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R E S U M O

O progresso rápido e recente da astronomia de ondas gravitacionais
tornou necessário modelar fontes cada vez mais complexas. Durante
a próxima década, interferómetros de terceira geração e a missão
espacial LISA observarão binárias em centros galácticos envolvendo
buracos negros supermassivos com milhões de massas solares. O
seu sinal diferá substancialmente das mais “comuns” binárias de
buracos negros de igual massa que têm dominado as detecções de
ondas gravitacionais. Medições mais precisas de eventos mais ex-
tremos que excitam campos gravitacionais mais fortes podem ter um
impacto tremendo em física fundamental, astrofísica e cosmologia.
Porém, à escala galáctica, discos de acreção, halos de matéria escura
e densas populações de objectos compactos podem interagir gravita-
cionalmente com corpos em coalescência. O papel que estas estruturas
astrofísicas desempenham na evolução e respectiva assinatura de on-
das gravitacionais de sistemas binários continua por explorar e estudos
prévios dependeram com frequência de aproximações Newtonianas
ad-hoc. Nesta tese, pretendemos melhorar este panorama e responder
a questões como: podem ambientes de não-vácuo comprometer testes
de Relatividade Geral e da natureza de buracos negros? Podemos
colocar constrangimentos nas propriedades de ambientes astrofísi-
cos com futuras observações de ondas gravitacionais? Em particular,
estudamos como deformações de maré de matéria presente à volta
de buracos negros podem mascarar desvios a Relatividade Geral, ou
destruir estruturas “cabeludas” que poderiam sinalizar a existência
de candidatos de matéria escura como campos bosónicos ultraleves.
Também exploramos a conexão profunda entre anéis de luz - órbitas
fechadas de partículas sem massa - e os modos próprios de oscilação de
objectos compactos. Mostramos que, independentemente da presença
de um ambiente, o anel de luz controla como observadores distantes
vêem matéria a cair num buraco negro, ou como o buraco negro final
formado numa colisão relaxa para estacionariedade. Finalmente, de-
senvolvemos o primeiro framework completamente relativista capaz de
estudar emissão de ondas gravitacionais em ambientes de não-vácuo.
Aplicamo-lo a binárias de buracos negros galácticas rodeadas por
um halo de matéria escura e observamos a conversão entre ondas de
matéria e ondas gravitacionais. Este acoplamento resulta em difer-
enças significativas no fluxo de energia emitido, que poderão ajudar
a constrangir as propriedades de distribuições galácticas de matéria.
Os nossos métodos podem tornar-se a ferramenta de referência para
estudos de efeitos de ambiente em astronomia de ondas gravitacionais
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e ser implementado em pipelines de análise de dados de colaborações
futuras.

palavras-chave : relatividade geral; buracos negros; ondas gravita-
cionais, efeitos de ambiente, matéria escura.
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A B S T R A C T

The rapid progress of gravitational-wave astronomy in recent years
has raised the need to model increasingly more complex sources. Over
the next decade, third-generation interferometers and the space-based
LISA mission will observe binaries in galactic centers involving su-
permassive black holes with millions of solar masses. Their signal
will differ substantially from the more “standard” equal-mass black-
hole binaries that have dominated gravitational-wave detections. More
precise measurements of more extreme events that probe stronger
gravitational fields can have a tremendous impact on fundamental
physics, astrophysics, and cosmology. However, at the galactic scale,
accretion disks, dark matter halos, and dense populations of compact
objects can interact gravitationally with coalescing bodies. The role the-
se astrophysical structures play in the evolution and gravitational-wave
signature of binary systems remains largely unexplored and previous
studies have often relied on ad-hoc Newtonian approximations. In this
thesis, we aim to improve this picture and answer questions like: Can
non-vacuum environments jeopardize tests of General Relativity and
of the nature of black holes? Can we constrain the properties of astro-
physical environments from future gravitational-wave observations?
In particular, we study how tidal deformations of matter surrounding
black holes can mask off deviations from General Relativity, or de-
stroy “hairy” structures that could signal the existence of dark matter
candidates like ultralight bosonic fields. We also explore the deep
connection between light rings - closed orbits of massless particles -
and the proper oscillation modes of compact objects. We show that in-
dependently of the presence of an environment, the light ring controls
the late-time appearance of infalling matter to distant observers and
how the final black hole formed in a collision relaxes to stationarity.
Finally, we develop the first fully-relativistic framework capable of
studying gravitational wave emission in non-vacuum environments.
We apply it to galactic black-hole binaries surrounded by a dark matter
halo and observe the conversion between matter and gravitational
waves. This coupling results in significant changes in the energy flux
emitted, which could help constraining the properties of galactic mat-
ter distributions. Our methods can become the benchmarking tool for
studies of environmental effects in gravitational-wave astronomy and
be implemented in the data analysis pipelines of future collaborations.

key-words : general relativity; black holes; gravitational waves; envi-
ronmental effects, dark matter;
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L I S T O F F I G U R E S

Figure 3.1 The quadrupolar tidal Love number kE
2 for a

central BH of mass M surrounded by a Shakura-
Sunayev thin accretion disk in a circular binary
and a companion of the same mass. We present
two different binary distances d for M/M⊙ =

5 × 104, M/M⊙ = 5 × 105 and M/M⊙ = 5 ×
106. For each d we present estimations in the
most efficient accretion scenario (labeled by E),
fEdd = 0.2 and α = 0.01, and in the most ineffi-
cient one (labeled by I) fEdd = 0.01 and α = 0.1. 54

Figure 4.1 A dipolar scalar cloud around a Schwarzschild
BH. This figure shows the time evolution of
initial conditions (4.6) for a dipole with grav-
itational coupling Mµ = 0.1 around a non-
spinning BH, and in absence of a companion
(ϵ = 0). The field is extracted at r = 60M. For
the timescales of interest for our problem, the
amplitude of the field varies by only a few per-
cent and is therefore a good description of a
quasi-stationary state. . . . . . . . . . . . . . . 56

