant α when one includes
the Schwarzschild precession in the equation for the osculating
elements. Here Λ = 10−3. The maximum variation is still found
in 0.003 ≲ α ≲ 0.03.

1PN correction in the equations of motion, and its maximum value
corresponds to ∆ω ≃ −1.8′, which is smaller than the previous case
with Λ = 10−3 (∆ω ≃ −6′).

6.3.3 Constraints on the fractional mass Λ

As in the scalar cloud case, one can now perform the MCMC analysis
adding the fractional mass Λ to the list of fitting parameters in (5.19).
To do so, we follow the procedure explained in Sec. 5.3. In Figure 6.7
we report the best-fit values of Λ with relative 1σ uncertainties ob-
tained via the χ2 minimisation and we compare the range of α with
the effective peak position of the cloud in Eq. (6.51).

The smallest uncertainties for Λ are found roughly in the range of
Eq. (6.21), which is slightly different from the scalar cloud case and in
agreement with the orbital variation reported in Figure 6.6.

After performing the MCMC analysis, one can look for the MLE

Λ̂, that again corresponds to the value that maximises the posterior
density distribution reported in Figure 6.8, as a consequence of using
flat priors and a Gaussian likelihood.

In Table 6.2 the values of Λ̂ with relative 1σ uncertainties are re-
ported, together with the value of the Bayes factor log10 K evaluated
via Eq. (5.30). As in the scalar case, when the posterior distribution is
found to be non-normal and peaked at zero, the 1σ (3σ) confidence
interval are estimated looking for that value of Λ such that roughly
the 68% (99%) of P(Λα|D) lies below that value.

When α ≳ 0.03, the posterior of Λ starts to be flat, with a sudden
drop around Λ ≃ 10−2. One can show that for flat distributions
defined in an interval [a, b], the mean is given by (a − b)/2 while
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Figure 6.7: Best-fit values for Λ and relative 1σ uncertainties as function of
the coupling α obtained minimising the χ2. The grey dashed line
represents the effective peak position of the vector cloud given by
Eq. (6.51), while the orange band gives the orbital range of S2.

the variance is (b − a)2/12 [332]. These are the values reported in
Table 6.2. However, what is important to notice in these cases is that
for α ≳ 0.03 (Rpeak ≲ 550 M•), it is not possible to determine a unique
value for Λ that best fits the data, confirming the expectation from the
χ2 minimisation.

When α is in the range of Eq. (6.21) the posterior distributions of
Λ are Gaussian whose means and standard deviations are reported
in Table 6.2. For all cases considered in this range, Λ̂ ∼ 10−3 with 1σ

uncertainties roughly of the same order of magnitude. This makes all
the Λ̂ values derived from the MCMC analysis compatible with zero
within the 3σ confidence level. In addition to this, the associated Bayes
factors always have log K < 2. This result, according to the literature
[301], shows no statistical evidence in favour of the BH plus vector
cloud model with respect to the non-perturbative case in vacuum.
Hence, one can only derive an upper limit on the fractional mass of
Λ ≲ 10−3 at 3σ confidence level.

As opposed to the scalar case, the upper bound derived in this work
for vector clouds actually imposes a limit on the superradiant growth
of the cloud, that in general would lead to transfer up to ∼ O(10)%
of the BH mass into the vector cloud [311, 321, 333]. In this work we
showed that for a field’s effective mass of mv ∼ 10−19 − 10−18 eV, the
mass of the cloud around SgrA* can not exceed the limit Mcloud ≲
0.1%M•. Assuming a BH spinning with j ∼ 0.5 (an indicative value),
the growth timescale of the cloud can vary between 105 − 1010 yrs,
exact values depend on the effective mass mv. This estimate is below
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Figure 6.8: Posterior probability densities p(Λα|D) for different values of α.
Red dashed lines represent the mean value of the distributions
(which coincides with the MLE Λ̂), while orange bands correspond
to 1σ confidence level, such that ≈ 68% of p(Λα|D) lies in that
region.

the age of the Universe (tage ∼ 1010 yrs), making the superradiant
process and the above constraints relevant.

6.3.4 Environmental effects

All the above results are obtained neglecting the backreaction effects
of the matter on the motion of S2. Indeed, the presence of a matter
distribution induces a gravitational drag force on the body moving in
it, with the consequence that part of the material is dragged along the
motion producing a dynamical friction force on the main body [222,
334]. It has been shown that dynamical friction induced by ultralight
bosons may play a significant role in the strong regime [335, 336]. Here
we investigated whether dynamical friction affects S2 motion too.

In a Newtonian setup, including the dynamical friction force means
adding the following two components to the equations of motion
[337]:

FDF,r = FDF
ṙ
v

,

FDF,ϕ = FDF
rϕ̇

v
,

(6.57)

where v2 = ṙ2 + r2ϕ̇2, assuming that the motion of S2 happens on the
equatorial plane (θ = π/2) of the central SMBH.

The term FDF has been derived in Ref. [334] for a perturber in linear
motion and it reads

FDF = −4πm2
s2ρ

v2 Iv , (6.58)
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α Λ̂ log10 K

0.001 ≲ (0.51, 0.98) −0.45

0.003 0.03596 ± 0.01477 −2.09

0.005 0.00379 ± 0.00157 −3.11

0.008 0.00114 ± 0.00047 1.62

0.01 0.00088 ± 0.00036 1.42

0.02 0.00116 ± 0.00047 1.69

0.03 0.00688 ± 0.00263 −2.55

0.04 0.00617 ± 0.00337 −4.77

0.05 0.00592 ± 0.00339 −4.96

Table 6.2: MLE Λ̂ with associated 1σ error and Bayes factors log10 K for dif-
ferent values of α. The measurements for each α are not inde-
pendent (the same orbit was used to derive them) and therefore
cannot be combined to derive a more stringent upper limit. For
non-normal distributions we report Λ1 and Λ2 defined such that
P(Λα < Λ1|D) ≈ 68% and P(Λα < Λ2|D) ≈ 99% of P(Λα|D).

with

Iv =


1
2 log

(
1+v/cs
1−v/cs

)
− v

cs
, v < cs

1
2 log

(
1 − c2

s
v2

)
+ log

(
vt

rmin

)
, v > cs,

(6.59)

where ρ is the density of the matter distribution in Eq. (6.36), ms2 is
the mass of the star S2 which is taken to be ms2 = 14 M⊙ and cs is
the speed of sound in the medium which constitutes the environment.
Kim and Kim [338] showed that Eq. (6.58) correctly reproduces the
results obtained for circular orbits if one substitutes vt → 2r(t).

Despite the orbit of S2 is far from being circular, one can still use
Eqs. (6.57) in a first approximation.

To have a complete understanding, four different values of the speed
of sound cs for both the supersonic (cs = 10−6, cs = 10−3) and the
subsonic (cs = 0.1, cs = 0.03) regimes were tested.

We set Λ = 10−3 since it corresponds to the maximum allowed
value of the fractional mass and we tested different values of α.

Results are basically independent on cs and the maximum difference
in both the astrometry and the radial velocity with respect to the case
where no dynamical friction is implemented is found to be always
negligible.