Figure 4.2 Field (left) and energy density (right) distribu-
tion along the equatorial plane for the same
initial data as Fig. 4.1. The field is dipolar, as
expected, whereas the energy density at the
equator is almost – but not exactly – symmet-
ric along the rotation axis. The length scale of
these images is of order 1000M. . . . . . . . . 57

Figure 4.3 Dependence of the field Φ along the x− axis at
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1
I N T R O D U C T I O N

1.1 the gwzoic

The theory of General Relativity (GR) is often regarded as one of hu-
manity’s most outstanding intellectual achievements. Its mathematical
elegance and ability to pass experimental tests remain unmatched in
the history of science. For over a century, tests were limited to the weak
gravity regime. Yet, the excitement about the theory stemmed from
its puzzling predictions when a large amount of mass concentrates
in a small region of space. According to GR, if stars become too mas-
sive, they can collapse under their gravity, forming black holes (BHs)
- regions of space where the gravitational attraction is so strong that
not even light can escape. They are deceivingly simple. The “no-hair"
theorem states that any isolated BH in the Universe belongs to the Kerr
family and is fully characterized by just two numbers: its mass and
spin (how fast it rotates) [3].

GR also predicts that when accelerated, BHs, or any other compact
objects, create tidal deformations of the gravitational field that propa-
gate at the speed of light: gravitational waves (GWs). In 2015, the Laser
Interferometer Gravitational-Wave Observatory (LIGO), in the U.S.A.,
detected a GW signal from the coalescence of two BHs with masses
of 36 and 24 M⊙ 1. This event became known as GW150914 2 [4]. It
originated billions of years ago, around ∼ 410 Mpc away from the
Earth 3, and lasted for 0.2 s causing a disturbance of 10−21 m on its
passage, smaller than the size of a proton. Until this point, we based
our observations of the outer Universe almost solely on detecting light,
but since then, we can also "hear" it through GWs.

Unlike their electromagnetic relatives, GWs interact weakly with
matter and remain mostly unaffected during their journey. They offer
an almost perfect fingerprint of some of the most violent events in
the Universe, where objects with masses exceeding that of the Sun
are compressed to a few kilometers and collide at speeds surpassing
half the speed of light. GW150914 reached a peak power emission
rate of ∼ 1049 W in GWs, more than the power radiated by all the

1 M⊙ = 1.9891 × 1031 kg is the mass of the Sun
2 GW events are named as GW-YEAR-MONTH-DAY
3 1 pc ≈ 3.1 × 1016 m

3
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known stars in the Universe. In this regime, GR is pushed to its limits,
and GW150914 sparked what many have called the dawn of the
gravitational-wave astronomy era. Welcome to the GWzoic.

Since then, two new detectors, Virgo (Italy) and KAGRA (Japan),
were added to the network, and more than 90 GW-events were con-
firmed by the LIGO-Virgo-KAGRA (LVK) collaboration [5–7]. These
have included stellar mass BH binaries (BHBs) as well as neutron star
binaries with an electromagnetic counterpart [8–10], neutron star-BH

binaries [11], asymmetric binaries [12], a curious object which is either
the lightest BH or the heaviest neutron star ever observed (or perhaps,
even “something else") [13], and BHs that are too massive to be formed
via standard stellar collapse [14]. In the latter event, GW190521, the
first intermediate-mass BH with ∼ 142 M⊙, whose existence in the Uni-
verse was often questioned, was also discovered [14]. This vast catalog
has provided opportunities to test GR with unprecedented levels of
precision, impose constraints and exclude possible modifications of
it, and gain insights about dense matter [15], the formation of heavy
elements in nature, and the astrophysical populations of BHs, i.e. their
masses, spins, or distance to the Earth [16, 17].

And the future sounds even brighter. The LVK is starting a new run
with increased sensivity [18], and it is planned that LIGO-India will
join the network by the end of the decade. There are also ambitious
plans to build third-generation detectors, such as the Einstein Tele-
scope in Europe [19] and Cosmic Explorer in the U.S.A. [20]. These
advanced detectors will feature longer arms and better technology,
boosting their sensitivity by one order of magnitude beyond that of
LVK [21]. We expect to detect ∼ 106 GW events per year with signal-to-
noise ratios (SNR) on the order of ∼ 103, far surpassing GW150914’s
SNR of 24. These louder sources will decrease the relative error in pa-
rameter estimation by several orders of magnitude, improve the sky
localization of the sources (∼ 1 deg2 vs the current ∼ 102 deg2), and
observe events originated in the early Universe.

In the late 2030s, the European Space Agency will also launch the
Laser Interferometer Space Antenna (LISA) [22]. This space-based GW

detector will consist of three spacecrafts separated by approximately
2.5 × 106 km, working together like an interferometer. While ground-
based detectors are sensitive to GWs between

[
1, 103] Hz, LISA will

operate in the much lower frequency range of
[
10−4, 10−1] Hz. It will

hear a very different class of sources compared to ground-based de-
tectors, from millions of white dwarf binaries lurking in our galactic
center to binaries involving supermassive black holes (SMBH) with
masses of 105 − 1010M⊙, possibly at very high redshift (z ∼ 20) [23].
The latter may appear as monstruous SMBH-SMBH binaries [24, 25], or
in extreme-mass-ratio inspirals (EMRIs), where a stellar-mass object
such as a BH or a neutron star orbits around the central SMBH [26,
27]. EMRIs perform around 104 − 105 orbital cycles while in the LISA
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band [28], allowing the measurement of parameters like the masses,
the SMBH spin, and orbital eccentricity with statistical errors of or-
der 10−4 − 10−6 [26]. The scientific potential of EMRIs in both astro-
physics [23] cosmology [29], and fundamental physics [30] is almost
immeasurable. However, we need extremely accurate models to follow
the waveform for months, possibly years, with errors below 1 radian
in the GW phase [31–33].