In Figure 6.9 we report the absolute difference in DEC, RA and RV in
the supersonic case with cs = 10−3 and different values of α. Overall,
the effect of dynamical friction is at most 10−5 mas in the astrometry
and ≈ 10−3 km/s in the RV, and in both cases is reached around
periastron passages. Overall, it remains well below the current (and
future) instrument precision and can be neglected.
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Figure 6.9: Absolute difference in DEC, RA and RV between the case where
dynamical friction is implemented in the supersonic case with
cs = 10−3 and the case where no dynamical friction is present.
Here Λ = 10−3. The difference is maximum around the perias-
tron passages and minimum at the apoastron (black dotted line).
Overall, they remain far below the current instrument threshold.

The same analysis is performed considering the scalar cloud model
implemented in Sec. 6.2 and the Plummer density profile (2.7) tested
in Ref. [167]. In both cases, results are similar to those of Figure 6.9,
leading to the conclusion that dynamical friction effects can be safely
neglected.

Along the same line, one can try to compute the effect that regular
gas around SgrA* has on S2 orbit. Gillessen et al. [339] detected a drag
force acting on the gas cloud G2 and they derived an estimate for
the number density of the gas ambient. Here we used their same
formulation for the drag force, meaning

Fdrag = cDr−γv2ms2 , (6.60)

where γ = 1, v is the relative velocity between the medium and the
star, that, following Ref. [339], is assumed to be equal to the velocity
of the star itself. cD parametrizes the strength of the drag force and
it is related to the normalised number density of the gas ambient.
Gillessen et al. [339] derived cD ∼ 10−3 studying the gas cloud G2,
and this is the value used in this work as well. In this case no vector
cloud is present (Λ = 0) and only the force contribution due to the
presence of gas is considered.

The maximum difference induced by the drag force exerted by
the gas ambient on the astrometry and the radial velocity of S2 is
of order ∼ 10−6 mas and ∼ 10−3 km/s, respectively. Hence, also the
contribution due to regular gas around SgrA* has a negligible effect on
S2.

We also note that the difference induced by the presence of gas
is comparable with the effect produced by dynamical friction. As a
consequence, even with the development of future instruments and
the advent of GRAVITY+, it will still be hard to disentangle the two
effects.
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6.3.5 Discussion

In this work we continued the analysis of superradiant clouds clus-
tered around SgrA*. Specifically, a massive vector field is considered,
which gives rise to a spherically symmetric cloud. The MCMC anal-
ysis confirmed the current upper bound for the fractional mass of
Λ ≲ 0.1%M•, recovering previous results on extended masses [167,
340]. Despite the values of the mass of the field that one can actually
test with S2 motion is roughly the same in both the scalar and vector
cloud case, in the latter these values can effectively engage a super-
radiant instability in a timescale smaller than the cosmic age. This
strongly constrains the mass of a possible superradiant cloud at the
GC, improving the theoretical bound that leads to have masses up to
two order of magnitude larger [311, 321, 333].

Also, the effect of the environment on S2 orbit was investigated for
the first time. Both the dynamical friction exerted by the medium on
the star and the effect of ambient gas around SgrA* were considered. In
both cases, the effect on the astrometry and the RV of S2 are negligible.

This analysis was also extended to the scalar cloud case in Sec. 6.2
and to the Plummer profile, showing that even in those cases both ef-
fects can be neglected. However, since the difference in the astrometry
and the RV induced by those effects is of the same order of magnitude,
it will be difficult to separate them even with the advent of GRAVITY+.



7
T E S T I N G E X T E N D E D T H E O R I E S O F G R AV I T Y

As mentioned in the introductory chapter, GR is a successful theory
of gravity whose predictions have been largely tested at Solar System
scales and that perfectly reproduces current observations in GWs
astronomy and binary pulsars [28]. Although no significant deviation
from GR has been currently detected, there are observational evidences,
such as the rotational curve of galaxies or gravitational lensing effects
[37], that can not be explained by means of GR only.

One way to address these inconsistencies is to directly modify GR,
such that the gravitational potential in the weak field limit becomes
scale dependent with the introduction of a so-called "fifth force". The
latter emerges in the weak field limit as a Yukawa-like modification of
the Newtonian potential, which naturally depends on the length scale
considered.

Due to the high impact that a discovery of a fifth force would have,
the presence of a Yukawa modification has been largely investigated in
the past. The strongest constraints come from the Lunar Laser Ranging
[341] and the motion of planets in the Solar System [342, 343].

The discovery of orbiting stars around the GC [161, 344–348], all
located within one arcsecond distance from the SMBH, SgrA*, allows to
test GR in a completely different environment from the Solar System.

The importance of such a test resides in the fact that many ETGs
may suffer from a screening mechanism, which turns the field proper-
ties into environment-dependent quantities. The general idea is that
the effective potential felt by the extra field introduced in the theory
depends explicitly on the environment. This dependence can either be
incorporated in the effective mass of the field, like the chameleon
mechanism [349], in the coupling to matter, like the symmetron
mechanisms [349] or in the kinetic function, as in the Vainshtein
mechanisms [350]. All these examples only concern scalar fields, but
screening mechanisms for vector and tensor fields have been also
proposed [351, 352]. In all cases, the extra field becomes ineffective in
the local universe, making it unobservable.

Several works have used either mock data or the measurement of
SP in S2 orbit to test the strength of a possible Yukawa interactions
[197, 353–358] also including the presence of an (expected) bulk mass
distribution around SgrA* [359].

97
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In this chapter S2 data will be used to constrain the intensity of a
possible Yukawa correction to the Newtonian force. Although we do
not expect our results to deviate consistently from the literature, a full
analysis of S2 motion including GRAVITY data, that dominate the χ2

due to their very small uncertainties, is still missing and, as we will
see, allows to put much stringent constraints than previous estimates
(e.g. those obtained by the UCLA group in 2017 [360]). The results
presented here are still work in progress and have only been partially
checked by the Collaboration.

7.1 setup

7.1.1 Yukawa-like potential

A Yukawa-like interaction emerges quite naturally in the weak field
limit of several ETGs, e.g. Scalar-Tensor-Vector theories [193], massive
gravity theories [361, 362], theories in higher dimensions with Kaluza-
Klein compactification [363, 364], massive Brans-Dicke theories [365,
366] or f (R) theories [367]. But the fifth-force scenario also appears in
some specific models for DM [368–370].

The Yukawa-like potential will look like

U = −M•
r

(
1 + αe−r/λ

)
, (7.1)

where α represents the strength of interaction and λ is a scale param-
eter which depends on the specific theory considered. For instance,
when new massive fields are included in the theory, λ represents the
Compton wavelength of the field, which is related to its mass via
mφ = h/cλ.

The parameter α is well constrained at Solar System scales and on
Earth-based laboratories [342, 371, 372], with very stringent upper
bounds in the range 107 ≲ λ ≲ 1014 m. In the context of S-stars, a
previous study of the Yukawa-like potential using the motion of S2 has
been performed by the UCLA group [360], considering a scalelength
range 1012 ≲ λ ≲ 1014 m. The more stringent upper bound is found
to be |α| < 0.016 for λ = 150 AU (∼ 2.2 · 1013 m), while the same
upper limit becomes broader for smaller and larger values of λ (cfr.
Figure 7.4).

7.1.2 1PN correction and Yukawa interaction

Recently, Jovanović et al. [373] constrained the parameters of the poten-
tial in Eq. (7.1) using S-stars and assuming that at first PN order both
the GR and the Yukawa contributions are present, the latter acting as a
correction to the observed SP. Despite a formal PPN parametrization
is not possible when a massive field and a Yukawa correction are
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Figure 7.1: Posterior probability densities P(α|D) for different values of the
scalelength λ. Red posteriors represent the Keplerian case in
Sec. 7.1.1 while black posteriors correspond to the 1 PN case of
Sec. 7.1.2.

present [366], one can still derive the equations of motion assuming
the GR parameters, γ = β = 1. The latter assumption comes from the
estimates obtained by different experimental observations (see e.g. [28,
236]) and it is valid for those ETGs which are indistinguishable from
GR at first PN order.

The total acceleration felt by the star can be expressed as:

atot = aNew + aYuk + a1PN (7.2)

where the contribution given by aNew + aYuk is derived from the po-
tential in Eq. (7.1), while a1PN is reported in Eq. (5.14).

In both cases the dataset used is the one reported in Sec. 5.1, while
the fitting method is explained in Sec. 5.3, where the parameter α is
added to the list in (5.19) and the length scale λ is kept fixed, picking
almost equally spaced values in the range 1011 ≤ λ ≤ 1019 m.

7.2 constraints on the strength of the fifth force

In Figure 7.1 we report the posterior distributions P(α|D) for different
fixed values of the scalelength λ obtained by emcee, comparing the se-
tups of Sec. 7.1.1 and Sec. 7.1.2. When λ ≤ 1012 m the posterior P(α|D)

is flat in the full range 0 < |α| < 1 in both cases, with uncertainty
of order σα ∼ 10−1. One can understand this result in terms of the
precession effect that the Yukawa potential induces in the orbit of S2.

Following Ref. [374] one can compute the precession angle in a full
orbit as

∆ϕp = − 2L
M•e2

∫ 1

−1

dz z√
1 − z2

dU(z)
dz

, (7.3)

where U(z) is the perturbing potential at radius r = L/(1 + ez) with
L = a(1 − e2).



100 testing extended theories of gravity

When λ = 1011 − 1012 m, the precession angle ∆ϕp ∼ 0 for any
value of α and hence it has no detectable effect on the orbit.

When the length scale becomes comparable with S2 orbital range
(λ = 1013 − 1014 m) the effect on the orbit is maximised and one can
clearly see the difference between the two cases: if only the Yukawa
potential is present, the posterior P(α|D) is a Gaussian distribution
with mean around α ∼ 0.002, which corresponds to have ∆ϕp ∼ 0.12◦.
Taking the most up-to-date value of the SP reported in Ref. [167],
∆ϕSch = 12.1′× (0.99± 0.15) = (0.20± 0.03)◦, one can see that the pre-
cession angle induced by the Yukawa potential is compatible, within
the 3σ uncertainties, with ∆ϕSch. In the absence of the first PN correc-
tion in the equations of motion the prograde precession detected in S2
[219] is compensated by the presence of the Yukawa potential.

Indeed, when the 1 PN correction is included as reported in Sec. 7.1.2,
the posterior of α for the same λ becomes peaked around 0 with
uncertainty σα ∼ 10−4.

What is probably the most interesting result of this analysis appears
in correspondence of larger length scales. For λ > 1015 m, and in both
the Newtonian and the 1 PN case, the posteriors P(α|D) are flat in
the interval 0 < α ≲ 0.012 with a sudden drop in correspondence of
this upper limit. For such lengthscales the precession effects is smaller
than ∆ϕSch for any value of α and thus one expects to recover a flat
distribution as in the first two cases considered.

However, there are reasons to believe that this is not a numerical
artefact that follows from the failure of the MCMC analysis, but rather
a consequence of the exponential growth of the χ2 in correspondence
of α ≳ 10−2, even if one allows the other parameters to vary in a larger
parameter space. This is shown in Figure 7.2, where the quantity χ2/2
is reported as function of α.

To obtain this plot, we firstly fix the value of the length scale to
be λ = 1018 m, then 100 values of the parameters in Eq. (5.19) are
randomly extracted from the posterior distributions obtained by emcee

and, keeping α fixed, the χ2 is computed. Afterwards, for each value
of α, the mean and the standard deviation of the 100 χ2 are computed
and reported in the plot. In this way one is able to estimate the
fluctuations of the likelihood due to the variation of other parameters
too, not only α. Indeed, the exponential increase starts more or less
in correspondence of the upper limit found by emcee, α ∼ 0.01,
represented by the red dashed line.

In other words, the best-fit parameters describing S2 orbit are not
compatible with a fifth force having an intensity larger than α ∼ 0.01
at 3σ confidence level, whatever is the length scale considered.

The independence of the results from the parameter λ can be under-
stood in terms of the acceleration felt by the star in its orbital range. As
can be seen from Figure 7.3, the absolute difference in the acceleration
∆atot with respect to the case with λ = 1016 m is of order 10−8 m/s2
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Figure 7.2: χ2/2 computed for 100 values of the parameters in Eq. (5.19)
randomly extracted from their posterior distributions, for any
value of α, which is kept fixed. The red dashed line represents
the upper limit found by emcee above which values of α are not
sampled anymore.

for each value of λ tested, much below current instruments’ precision.
Therefore, one does not expect the results to change for λ ≥ 1016 m.
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Figure 7.3: Difference in the acceleration in S2 orbital range. Here the differ-
ence is computed with respect to the acceleration felt by the star
when λ = 1016 m. Here α = 0.02, but results scale with α.

In Figure 7.4 we reported the 95% confidence interval on α as
function of λ considering the 1 PN case, since we assumed that the
prograde precession detected in S2 orbit is indeed caused by the SP.
Compared to the similar analysis performed by Hees et al. [360] one
can see that the precision of the GRAVITY instrument allows for much
more stringent bounds on α, reaching a plateau of order 10−2 for larger
values of λ and constraining scale lengths that have not been explored
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Figure 7.4: 95% confidence interval on α as function of the scalelength λ
using GRAVITY data (red dots) and compared with results in
Ref. [360] (blue dots).

before with Earth-based experiments [342]. For 70 ≲ λ ≲ 700 AU,
which roughly corresponds to S2 orbital range, one can place an upper
limit of |α| < 0.001 at 95% confidence interval, improving the previous
estimate by Hees et al. [360] by roughly one order of magnitude.

If one assumes that the interaction is mediated by a massive boson,
the scale length λ corresponds to the Compton wavelength of the
particle and hence an upper limit on the graviton’s mass can be derived.
Specifically, since α = 1 is excluded at 95% confidence level up to λ ∼
1019 m, this can be seen as a lower limit on the graviton’s wavelength,
that translates in an upper limit on the mass mg ≲ 10−26 eV.

If confirmed, those results would not only improve the current upper
limit on α in the regions of the GC that S2 can actually probe, but they
would also significantly enlarge the parameter space tested. Moreover,
in the context of massive gravity, the upper limit on the graviton’s mass
derived in this work would be ∼ 3 orders of magnitude more stringent
than the current upper limit derived by the LIGO-Virgo Collaboration
(mg ≲ 10−23 eV) [375], underlying once again the incredible power of
GRAVITY’s high-precision astrometry .
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C O N C L U D I N G R E M A R K S

With the advent of high technology instruments and pioneering exper-
iments, the gravitational physics field has seen an enormous increase
in the available data sources in the last decades. This huge amount
of data must be exploited to the full to try to answer those questions
about the Universe and the theory of gravity that remain unanswered
to this day.