Finally, the International Pulsar Timing Array has very recently
reported evidence for a stochastic GW background in the nanoHertz
range, due to a cosmic population of SMBHs with billions of solar
masses [34–37]. These observations are based on correlated shifts
on the period of milisecond pulsars, caused by the passing of GWs.
Together with the ground and space-based interferometers, they allow
for the detection of GWs across a frequency band spanning almost 10
orders of magnitude.

1.2 galactic centers : gravity’s potluck

It is common belief that most SMBHs grow in the center of galaxies [38–
44]. These are far from being simple ecosystems, as perfectly illustrated
by the BH images captured by the Event-Horizon Telescope [45, 46] and
the pictures taken by the James Webb Telescope. The SMBH residing
there can efficiently accrete matter, forming active galactic nuclei
(AGNs), which are the brightest sources of electromagnetic radiation in
the Universe. AGNs consist of gas orbiting in a thin accretion disk, with
surface densities between 103 − 106 g · cm−2 and temperatures as high
as 106 K [47–49]. Galaxies are also thought to be surrounded by dark-
matter (DM) distributions, which play a key role in their formation and
evolution [50–53]. Finally, the various stars and other compact objects
orbiting close to the central SMBH attract each other gravitationally,
making the motion of binary systems more complex. We need very
accurate models for their orbital evolution to do proper precision
physics with EMRIs. The question to make is whether non-vacuum
environments in galactic centers lead to non-negligible effects in an
EMRI that are detectable with future GW experiments. Or can we ignore
the environment and safely model these systems as isolated binaries
in vacuum GR?

1.2.1 How many? Many...

Before trying to answer this question, we should first assess how
many EMRIs in AGNs is LISA expected to observe. In the standard
“dry” formation channel, stellar-mass compact objects evolve through
gravitational scattering between each other until they are close enough
to the central SMBH to become gravitationally bound to it. EMRI pop-
ulation rates will therefore depend on the typical number of stars
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and stellar mass BHs in galactic centers, whose density distribution
can reach 106 M⊙ · pc−3 [54], their initial positions and velocities, the
distribution of SMBHs in the Universe, and the fraction of these which
is present in dense stellar clusters. It should come as no surprise that
forecasts on the number of detectable EMRIs formed via this multibody
scattering mechanism ranges between 1 − 103 [26, 55].

Despite the uncertainties, there is astrophysical evidence for binaries
evolving in galactic centers. For instance, OJ287 [56, 57] is a binary
system made up of two SMBHs, with masses of 1010 M⊙ and 108 M⊙,
orbiting in an accretion disk with 102M⊙. Their orbit is slightly in-
clined with respect to the plane of the disk. Hence, as the lighter BH

(often referred to as the secondary) crosses the disk, periodic electro-
magnetic flares are emitted [58]. Additionally, the large masses of
the BHs coalescing in GW195021 [14], 85 − 66 M⊙, suggest they are
second generation BHs that formed in previous mergers, which typi-
cally requires these objects to be in dense environments [49, 59–62].
Moreover, the Zwicky Transient Facility observed an electromagnetic
flare 34 days after GW195021, which has been proposed to be due to
the movement of the remnant BH in an AGN at 200 km · s−1 [63, 64].

However, the estimates mentioned above for detectable EMRI pop-
ulation rates ignore the interaction of the small compact object with
the environment around it. Just as a ball moving through a fluid
experiences drag and pressure differentials that lead to interesting
phenomena like the Magnus effect [65], a compact object moving
through gas-rich environments will experience several dynamical ef-
fects related to accretion flows. The same applies to DM distributions.
Typically, these effects accelerate the inspiral towards the central BH.
Recent estimates point out that these “wet” EMRIs may actually dom-
inate the fraction of detectable EMRIs by LISA and be several orders
of magnitude more common than the ones born through the “dry”
formation channel [66, 67] (see Fig. 1 in Ref. [67]).

1.2.2 Surfing the waves

An EMRI evolving in an accretion disk experiences various dynamical
effects not present in vacuum. Both the SMBH and the stellar-mass
compact object accrete matter, which increases their masses through
the inspiral [68, 69]. The disk’s self-gravity modifies the gravitational
potential, altering the acceleration of the secondary object and poten-
tially inducing orbital precession. Additionally, as the compact object
pierces through the gas, it generates density wakes that trail behind
and interact with itself, exerting additional torques and drag. These
effects are broadly referred to as dynamical friction [70–76]4. GWs
tend to circularize orbital motion, but the dynamical effects created

4 The astrophysics community dubs them differently depending on the origin of the
interaction, e.g. hydrodynamical drag, migration torques...
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by the environment compete with this and may increase the orbit’s
eccentricity [77].

A systematic study of the effects mentioned above, focusing on
geometrically thin, radiatively efficient, stationary accretion disks
described by the Shakura-Sunayev model [47], found that dynamical
friction from planetary-migration-like torques results in the largest
deviation from vacuum waveform templates for circular, non-inclined
EMRIs targeted by LISA [78, 79] (see Fig. 1 of Ref. [78]). This study
predicts a dephasing in the GW signal as large as ∼ 102 rad, which
could severely constrain the binary environmental density.

Further order-of-magnitude estimates confirm this picture [80, 81].
A Bayesian analysis using the state-of-the-art waveform models for
circular-equatorial EMRIs suggests that GW observations will be able to
distinguish between different accretion models [31, 82, 83]. If environ-
mental effects are not included in waveform templates, the estimation
of the mass and spin of the objects could be biased and compromise
tests of fundamental physics [84]. In addition, environmental effects
are expected to dominate over still unmodelled vacuum corrections in
the waveform [85].