Throughout this work we have shown how studying the motion of
a test particle in a certain gravitational background can potentially
help to determine the features of the background itself. Studying the
geodesic motion in the strong field regime of gravity we showed the
potential signatures due to the presence of an hidden compact com-
panion generating a tidal field, while solving the geodesic equations
for null particles in the Schwarzschild geometry helped us understand
the behaviour of luminosity as seen by a distant observer. The latter
analysis showed that current and future EHT measurements will not be
able to distinguish between an actual BH and a so-called BH-mimicker,
i.e., an horizonless compact object.

In this context it would be particularly interesting to extend the
analysis to rotating BHs, showing explicitly the role played by the spin
on the observed luminosity and how it affects the measurements.

In the second part of this thesis we focused on the GC and star
S2, that constitute the perfect laboratory to look for DM and unveil
possible deviations from GR. We exploited the knowledge on profiles
describing a scalar or vector field coupled to the gravity sector to
determine an upper limit on the extended mass of a boson cloud
around SgrA*. This analysis also placed a limit on the superradiant
growth of vector clouds at the GC, restricting it by at least two orders
of magnitude with respect to what is expected theoretically.

In the same context we also investigated the presence of a possible
fifth force in the Universe, which emerges as the weak field limit of
many ETGs and also as a possible DM model. The exquisite precision
of the GRAVITY instrument allowed us to place much stringent con-
straints on the intensity of such a force than previous results on the
topic [360], showing the importance of performing these tests with
high precision instruments.
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One of the next goals will be to extend the analysis on the Yukawa
potential to other stars in the S-cluster, once that the preliminary results
reported in this thesis have been confirmed. Due to the spherical
symmetry of the potential, this operation is quite straightforward to
perform and it requires only the time to implement and adapt the
fitting code.

The importance of fitting multiple stars resides in the specific form
that the Yukawa potential has. Indeed, as we have seen in Chapter 7,
when fitting orbits to derive constraints on the intensity α, the spatial
length-scale λ must be fixed to a specific value. The orbital range of
S2 allowed us to place a very stringent constraint of |α| ≲ 10−3 for
λ = 1013 − 1014 m, while the same limit becomes broader for larger
and shorter length scales. In this sense, including more stars with
different orbital ranges in the fit will improve the constraint on α also
at different spatial lengths than those proved by S2. Considering the
available data at the moment of writing one can expect to improve the
constraints on α at least up to λ ∼ 1015 m.

The future appears even brighter, with several experiments on their
way to be launched and the update GRAVITY+ on its way to be
completed. The increase in capability and the extended field of view
of GRAVITY+ will increase the number of observed stars at the GC,
aiming to find fainter and closer objects to SgrA*.

While it is clear what kind of orbital parameters the star must have in
order to finally measure SgrA* spin [210], what it is still being debated
is the way in which astrometric and spectroscopic measurements
should be treated in relativistic settings. With the implementation
of the 1.5 PN equations of motion, needed to determine the BH spin,
the latter topic becomes of fundamental importance and must be
addressed in the incoming future in order to find a common strategy
and consistent results [292, 297].

Still remaining in the context of stellar motion, the setup developed
in this thesis can be easily extended to test different DM models,
especially when the issues mentioned above will be solved and a full
GR setup can be considered. Illustrative examples are BHs immersed
in a DM halos [376, 377] or BHs in a DM spike [378].

Besides the follow-up of stellar motions, GRAVITY+’s key science
case is to track the motion of hot gas in the immediate vicinity of the
BH event horizon, the so-called flares of radiation at the GC [115, 120].
Being so close to the SMBH, hot spots might also be used as probes of
strong gravity features, in particular light bending, i.e., the extreme
gravitational lensing effects that lead to the existence of an infinite
sequence of mirror images of an orbiting hot spot. These multiple
images have a tiny impact on the observables, and only the secondary
image might be potentially detectable.

In this context, it would be interesting to study the observable
impact of the secondary image of GC flares, using three observables:
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the astrometry, the light curve and the linear polarization evolution.
The importance of observing secondary images resides in the fact that
they carry important information about the BH geometry, specifically
on the inclination angle of the BH axis and the magnitude of its spin. It
would be extremely exciting, albeit not easy at all, to detect secondary
images and combine observations at event horizon scales and stellar
motion scales in order to obtain an estimate on SgrA* spin, in the same
way it has been done for its mass and distance from Earth.

Overall, the development of pioneering experiments such as GRAV-
ITY+ and the new generation EHT, together with advanced GWs in-
terferometry, will create the perfect experimental array to tackle the
current problems in the theory of gravity and understand a little more
on what nowadays still remains dark.



Part III

A P P E N D I X





A
G E O D E S I C S I N M A J U M D A R - PA PA P E T R O U
S PA C E T I M E S

There is a solution known in closed form, describing a regular and
asymptotically flat BH binary spacetime geometry: it is known as the
Majumdar-Papapetrou geometry and describes a pair (or more) of
charged, extremal BHs. The BHs feel no force as they are extremal: their
gravitational attraction is exactly canceled by an electrostatic repulsion.
In isotropic cylindrical coordinates the geometry reads

ds2 = − 1
U2 dt2 + U2 (dρ2 + ρ2dϕ2 + dz2) , (A.1)

where

U = 1 +
m1√

ρ2 + (z + a)2
+

m2√
ρ2 + (z − a)2

. (A.2)

Studies similar to that in the main body of this work were done in the
context of such a spacetime [226–228]. Following their analysis, we
find the following corrections for the ISCO frequency of an extremal
BH of mass M perturbed by a companion of mass Mc at a distance
R = 2a

MΩISCO =

√
3

16

(
1 − Mc

2R

)
, (A.3)

MΩLR =
1
4

(
1 − Mc

2R

)
. (A.4)

These results have no approximation other than assuming a large
separation R. As one can see, the correction to the ISCO or LR frequency
has a scaling with ϵ (or equivalently, with distance R) different from
that found in Chap. 3 for neutral binaries. The disagreement can be
traced back to the monopolar and dipolar components, and indirectly
to the fact that this is not a purely gravitational system.

To see this, perform a translation of the z coordinate, z → z′ − a and
change from (ρ, z′) coordinates to the usual spheroidal coordinates
(riso, θ), to find

U = 1 +
m1

riso
+

m2

|riso − 2a| . (A.5)
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Use the same Laplace expansion in (3.13) to expand the second term,
but now neglect the monopole ℓ = 0 and the dipole ℓ = 1 terms,
finding

U = 1 +
m1

riso
+

m2

(2a)3 r2
isoY∗

ℓm(θ2, ϕ2)Yℓm(θ, ϕ) , (A.6)

where again (θ2, ϕ2) are the angular coordinates of the second mass
m2 in the new reference frame. We now want to express the metric in
the new coordinates using the relations ρ → (r − m1) cos θ and z →
(r − m1) sin θ, where r is the non-isotropic coordinate riso = r − m1. To
make contact with the approach in Chap. 3, set ℓ = 2 in the harmonic
expansion, fix the equatorial plane θ = π/2 and specify the angular
coordinates of m2, which correspond to the polar case (θ2, ϕ2) = (0, 0).
Assume large separations, a ≫ 1, and expand the metric in powers of
(1/a) up to O(1/a4). We then find the leading correction

m1ΩISCO =

√
3

16

(
1 +

m2

R3

)
, (A.7)

which is now in perfect agreement (scaling-wise) with the main body,
for neutral binaries. In conclusion, the Majumdar-Papapetrou space-
time does affect the geodesics in a different way, which can be ascribed
to the spacetime not describing two BHs bound and evolving solely
under the gravitational interaction.



B
L I G H T R I N G R E L A X AT I O N P R O P E RT I E S

To derive Eq. (3.41) let’s focus on the Schwarzschild geometry written
in standard coordinates,

ds2 = − f dt2 + f−1dr2 + r2(dθ2 + sin2 θdφ2) (B.1)

with f = 1 − 2M/r.
Take a null particle on the circular orbit at r = rc = 3M and perturb

it, so that r = 3M + δ. The motion of the particle is controlled by
ṙ2 = V. Expanding the potential close to the LR, one finds

δ̇2 = V(rc) + V ′(r − rc) +
(r − rc)2

2
V ′′ + ... (B.2)

where the prime represents a derivative with respect to the radial
coordinate. By definition of circular orbit, the first two terms vanish.
Thus, one gets

δ̇2 =
δ2

2
V ′′ . (B.3)

Now dδ/dτ = ṫdδ/dt, therefore one can write

dδ/dt
δ

=

(
V ′′

2ṫ2

)1/2

, (B.4)

which has solution

δ ∼ δ0eλL t , (B.5)

λL =

(
V ′′

2ṫ2

)1/2

. (B.6)

where λL is exactly the Lyapunov exponent in Eq. (3.41) and for
Schwarzschild spacetime it reads λL = 1/3

√
3M = ΩLR.
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C
A N I S O T R O P I C A L LY- E M I T T I N G S TA R

In this Appendix we provide some details on the calculation of the
emission of isotropic stars reported in Chap. 4. In order to so so, one
needs to describe the physics as seen by a freely-falling observer. The
following builds on - and agrees with - Refs. [1, 379, 380].

Let consider two different observers: a static observer, i.e., char-
acterised by a wordline with r = θ = φ = const. and a free-falling
observer, who starts from rest at spatial infinity and has a purely radial
motion.

Start first with an observer at rest on the equatorial axis ({r, θ, φ} =

{re, π/2, arbitrary}) in a proper reference frame with basis

ω t̂ = eνdt , ωr̂ = e−νdr , ω φ̂ = rdφ . (C.1)

If one considers a photon emitted by a source at rest at infinity and
received by the observer, its geodesic motion is fully determined by its
energy E and its impact parameter b. The components of the photon’s
four momentum read:

pt = −e2ν ṫ = −E , pφ = r2 φ̇ = L ≡ bE ,

pr = e−2νṙ = A e−2νE , A2 ≡ 1 − b2r−2e2ν , (C.2)

We must now compute the pt̂ component of the momentum in the
observer’s reference frame. From Eq. (C.1) one gets

dt = e−νω t̂ , dr = eνωr̂ , dφ = r−1ω φ̂ , (C.3)

and hence

pt̂ = −e−ν pt , pr̂ = eν pr = A E e−ν . (C.4)

The ratio of observed to emitted energy is then

pt̂

E
= e−ν . (C.5)

Moreover, the observer sees the null rays come in at an angle α

relative to its radial direction given by

cos α = − pr̂

pt̂
= −A . (C.6)
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Here, α is the angle between the propagation direction and the radial
direction and it is defined as cos α = vr̂, where vr̂ is the velocity of the
massless particle relative to the observer’s reference frame,

vr̂ =
|grr|1/2dr/dλ

|g00|1/2dt/dλ
. (C.7)

Consider now free-falling observers. The basis one-forms of their
proper reference frame are

ω t̂ = dt + xe−2νdr , ωr̂ = xdt + e−2νdr , (C.8)

with x = (2m/re)1/2. When a photon with energy at infinity Eo and
impact parameter b reaches the observer at r = re and θ = π/2,
its four momentum is given by (C.2). On the other hand, infalling
observers will see the photon comes in with an energy pt̂ = ω t̂ · p and
an angle α = cos−1(−pr̂/pt̂) to the radial direction. As before, using
(C.8) we get

dt =
−ω t̂ + ωr̂x

x2 − 1
, dr =

e2ν(−ωr̂ + ω t̂x)
x2 − 1

. (C.9)

Hence, we recover the results of Ref. [379]

cos α = −
(

pr̂

pt̂

)
= − x + a

1 + ax
, (C.10)

pt̂

E
= −1 + ax

x2 − 1
=

1
1 + x cos α

, (C.11)

b
re

= sin α e−ν = sin α

(
pt̂

E

)
=

sin α

1 + x cos α
. (C.12)



D
C O R N E R P L O T S

In this Appendix the correlations between the fitted parameters re-
ported in (5.19) together with the fractional mass Λ, are shown using
corner plots, namely the one and two-dimensional projections of the
samples collected with emcee that reveal the covariances between
parameters.

d.1 scalar cloud case

The corner plots for two representative values of α (α = 0.01 and
α = 0.001) are shown in Figures D.1-D.2 for the scalar cloud case in
Sec. 6.2. Those plots show the behaviour of the parameters when the
cloud is located in and outside S2’s orbital range, respectively.

The strong correlation between Λ and the periastron passage tp

when α = 0.01 can be understood following the argument of Heißel
et al. [170]: the presence of an extended mass will induce a retrograde
precession in the orbit that will result in a positive shift of the perias-
tron passage time, needed to compensate the (negative) shift in the
initial true anomaly. Indeed, when considering the SP, which instead
induces a prograde precession (hence a positive initial shift in the true
anomaly), tp will undergo a negative shift, as can be seen from the
strong anti-correlation between fSP and tp reported in Ref. [166].

d.2 vector cloud case

The corner plots for two representative values of α (α = 0.01 and
α = 0.001) are shown in Figures D.3-D.4 for the vector cloud case in
Sec. 6.3. Those plots show the behaviour of the parameters when the
cloud is located in and outside S2’s orbital range, respectively.

Considerations on correlations between parameters of the previous
section apply to this case as well.
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Figure D.1: Corner plot of the fitted parameters with fSP = 1 and α = 0.01
when a scalar cloud is present. Dashed lines represent the 0.16,
0.50 and 0.84 quantiles of the distributions.
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Figure D.2: Corner plot of the fitted parameters with fSP = 1 and α = 0.001
when a scalar cloud is present. Dashed lines represent the 0.16,
0.50 and 0.84 quantiles of the distributions.
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Figure D.3: Corner plot of the fitted parameters with fSP = 1 and α = 0.01
when a vector cloud is present. Dashed lines represent the 0.16,
0.50 and 0.84 quantiles of the distributions.
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Figure D.4: Corner plot of the fitted parameters with fSP = 1 and α = 0.001
when a vector cloud is present. Dashed lines represent the 0.16,
0.50 and 0.84 quantiles of the distributions.



B I B L I O G R A P H Y

[1] Charles W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation.
San Francisco: W. H. Freeman, 1973. isbn: 978-0-7167-0344-0,
978-0-691-17779-3.

[2] Robert M. Wald. General Relativity. Chicago, USA: Chicago Univ.
Pr., 1984. doi: 10.7208/chicago/9780226870373.001.0001.