Unfortunately, most literature on environmental effects in EMRIs has
only modeled the environment at the Newtonian level or utilized the
lowest-order quadrupole formula to estimate GW emission and dy-
namics. Neither of these approximations is expected to hold for EMRIs,
whose large number of orbital cycles in the LISA band naturally probe
the strong-field regime of gravity. This has been corroborated by 2D
general-relativistic-hydrodynamic simulations of intermediate-mass-
ratio inspirals (IMRIs) 5 [86]. The gas torques exerted on the inspiralling
body depend on the disc parameters and the mass ratio of the binary.
For the early inspiral, the analytical estimates from planetary migra-
tion [73] capture the correct evolution of the torque with the inspiral
rate. However, their order of magnitude may differ (check Fig. 3 and
5 of Ref. [86]). In some configurations, the torques can even become
positive, acting as a thrust instead of a drag, which slows down the
inspiral. In the later stages, the torque evolution is highly oscillatory
because the inspiral timescale becomes comparable to the relaxation
timescale of the disk, which depends on its viscosity and temperature.
However, this work still uses simplified disc models, focuses only on
circular orbits, and considers Newtonian gravity and the quadrupole
formula for the binary’s evolution, so further investigations are neces-
sary. Gas torques also exhibit stochastic fluctuations that may result
in non-zero secular phase shifts when accumulated over many orbits
and introduce high-frequency glitches in the waveform. These can
also appear as a stochastic background in the mHz band [87].

5 EMRIs have mass ratios between the secondary and the SMBH ≲ 10−5 while IMRIS
have 104 − 10−3.
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Detecting an EMRI evolving in an AGN is also interesting from the
perspective of electromagnetic observations. The angular resolution
to which these systems can be localized should highly reduce the
number of possible AGNs hosting the EMRI. The combination of GW

and electromagnetic observations could provide a direct measurement
of the disk viscosity [84] and allow for independent tests of cosmology
through distance measurements of the system using electromagnetic
redshift and GW luminosity [88, 89].

1.2.3 The unbearable darkness of...

We already mentioned that another important player at the galac-
tic scale is DM. Extensive experimental evidence supports its exis-
tence, including the flatness of rotation curves of stars in spiral galax-
ies [50–53, 90] and gravitational lensing [91]. According to the standard
model of cosmology, DM behaves as a collisionless, non-relativistic
fluid, hence the name cold dark matter (CDM). Its local density and
dispersion velocity are approximately ρDM ∼ 10−2 M⊙ · pc−3 and
vDM ∼ 150 km · s−1, respectively. CDM tends to clump in halos, where
baryonic matter can become gravitationally bound and form large-
scale structures like galaxies. Our own Milky Way is expected to
be immersed in a DM halo with ∼ 1012M⊙, in comparison with the
∼ 1011M⊙ of luminous matter, and a radius of ∼ 102 kpc [92, 93].

However, CDM suffers from several pathologies at subgalactic scales [94,
95]. Two illustrative examples are the cuspy-halo problem [96, 97],
where N-body simulations favor “cuspy” halos with a steep increase
in the density of DM at their center, while galaxy rotation curves in-
dicate more flat profiles; and the dwarf-galaxy problem, which arises
from the conflict between the small number of dwarf galaxies observed
and the larger number of subhalos predicted by simulations.

Many of these problems are due to our limited understanding of
some astrophysical processes and the actual fundamental nature of
DM. There is an entire zoo of possible answers [98] ranging from
macroscopic objects with a few solar masses, such as primordial BHs
formed in the early universe due to curvature fluctuations [99, 100], to
new ultralight bosonic fields with masses as light as µ ∼ 10−22 eV [101–
104]. The latter provides a natural solution to the cuspy-halo problem,
as they admit stable, self-gravitating compact configurations, known as
boson stars, which are a good description of flat DM halo cores [105–108].
If different DM models have a particular signature in the waveform,
we could then use GW observations to constrain the properties of DM.

The small local densities of DM might initially suggest that it has
minimal impact on the evolution of compact binaries. However, the
presence of a BH that grows adiabatically in the center of a DM config-
uration can result in the formation of a density cusp with a peak very
close to the BH horizon [109–111]. The DM density is expected to be
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significantly enhanced, possibly up to 10 orders of magnitude at the
center, and be scaling as ρDM ∼ r−γ, where r is the radial distance to
the BH and γ = 1.5− 2.5, depending on the DM model considered. DM

annihilation, accretion, and other dynamical processes, like mergers,
can deplete the overdensity and flat out the core of the DM distribu-
tion [112, 113]. The orbits of S-stars have already been used to place
constraints on the properties of the DM spike at the center of our own
Milky Way [114–117].

Despite its uncertainty, the large overdensity at galactic centers could
make DM accretion and dynamical friction relevant for binary inspirals.
This mechanism has been suggested to explain the abnormally fast
orbital decay of the two closest stellar-mass X-ray binary systems,
which are inspiralling two orders of magnitude faster than expected
from GW emission [118]. As in accretion disks, most literature has
applied results from Newtonian treaments [70] and applied it to EMRIs
to estimate its effect in the dephasing of compact binaries [81, 119].
Only recently have the first relativistic studies of dynamical friction in
homogeneous mediums composed of an ultralight scalar field been
conducted [107, 120–123].

When included in state-of-the-art waveform models [31, 82, 83],
these relativistic corrections can significantly impact the forecasts for
the detectability and parameter estimation of an EMRI evolving in
a DM environment during the LISA mission lifetime [124]. Another
nuance to bear is that for binaries involving intermediate-mass BHs,
the energy dissipated via dynamical friction can become comparable
to the gravitational binding energy of the DM distribution. In this case,
one needs to consider backreaction on the environment, which hinders
the dephasing in the waveform [125, 126].

Ultralight bosons can also extract rotational energy from rotating
BHs through a process known as superradiance and condensate into
macroscopic clouds with a structure reminiscent of the hydrogen
atom [103]. These superradiant clouds are expected to create gaps
in the mass-spin distribution of astrophysical BHs [127]. They also
emit monochromatic GWs which can appear as individual signals or
stochastic backgrounds [128–131]. LVK has already placed constraints
for masses around ∼ 10−13 eV based on null observations [132, 133].
Nonetheless, when present in a binary, the superradiant clouds will
interact with the companion of their BH hosts, causing their defor-
mation [134–137]. A proper understanding of the evolution of these
structures in binary coalescences is necessary so that the constraints
already imposed can be trusted.

1.2.4 Third wheels

Finally, we have already mentioned that some GW-events observed
by LVK should involve BHs which are remnants of previous coales-
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cences [12, 138–140]. These “hierarchical mergers” typically require
the presence of a third body to induce coalescence [141–144]. In fact,
triple systems are expected in AGNs [145–148] and other dense stel-
lar environments [149–151], with around 90% of low mass binaries
with periods shorter than three days belonging to some hierarchical
structure [152–154]. Even at the Newtonian level, the presence of a
third body is known to lead to interesting dynamical effects [155]. It
can accelerate the binary’s center-of-mass (CM), which causes a time-
dependent Doppler shift [156–160] and relativistic beaming [161, 162]
in the waveform. It can also lead to secular changes in the orbital
eccentricity and inclination through the Kozai-Lidov mechanism [155,
163, 164], triggering periods of high eccentricity where GW emission
increases significantly [165–168], causing periodic bursts of GWs [169,
170]. However, as with the previous environmental effects, most of
these studies were restricted to the Newtonian regime and did not
capture strong-field physics.

1.3 structure of the thesis

The punchline of our discussion is that we lack the proper relativistic
modeling of environmental effects in the evolution of binary systems
necessary to fulfill the ambitious goals that GW astronomy has set for
the next decades. The Fundamental Physics Working Group of LISA

has recently emphasized this problem in their white paper [30] by
dedicating an entire chapter to environmental effects (Chapter VII).
The following burning questions and needed developments were identified:

• Can accretion, plasma effects or other stellar compact objects in the
vicinity of an EMRI induce observable changes in the GW frequency
evolution during the inspiral or ringdown that can spoil fundamental
physics tests?

• Self-force calculations for generic BHBs in vacuum or embedded in a
background (e.g. DM boson cloud) at second-order are necessary for
proper modeling of EMRIs, so that reliable waveforms are available to
test for fundamental physics.

• A combination of the effects of bosonic DM and modified gravity must
be considered in order to be able to understand how more complex
deviations from standard GR can take place.

In this Ph.D. thesis we will address some of these questions and
point towards the necessary steps to further advance this research
program. We end this introduction with an outline of how the thesis
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is organized. All my publications referenced below resulted from
collaborations with my supervisor Vitor Cardoso.

In Chapter 2 we present the theoretical framework on which most
of our work is based, including the necessary equations of motion
(EOM) and numerical methods often employed.

In Part i we focus on studying static tidal deformations to distribu-
tions of matter surrounding BHs induced by external companions. In
Chapter 3 we start by showing that the correction to waveforms due to
tidal deformations of non-vacuum environments can be comparable
to those signaling deviations from GR. This can compromise tests on
the nature of BHs based on the measurement of tidal deformations, as
an ultracompact object without a horizon would be indistinguishable
from the presence of an accretion disk around a BH [171]. Chapter 4

follows from a collaboration with Taishi Ikeda [134], where we investi-
gated the evolution of superradiant clouds when subject to static tidal
fields from binary companions. We find they can deform the structure
of the cloud or even disrupt it when too strong. This mechanism could
be relevant for known BH systems, such as Sagittarius A* at the center
of our galaxy, or Cygnus X-1.

Part ii delves into the exquisite role that the LR has on the physics
of ultracompact objects, specifically its connection with the proper
oscillation modes of a compact object. In Chapter 5, based on Ref. [172]
co-authored with Arianna Foschi, we conclude that the appearance
to distant observers of emitting sources of electromagnetic or gravita-
tional waves being accreted by a BH is controlled by the LR properties
and not particularly sensitive to near horizon details. Chapter 6 is a
collaboration with Emanuele Berti, Mark Ho-Yeuk Cheung, Francesco
Di Filippo, Paul Martens and Shinji Mukohyama [173], where we revis-
ited the problem of the stability of the quasinormal (QNM) spectrum of
BHs, but from the point of view of time-domain observations. Our anal-
ysis reveals that changes in the amplitude of the fundamental mode in
the prompt ringdown, which is the relevant portion of the signal for
GW observations, are parametrically small, even though formally the
QNM spectrum is unstable. In Chapter 7, building upon Ref. [174], we
continue to explore the subtle differences between frequency and time-
domain analysis and show the excitation of very sharp resonances in
compact binaries may be hindered due to radiation-reaction effects
which quickly move the system away from the resonant state. We end
this part with Chapter 8, based on work with Gaurav Khanna [175].
In this chapter, we study GW emission, in the strong-field regime, by a
hierarchical triple system composed of a binary placed in the vicinity
of a SMBH. We observe interesting phenomena such as the resonant
excitation of the QNMs of the SMBH, as in the resonant excitation of
two tuning forks with matching frequencies. We also observe Doppler
shifts, aberration, lensing, and strong amplitude modulations in the
waveform.
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Finally, in the last part of the thesis, Part iii, we develop the first fully-
relativistic framework to handle GW emission in spherically-symmetric
but otherwise generic spacetimes, including non-vacuum ones. This
formalism was first laid out in Refs. [176, 177], in collaboration with
Andrea Maselli, Kyriakos Destounis and Rodrigo Panosso Macedo. It
is based on applying BH perturbation theory to spacetimes describing
extended distributions of matter around BHs, treating both matter and
gravitational perturbations on an equal footing. This approach allows
us to naturally account for accretion, gravitational drag, and halo
feedback. We apply this newly developed framework to a relativistic
solution of a non-rotating BH immersed in a galactic DM halo, as
found in Ref. [176] using the Einstein Cluster construction. We observe
the manifestation of the spectral instability mentioned above for an
astrophysical system. Moreover, our methods open up the possibility
to infer galactic properties with EMRIs. We conclude the thesis with
remarks on our findings and discussions on future work.