[3] R. Giacconi et al. “Discovery of Periodic X-Ray Pulsations in
Centaurus X-3 from UHURU.” In: 167 (July 1971), p. L67. doi:
10.1086/180762.

[4] B. P. Abbott et al. “Observation of Gravitational Waves from
a Binary Black Hole Merger.” In: Phys. Rev. Lett. 116.6 (2016),
p. 061102. doi: 10.1103/PhysRevLett.116.061102. arXiv: 1602.
03837 [gr-qc].

[5] Werner Israel. “Event horizons in static vacuum space-times.”
In: Phys. Rev. 164 (1967), pp. 1776–1779. doi: 10.1103/PhysRev.
164.1776.

[6] B. Carter. “Axisymmetric Black Hole Has Only Two Degrees
of Freedom.” In: Phys. Rev. Lett. 26 (1971), pp. 331–333. doi:
10.1103/PhysRevLett.26.331.

[7] Remo Ruffini and John A. Wheeler. “Introducing the black
hole.” In: Phys. Today 24.1 (1971), p. 30. doi: 10 . 1063 / 1 .

3022513.

[8] Werner Israel. “Event horizons in static electrovac space-times.”
In: Commun. Math. Phys. 8 (1968), pp. 245–260. doi: 10.1007/
BF01645859.

[9] Robert M. Wald. “Final States of Gravitational Collapse.” In:
Phys. Rev. Lett. 26 (26 1971), pp. 1653–1655. doi: 10.1103/
PhysRevLett.26.1653. url: https://link.aps.org/doi/10.
1103/PhysRevLett.26.1653.

[10] R. Abbott et al. “GWTC-3: Compact Binary Coalescences Ob-
served by LIGO and Virgo During the Second Part of the Third
Observing Run.” In: (Nov. 2021). arXiv: 2111.03606 [gr-qc].

[11] R. Abbott et al. “GW190814: Gravitational Waves from the
Coalescence of a 23 Solar Mass Black Hole with a 2.6 So-
lar Mass Compact Object.” In: Astrophys. J. Lett. 896.2 (2020),
p. L44. doi: 10.3847/2041-8213/ab960f. arXiv: 2006.12611
[astro-ph.HE].

118

https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.1086/180762
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRev.164.1776
https://doi.org/10.1103/PhysRev.164.1776
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1063/1.3022513
https://doi.org/10.1063/1.3022513
https://doi.org/10.1007/BF01645859
https://doi.org/10.1007/BF01645859
https://doi.org/10.1103/PhysRevLett.26.1653
https://doi.org/10.1103/PhysRevLett.26.1653
https://link.aps.org/doi/10.1103/PhysRevLett.26.1653
https://link.aps.org/doi/10.1103/PhysRevLett.26.1653
https://arxiv.org/abs/2111.03606
https://doi.org/10.3847/2041-8213/ab960f
https://arxiv.org/abs/2006.12611
https://arxiv.org/abs/2006.12611


bibliography 119

[12] M. Bailes et al. “Gravitational-wave physics and astronomy in
the 2020s and 2030s.” In: Nature Rev. Phys. 3.5 (2021), pp. 344–
366. doi: 10.1038/s42254-021-00303-8.

[13] Avery E. Broderick et al. “Testing the No-Hair Theorem with
Event Horizon Telescope Observations of Sagittarius A*.” In:
Astrophys. J. 784 (2014), p. 7. doi: 10.1088/0004-637X/784/1/7.
arXiv: 1311.5564 [astro-ph.HE].

[14] Tim Johannsen et al. “Testing General Relativity with Accretion-
Flow Imaging of Sgr A*.” In: Phys. Rev. Lett. 117.9 (2016),
p. 091101. doi: 10 . 1103 / PhysRevLett . 117 . 091101. arXiv:
1608.03593 [astro-ph.HE].

[15] Kazunori Akiyama et al. “First M87 Event Horizon Telescope
Results. I. The Shadow of the Supermassive Black Hole.” In:
Astrophys. J. Lett. 875 (2019), p. L1. doi: 10.3847/2041-8213/
ab0ec7. arXiv: 1906.11238 [astro-ph.GA].

[16] Kazunori Akiyama et al. “First M87 Event Horizon Telescope
Results. II. Array and Instrumentation.” In: Astrophys. J. Lett.
875.1 (2019), p. L2. doi: 10.3847/2041-8213/ab0c96. arXiv:
1906.11239 [astro-ph.IM].

[17] Kazunori Akiyama et al. “First M87 Event Horizon Telescope
Results. III. Data Processing and Calibration.” In: Astrophys.
J. Lett. 875.1 (2019), p. L3. doi: 10.3847/2041-8213/ab0c57.
arXiv: 1906.11240 [astro-ph.GA].

[18] Kazunori Akiyama et al. “First M87 Event Horizon Telescope
Results. IV. Imaging the Central Supermassive Black Hole.”
In: Astrophys. J. Lett. 875.1 (2019), p. L4. doi: 10.3847/2041-
8213/ab0e85. arXiv: 1906.11241 [astro-ph.GA].

[19] Kazunori Akiyama et al. “First M87 Event Horizon Telescope
Results. V. Physical Origin of the Asymmetric Ring.” In: As-
trophys. J. Lett. 875.1 (2019), p. L5. doi: 10.3847/2041-8213/
ab0f43. arXiv: 1906.11242 [astro-ph.GA].

[20] Kazunori Akiyama et al. “First M87 Event Horizon Telescope
Results. VI. The Shadow and Mass of the Central Black Hole.”
In: Astrophys. J. Lett. 875.1 (2019), p. L6. doi: 10.3847/2041-
8213/ab1141. arXiv: 1906.11243 [astro-ph.GA].

[21] Kazunori Akiyama et al. “First Sagittarius A* Event Horizon
Telescope Results. I. The Shadow of the Supermassive Black
Hole in the Center of the Milky Way.” In: Astrophys. J. Lett.
930.2 (2022), p. L12. doi: 10.3847/2041-8213/ac6674.

[22] Kazunori Akiyama et al. “First Sagittarius A* Event Horizon
Telescope Results. II. EHT and Multiwavelength Observations,
Data Processing, and Calibration.” In: Astrophys. J. Lett. 930.2
(2022), p. L13. doi: 10.3847/2041-8213/ac6675.

https://doi.org/10.1038/s42254-021-00303-8
https://doi.org/10.1088/0004-637X/784/1/7
https://arxiv.org/abs/1311.5564
https://doi.org/10.1103/PhysRevLett.117.091101
https://arxiv.org/abs/1608.03593
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://arxiv.org/abs/1906.11238
https://doi.org/10.3847/2041-8213/ab0c96
https://arxiv.org/abs/1906.11239
https://doi.org/10.3847/2041-8213/ab0c57
https://arxiv.org/abs/1906.11240
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0e85
https://arxiv.org/abs/1906.11241
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab0f43
https://arxiv.org/abs/1906.11242
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://arxiv.org/abs/1906.11243
https://doi.org/10.3847/2041-8213/ac6674
https://doi.org/10.3847/2041-8213/ac6675


120 bibliography

[23] Kazunori Akiyama et al. “First Sagittarius A* Event Horizon
Telescope Results. III. Imaging of the Galactic Center Super-
massive Black Hole.” In: Astrophys. J. Lett. 930.2 (2022), p. L14.
doi: 10.3847/2041-8213/ac6429.