2
T H E O RY A N D N U M E R I C A L F R A M E W O R K

In this chapter we give a brief presentation of the theoretical and
numerical framework necessary for the rest of the thesis.

2.1 theory

2.1.1 Action and Equations of Motion

We consider the Einstein-Hilbert action in a 4-dimensional space-
time [2]

SEH =
∫

d4x
√
−g
[

R − 2Λ
8π

+ LM

]
, (2.1)

where R is the Ricci scalar, g is the determinant of the metric gµν, Λ is
the cosmological constant, and LM is the Lagrangian density of matter
fields.

The variation of the Einstein-Hilbert action with respect to gµν leads
to the Einstein’s equations

Gµν + Λgµν = 8π Tµν , (2.2)

where Gµν = Rµν − 1
2 R gµν is the Einstein tensor and Tµν is the energy-

momentum tensor of matter

Tµν = − gµαgνβ

√−g
δ (

√−gLM)

δgαβ
. (2.3)

The contracted Bianchi identities (∇µGµν = 0) imply that Tµν is diver-
genceless

∇µTµν = 0 , (2.4)

which dictates the equations of motion (EOM) for matter.
A pedagogical example relevant for ultralight bosonic DM is a com-

plex scalar field Φ minimally coupled to gravity

LM = LΦ = −∇µΦ∗∇µΦ −UΦ

(
|Φ|2

)
− JΦ (Φ∗ + Φ) , (2.5)

where UΦ is the interaction potential of Φ (e.g. UΦ = µ2 |Φ|2, with
mΦ = h̄µ being the mass of the scalar field and µ the inverse Compton
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wavelength) and JΦ is a putative current sourcing the scalar field. The
corresponding energy-momentum tensor given by Eq. (2.3) is

Tµν
Φ = ∇(µΦ∗∇ν)Φ − 1

2
gµν
(
∇αΦ∗∇αΦ + UΦ

(
|Φ|2

))
, (2.6)

and its EOM is the Klein-Gordon equation with some effective potential

□Φ =
δUΦ

δΦ∗ + JΦ . (2.7)

Another important case in the study of EMRIs is when the matter
Lagrangian represents a point particle of mass mp minimally coupled
to gravity

LM = Lp = −2mp

∫
dτ

δ(4)
(

xα − xα
p (τ)

)
√−g

, (2.8)

where xp (τ) is the worldline of the particle parametrized by the proper
time τ. This Lagrangian implies the point particle follows geodesics
of the background spacetime

dxα

dτ
∇α

(
dxµ

dτ

)
= 0 , (2.9)

and has the energy-momentum tensor

Tµν
p = mp

∫
dτ

δ(4)
(

xα − xα
p(τ)

)
√−g

dxµ
p

dτ

dxν
p

dτ
. (2.10)

2.1.2 The Kerr spacetime

We are interested in studying systems on timescales where the ex-
pansion of the Universe is negligible (e.g. the LISA mission lifetime).
Hence, we can set Λ = 0. Additionally, in many scenarios we can treat
the environment as a small perturbation to a particular vacuum BH

spacetime. In GR, any stationary, axisymmetric, and asymptotically
flat spacetime corresponding to a vacuum solution with an event hori-
zon (i.e. a black hole solution) is a member of the 2-parameter Kerr
solution [3]. In Boyer-Lindquist coordinates (t, r, θ, φ) this solution is
expressed as

ds2
Kerr = −

(
1 − 2Mr

Σ

)
dt2 − 4aMr

Σ
sin2 θ dt dφ +

Σ
∆

dr2

+ Σ dθ2 +

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θ dφ2 , (2.11)

where Σ = r2 + a2 cos2 θ and ∆ = r2 + a2 − 2Mr . Far away from
the BH, r ≫ M, a, one recovers spherical coordinates in Minkowski.
The Kerr solution has a two-parameter group of isometries generated
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by the commuting Killing vector fields k = ∂/∂t and m = ∂/∂φ.
k is asymptotically timelike near infinity and is associated with the
conserved mass M of the BH. m is asymptotically spacelike near
infinity and generates rotations under the axis of symmetry of the
BH, leading to the conserved charge J = a M, where J is the angular
momentum of the BH. Note that 0 ≤ a/M < 1, otherwise the BH

possesses a naked singularity.
The Kerr solution has two horizons at the roots of ∆ = 0, which are

r± = M ±
√

M2 − a2. r+ is the BH event horizon while r− is a Cauchy
horizon. Note also that the event horizon is a null hypersurface with
normal ξ = k + ΩHm, where

ΩH =
a

a2 + r2
+

, (2.12)

and one interprets ΩH as the angular velocity of the BH.
There is a region outside the BH horizon, known as the ergoregion,

where k is spacelike and therefore no stationary observers exist. The
ergoregion is limited by r+ < r < M +

√
M2 − a2 cos2 θ. In the er-

goregion, the strong gravitational field causes a frame-dragging effect,
which forces any observer to rotate along with the BH.

It will also be useful to introduce the radial tortoise coordinate r∗

dr∗
dr

=
r2 + a2

∆
⇒

⇒ r∗ = r +
r2
+ + a2

r+ − r−
log
∣∣∣∣ r − r+

2M

∣∣∣∣− r2
− + a2

r+ − r−
log
∣∣∣∣ r − r−

2M

∣∣∣∣ ,

(2.13)

which pushes the BH horizon to r∗ → −∞.
In the non-rotating limit (a = 0), the Kerr metric reduces to Schwarzschild

ds2
Schw = −

(
1 − 2M

r

)
dt2 +

1
1 − 2M

r
dr2 + r2dΩ2 , (2.14)

with dΩ2 = dθ2 + sin2 θ dφ2 the metric on the 2-sphere. The event
horizon goes to r+ = 2M, there is no Cauchy horizon, and the tortoise
coordinate becomes

r∗ = r + 2M log
∣∣∣ r
2M

− 1
∣∣∣ . (2.15)

The Schwarzschild solution is a particular case of spherically-symmetric
spacetimes, which in general can be described by the line element

ds2
Spherical = −A (r) dt2 +

1
B(r)

dr2 + r2dΩ2 . (2.16)

The generalization of the radial tortoise coordinate for these spacetimes
is

dr∗
dr

=
1√

A(r) B(r)
. (2.17)
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2.1.3 Black-Hole Perturbations

EMRIs can also be modeled as a point particle of mass mp, representing
the stellar-mass compact object, perturbing the SMBH of mass M, where
mp/M ≪ 1. To handle this, the natural framework is BH perturbation
theory [178, 179], which describes the spacetime using a background
metric g(0)µν , and adds a perturbation hµν such that the full metric is
given by

gµν(xα) = g(0)µν (xα) + ϵ hµν(xα) +O(ϵ2) , (2.18)

where ϵ ≪ 1 is an expansion parameter. In the case of EMRIs, this
would be the mass ratio q = mp/M. For accurate parameter estimation
with LISA, this expansion will have to be carried until second order in
the mass ratio q [28, 180, 181].

regge-wheeler and zerilli equation

We will often focus on spherically-symmetric backgrounds (e.g.
Schwarschild), where any perturbation can be decomposed into irre-
ducible representations of SO(2). Then, gravitational perturbations
can be expanded in ten spherical harmonics, which are the tensorial
version of the standard spherical harmonics Yℓm (θ, φ) for scalars [182].
The perturbations can be grouped into polar/electric/even type or
axial/magnetic/odd type, depending on their behavior under parity
transformations (θ, φ) → (π − θ, π − φ) [183, 184]

haxial = ∑
ℓ,m

√
2ℓ(ℓ+ 1)

r

[
i hℓm

1 cℓm − hℓm
0 c0

ℓm +

√
(ℓ+ 2)(ℓ− 1)

2
hℓm

2 dℓm

]
,

hpolar = ∑
ℓ,m

[
A Hℓm

0 a0
ℓm − i

√
2Hℓm

1 a1
ℓm +

1
B

Hℓm
2 aℓm +

√
2Kℓmgℓm

+

√
2ℓ (ℓ+ 1)

r

(
h(e)ℓm

1 b1
ℓm − ih(e)ℓm

0 b0
ℓm

)
+

(√
(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)

2
fℓm − ℓ (ℓ+ 1)√

2
gℓm

)
Gℓm

]
,

(2.19)

where ∑ℓ,m = ∑∞
ℓ=0 ∑ℓ

m=−ℓ. We are omitting the dependences on
(t, r, θ, φ) to avoid cluttering, but the mode perturbations hℓm

1 , hℓm
0 , ...
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are only functions of (t, r), while a0
ℓm, aℓm, ..., are the ten tensor spher-

ical harmonics independent of t

a0
ℓm =


Yℓm 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , (2.20)

a1
ℓm =

i√
2


0 Yℓm 0 0

Sym 0 0 0

0 0 0 0

0 0 0 0

 , (2.21)

aℓm =


0 0 0 0

0 Yℓm 0 0

0 0 0 0

0 0 0 0

 , (2.22)

b0
ℓm =

i r√
2ℓ (ℓ+ 1)


0 0 ∂θYℓm ∂φYℓm

0 0 0 0

Sym 0 0 0

Sym 0 0 0

 , (2.23)

bℓm =
r√

2ℓ (ℓ+ 1)


0 0 0 0

0 0 ∂θYℓm ∂φYℓm

0 Sym 0 0

0 Sym 0 0

 , (2.24)

c0
ℓm =

r√
2ℓ (ℓ+ 1)


0 0 1

sin θ ∂φYℓm − sin θ ∂θYℓm

0 0 0 0

Sym 0 0 0

Sym 0 0 0

 , (2.25)

cℓm =
i r√

2ℓ (ℓ+ 1)


0 0 0 0

0 0 1
sin θ ∂φYℓm − sin θ ∂θYℓm

0 Sym 0 0

0 Sym 0 0

 , (2.26)

dℓm =
ir2√

2 (ℓ+ 2) (ℓ+ 1) ℓ (ℓ− 1)


0 0 0 0

0 0 0 0

0 0 − 1
sin θ Xℓm sin θ Wℓm

0 0 Sym sin θ Xℓm

 ,

(2.27)
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fℓm =
r2√

2 (ℓ+ 2) (ℓ+ 1) ℓ (ℓ− 1)


0 0 0 0

0 0 0 0

0 0 Wℓm Xℓm

0 0 Sym − sin2 θ Wℓm

 ,

(2.28)

gℓm =
r2
√

2


0 0 0 0

0 0 0 0

0 0 Yℓm 0

0 0 0 sin2 θ Yℓm

 . (2.29)

where “ Sym” is the symmetric of that respective matrix entry and

Xℓm = 2 ∂φ (∂θ − cot θ)Yℓm , (2.30)

Wℓm =

(
∂2

θ − cot θ ∂θ −
1

sin2 θ
∂2

φ

)
Yℓm . (2.31)

Introducing the inner product (·, ·) on the two-sphere(
Rℓ′m′

, Sℓm
)
=
∫

S2

dΩ
(

Rℓ′m′
µν

)∗
Sℓm

λρ ηµλ ηνρ , (2.32)

where

ηµν = diag
(
−1, 1, r2, r2 sin2 θ

)
, (2.33)

one can check that the harmonics defined above are orthonormal, i.e.(
Rℓ′m′

, Sℓm
)
= δR S δl′ l δm′ m.