[24] Kazunori Akiyama et al. “First Sagittarius A* Event Horizon
Telescope Results. IV. Variability, Morphology, and Black Hole
Mass.” In: Astrophys. J. Lett. 930.2 (2022), p. L15. doi: 10.3847/
2041-8213/ac6736.

[25] Kazunori Akiyama et al. “First Sagittarius A* Event Horizon
Telescope Results. V. Testing Astrophysical Models of the Galac-
tic Center Black Hole.” In: Astrophys. J. Lett. 930.2 (2022), p. L16.
doi: 10.3847/2041-8213/ac6672.

[26] Kazunori Akiyama et al. “First Sagittarius A* Event Horizon
Telescope Results. VI. Testing the Black Hole Metric.” In: As-
trophys. J. Lett. 930.2 (2022), p. L17. doi: 10.3847/2041-8213/
ac6756.

[27] Reinhard Genzel. “Nobel Lecture: A forty-year journey.” In:
Rev. Mod. Phys. 94 (2 June 2022), p. 020501. doi: 10.1103/
RevModPhys.94.020501. url: https://link.aps.org/doi/10.
1103/RevModPhys.94.020501.

[28] Clifford M. Will. “The Confrontation between General Relativ-
ity and Experiment.” In: Living Rev. Rel. 17 (2014), p. 4. doi:
10.12942/lrr-2014-4. arXiv: 1403.7377 [gr-qc].

[29] Baron Kelvin Thomson William. Baltimore Lectures on Molecular
Dynamics and the Wave Theory of Light. May 2010. isbn: 978-0-
511-69452-3. doi: 10.1017/cbo9780511694523.

[30] F. Zwicky. “Republication of: The redshift of extragalactic neb-
ulae.” In: General Relativity and Gravitation 41.1 (Jan. 2009),
pp. 207–224. doi: 10.1007/s10714-008-0707-4.

[31] K. C. Freeman. “On the Disks of Spiral and S0 Galaxies.” In:
160 (June 1970), p. 811. doi: 10.1086/150474.

[32] V. C. Rubin, Jr. Ford W. K., and N. Thonnard. “Rotational
properties of 21 SC galaxies with a large range of luminosities
and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc).”
In: 238 (June 1980), pp. 471–487. doi: 10.1086/158003.

[33] Mordehai Milgrom. “The MOND paradigm.” In: (Jan. 2008).
arXiv: 0801.3133 [astro-ph].

[34] Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. “The
Structure of cold dark matter halos.” In: Astrophys. J. 462 (1996),
pp. 563–575. doi: 10.1086/177173. arXiv: astro-ph/9508025.

https://doi.org/10.3847/2041-8213/ac6429
https://doi.org/10.3847/2041-8213/ac6736
https://doi.org/10.3847/2041-8213/ac6736
https://doi.org/10.3847/2041-8213/ac6672
https://doi.org/10.3847/2041-8213/ac6756
https://doi.org/10.3847/2041-8213/ac6756
https://doi.org/10.1103/RevModPhys.94.020501
https://doi.org/10.1103/RevModPhys.94.020501
https://link.aps.org/doi/10.1103/RevModPhys.94.020501
https://link.aps.org/doi/10.1103/RevModPhys.94.020501
https://doi.org/10.12942/lrr-2014-4
https://arxiv.org/abs/1403.7377
https://doi.org/10.1017/cbo9780511694523
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1086/150474
https://doi.org/10.1086/158003
https://arxiv.org/abs/0801.3133
https://doi.org/10.1086/177173
https://arxiv.org/abs/astro-ph/9508025


bibliography 121

[35] Risa H. Wechsler and Jeremy L. Tinker. “The Connection be-
tween Galaxies and their Dark Matter Halos.” In: Ann. Rev. As-
tron. Astrophys. 56 (2018), pp. 435–487. doi: 10.1146/annurev-
astro-081817-051756. arXiv: 1804.03097 [astro-ph.GA].

[36] Xiang-Ping Wu et al. “A comparison of different cluster mass
estimates: consistency or discrepancy ?” In: Mon. Not. Roy.
Astron. Soc. 301 (1998), p. 861. doi: 10.1046/j.1365-8711.1998.
02055.x. arXiv: astro-ph/9808179.

[37] Richard Massey, Thomas Kitching, and Johan Richard. “The
dark matter of gravitational lensing.” In: Rept. Prog. Phys. 73

(2010), p. 086901. doi: 10.1088/0034-4885/73/8/086901. arXiv:
1001.1739 [astro-ph.CO].

[38] Maxim Markevitch et al. “Direct constraints on the dark matter
self-interaction cross-section from the merging galaxy cluster
1E0657-56.” In: Astrophys. J. 606 (2004), pp. 819–824. doi: 10.
1086/383178. arXiv: astro-ph/0309303.

[39] Douglas Clowe et al. “A direct empirical proof of the existence
of dark matter.” In: Astrophys. J. Lett. 648 (2006), pp. L109–L113.
doi: 10.1086/508162. arXiv: astro-ph/0608407.

[40] Giuseppina Battaglia et al. “The Radial velocity dispersion
profile of the Galactic Halo: Constraining the density profile
of the dark halo of the Milky Way.” In: Mon. Not. Roy. Astron.
Soc. 364 (2005). [Erratum: Mon.Not.Roy.Astron.Soc. 370, 1055

(2006)], pp. 433–442. doi: 10.1111/j.1365-2966.2005.09367.x.
arXiv: astro-ph/0506102.

[41] Prajwal Raj Kafle et al. “On the Shoulders of Giants: Properties
of the Stellar Halo and the Milky Way Mass Distribution.” In:
Astrophys. J. 794.1 (2014), p. 59. doi: 10.1088/0004-637X/794/
1/59. arXiv: 1408.1787 [astro-ph.GA].

[42] Paul J. McMillan. “The mass distribution and gravitational
potential of the Milky Way.” In: 465.1 (Feb. 2017), pp. 76–94. doi:
10.1093/mnras/stw2759. arXiv: 1608.00971 [astro-ph.GA].

[43] Francesco Sylos Labini et al. “Mass Models of the Milky Way
and Estimation of Its Mass from the Gaia DR3 Data Set.” In:
945.1, 3 (Mar. 2023), p. 3. doi: 10.3847/1538-4357/acb92c.
arXiv: 2302.01379 [astro-ph.GA].

[44] Yoshiaki Sofue. “Rotation Curve of the Milky Way and the
Dark Matter Density.” In: Galaxies 8.2 (Apr. 2020), p. 37. doi:
10.3390/galaxies8020037. arXiv: 2004.11688 [astro-ph.GA].

[45] Yongjun Jiao et al. “Detection of the Keplerian decline in the
Milky Way rotation curve.” In: Astron. Astrophys. 678 (2023),
A208. doi: 10.1051/0004-6361/202347513. arXiv: 2309.00048
[astro-ph.GA].

https://doi.org/10.1146/annurev-astro-081817-051756
https://doi.org/10.1146/annurev-astro-081817-051756
https://arxiv.org/abs/1804.03097
https://doi.org/10.1046/j.1365-8711.1998.02055.x
https://doi.org/10.1046/j.1365-8711.1998.02055.x
https://arxiv.org/abs/astro-ph/9808179
https://doi.org/10.1088/0034-4885/73/8/086901
https://arxiv.org/abs/1001.1739
https://doi.org/10.1086/383178
https://doi.org/10.1086/383178
https://arxiv.org/abs/astro-ph/0309303
https://doi.org/10.1086/508162
https://arxiv.org/abs/astro-ph/0608407
https://doi.org/10.1111/j.1365-2966.2005.09367.x
https://arxiv.org/abs/astro-ph/0506102
https://doi.org/10.1088/0004-637X/794/1/59
https://doi.org/10.1088/0004-637X/794/1/59
https://arxiv.org/abs/1408.1787
https://doi.org/10.1093/mnras/stw2759
https://arxiv.org/abs/1608.00971
https://doi.org/10.3847/1538-4357/acb92c
https://arxiv.org/abs/2302.01379
https://doi.org/10.3390/galaxies8020037
https://arxiv.org/abs/2004.11688
https://doi.org/10.1051/0004-6361/202347513
https://arxiv.org/abs/2309.00048
https://arxiv.org/abs/2309.00048


122 bibliography

[46] B. J. Carr and S. W. Hawking. “Black holes in the early Uni-
verse.” In: 168 (Aug. 1974), pp. 399–416. doi: 10.1093/mnras/
168.2.399.

[47] B. J. Carr et al. “New cosmological constraints on primordial
black holes.” In: Phys. Rev. D 81 (2010), p. 104019. doi: 10.1103/
PhysRevD.81.104019. arXiv: 0912.5297 [astro-ph.CO].

[48] R. D. Peccei and Helen R. Quinn. “CP Conservation in the
Presence of Instantons.” In: Phys. Rev. Lett. 38 (1977), pp. 1440–
1443. doi: 10.1103/PhysRevLett.38.1440.

[49] Asimina Arvanitaki et al. “String Axiverse.” In: Phys. Rev. D
81 (2010), p. 123530. doi: 10.1103/PhysRevD.81.123530. arXiv:
0905.4720 [hep-th].

[50] R. L. Workman et al. “Review of Particle Physics.” In: PTEP
2022 (2022), p. 083C01. doi: 10.1093/ptep/ptac097.

[51] Joshua Frieman, Michael Turner, and Dragan Huterer. “Dark
Energy and the Accelerating Universe.” In: Ann. Rev. Astron.
Astrophys. 46 (2008), pp. 385–432. doi: 10.1146/annurev.astro.
46.060407.145243. arXiv: 0803.0982 [astro-ph].

[52] John Dubinski and R. G. Carlberg. “The Structure of cold
dark matter halos.” In: Astrophys. J. 378 (1991), p. 496. doi:
10.1086/170451.

[53] Wayne Hu, Rennan Barkana, and Andrei Gruzinov. “Cold and
fuzzy dark matter.” In: Phys. Rev. Lett. 85 (2000), pp. 1158–
1161. doi: 10.1103/PhysRevLett.85.1158. arXiv: astro-ph/
0003365.

[54] David N. Spergel and Paul J. Steinhardt. “Observational evi-
dence for selfinteracting cold dark matter.” In: Phys. Rev. Lett.
84 (2000), pp. 3760–3763. doi: 10.1103/PhysRevLett.84.3760.
arXiv: astro-ph/9909386.

[55] Manoj Kaplinghat, Lloyd Knox, and Michael S. Turner. “An-
nihilating the cold dark matter cusp crisis.” In: Phys. Rev. Lett.
85 (2000), p. 3335. doi: 10.1103/PhysRevLett.85.3335. arXiv:
astro-ph/0005210.

[56] Antonino Del Popolo and Morgan Le Delliou. “Review of
Solutions to the Cusp-Core Problem of the ΛCDM Model.”
In: Galaxies 9.4 (2021), p. 123. doi: 10.3390/galaxies9040123.
arXiv: 2209.14151 [astro-ph.CO].

[57] Asimina Arvanitaki and Sergei Dubovsky. “Exploring the
String Axiverse with Precision Black Hole Physics.” In: Phys.
Rev. D 83 (2011), p. 044026. doi: 10.1103/PhysRevD.83.044026.
arXiv: 1004.3558 [hep-th].

https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1103/PhysRevD.81.104019
https://doi.org/10.1103/PhysRevD.81.104019
https://arxiv.org/abs/0912.5297
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.81.123530
https://arxiv.org/abs/0905.4720
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1146/annurev.astro.46.060407.145243
https://doi.org/10.1146/annurev.astro.46.060407.145243
https://arxiv.org/abs/0803.0982
https://doi.org/10.1086/170451
https://doi.org/10.1103/PhysRevLett.85.1158
https://arxiv.org/abs/astro-ph/0003365
https://arxiv.org/abs/astro-ph/0003365
https://doi.org/10.1103/PhysRevLett.84.3760
https://arxiv.org/abs/astro-ph/9909386
https://doi.org/10.1103/PhysRevLett.85.3335
https://arxiv.org/abs/astro-ph/0005210
https://doi.org/10.3390/galaxies9040123
https://arxiv.org/abs/2209.14151
https://doi.org/10.1103/PhysRevD.83.044026
https://arxiv.org/abs/1004.3558


bibliography 123

[58] David J. E. Marsh. “Axion Cosmology.” In: Phys. Rept. 643

(2016), pp. 1–79. doi: 10.1016/j.physrep.2016.06.005. arXiv:
1510.07633 [astro-ph.CO].

[59] Mark Goodsell et al. “Naturally Light Hidden Photons in
LARGE Volume String Compactifications.” In: JHEP 11 (2009),
p. 027. doi: 10.1088/1126-6708/2009/11/027. arXiv: 0909.
0515 [hep-ph].

[60] Joerg Jaeckel and Andreas Ringwald. “The Low-Energy Fron-
tier of Particle Physics.” In: Ann. Rev. Nucl. Part. Sci. 60 (2010),
pp. 405–437. doi: 10 . 1146 / annurev . nucl . 012809 . 104433.
arXiv: 1002.0329 [hep-ph].

[61] Hooman Davoudiasl and Peter B Denton. “Ultralight Boson
Dark Matter and Event Horizon Telescope Observations of
M87*.” In: Phys. Rev. Lett. 123.2 (2019), p. 021102. doi: 10.1103/
PhysRevLett.123.021102. arXiv: 1904.09242 [astro-ph.CO].

[62] Nitsan Bar et al. “Galactic rotation curves versus ultralight
dark matter: Implications of the soliton-host halo relation.” In:
Phys. Rev. D 98.8 (2018), p. 083027. doi: 10.1103/PhysRevD.98.
083027. arXiv: 1805.00122 [astro-ph.CO].

[63] Nitsan Bar et al. “Ultralight dark matter in disk galaxies.” In:
Phys. Rev. D 99.10 (2019), p. 103020. doi: 10.1103/PhysRevD.99.
103020. arXiv: 1903.03402 [astro-ph.CO].

[64] Eric Armengaud et al. “Constraining the mass of light bosonic
dark matter using SDSS Lyman-α forest.” In: Mon. Not. Roy.
Astron. Soc. 471.4 (2017), pp. 4606–4614. doi: 10.1093/mnras/
stx1870. arXiv: 1703.09126 [astro-ph.CO].
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