In a similar fashion, the energy-momentum tensor can be expanded
as

T = ∑
ℓ,m

[
A0

ℓma0
ℓm +A1

ℓma1
ℓm +Aℓmaℓm + B0

ℓmb0
ℓm + Bℓmbℓm

+ Q0
ℓmc0

ℓm +Qℓmcℓm +Dℓmdℓm + Gℓmgℓm +Fℓmfℓm

]
.

(2.34)

where, for a given source, the expansion coefficients can be obtained
by projecting the energy-momentum tensor on the respective spherical
harmonic, e.g. A0

ℓm = (a0
ℓm, T ).

It is important to recall that GR is invariant under diffeomorphisms.
Infinitesimally

xµ → x′µ = xµ + ξµ ⇒ hµν → h′µν = hµν − 2∇(µξν) , (2.35)
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where ξ is the vector field generating the diffeomorphism. ξ can also
be expanded in a set of polar and axial harmonics

ξ = ∑
ℓ,m

(
− ξℓm

t
A

, Bξℓm
r , 0 , 0

)
Yℓm

+
ξℓm

Ω
r2 sin θ

(
0 , 0 , sin θ∂θYℓm , ∂φYℓm

)
+

ξℓm
ax√

2ℓ (ℓ+ 1)

(
0 , 0 ,

1
r sin θ

∂φYℓm , −1
r

∂θYℓm

)
, (2.36)

where ξℓm
t , ξℓm

r , ξℓm
Ω , ξℓm

ax are only functions of t and r. The first two
terms on the right-hand side are the polar ones and and the second is
the single axial degree of freedom. Then

2∇(µξν) =
(
2∂tξt − A′Bξr

)
a0

− i
√

2
(

∂rξt + ∂tξr −
A′

A
ξt

)
a1

+

(
2∂rξr +

B′

B
ξr

)
a − i

√
2ℓ (ℓ+ 1)

r
(ξt + ∂tξΩ) b0

+

√
2ℓ (ℓ+ 1)

r

(
∂rξΩ + ξr −

2
r

ξΩ

)
b + ∂tξaxc0

− i
(

∂rξax −
ξax

r

)
c + i

√
(ℓ+ 2) (ℓ− 1)

r
ξaxd

+

√
2 (ℓ+ 2) (ℓ+ 1) ℓ (ℓ− 1)

r2 ξΩf

+

√
2

r2 (2rBξr − ℓ (ℓ+ 1) ξΩ) g , (2.37)

where the prime denotes a derivative with respect to r, and from
now on we omit (ℓ, m) indices unless necessary to avoid cluttering.
Therefore, we can pick ξµ judiciously to eliminate four components of
the metric perturbations, one in the axial sector and three in the polar
one. A common choice is the Regge-Wheeler gauge, where we set to
zero terms involving angular derivatives of the highest order

h2 = h(e)0 = h(e)1 = G = 0 . (2.38)

In the founding work of BH perturbation theory, Regge and Wheeler
employed this gauge to derive a decoupled wave equation for a master
function ΨRW, which encodes all the dynamics of the axial sector
around a Schwarzschild BH [185]. Years later, Zerilli obtained the same
for the polar sector [186, 187] 1. However, their derivation involves a
lengthy manipulation of Einstein’s equations, which we will revisit in
Chapter 9, when we study EMRIs in non-vacuum environments. For

1 Zerilli’s original papers contain numerous typos, namely in the definitions of the
spherical harmonics. Ref. [183] corrects them, and we follow it in our definitions.
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now, it is sufficient to state the final master wave equations for the
axial (“RW”) and polar sectors (“Z”) [188, 189](

−∂2
t + ∂2

r∗ − VZ/RW
)

ΨZ/RW = SZ/RW . (2.39)

ΨZ/RW are the master functions, which are related to the metric per-
turbations above through

ΨRW =
1
r

(
1 − 2M

r

)
h1 , (2.40)

ΨZ =
r

λ + 1

[
K +

1 − 2M/r
λ + 3M/r

(H2 − r ∂rK)
]

, (2.41)

where λ = (ℓ− 1) (ℓ+ 2) /2, while the effective potentials are [188]

VRW =

(
1 − 2M

r

) [
ℓ (ℓ+ 1)

r2 − 6M
r3

]
, (2.42)

VZ =
2
r3

(
1 − 2M

r

)
9M3 + 3λ2M r2 + λ2 (1 + λ) r3 + 9M2λ r

(3M + λr)2 .

(2.43)

Finally, SZ/RW are source terms which depend on the energy-momentum
tensor. Assuming the source is localized, close to the BH horizon and
at large distances the master equations become

r → 2M, ∞ ⇒
(
−∂2

t + ∂2
r∗

)
ΨZ/RW = 0 . (2.44)

Therefore, they admit two physical linearly independent solutions
traveling at the speed of light. Physical boundary conditions are repre-
sented by ingoing waves at the horizon, Aine−iω(t+r∗), and the other
outgoing waves at infinity, Aoute−iω(t−r∗).

ΨZ/RW are gauge invariant quantities and control the two radiative
degrees of freedom of GR at large distances [184, 189]

h+ − ih× = lim
r→∞

1
2r

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

√
(ℓ+ 2)!
(ℓ− 2)!

(
Ψℓm

Z − 2i
∫ t

−∞
Ψℓm

RW

)
−2Yℓm ,

with

−2Yℓm (θ, φ) =

√
(ℓ− 2)!
(ℓ+ 2)!

(
Wℓm (θ, φ)− i

sin θ
Xℓm (θ, φ)

)
,

the spin-2 weighted spherical harmonic.
The total energy flux carried to infinity by GWs can also be computed

through these master functions [184, 189]

Ėℓm
∞ =

1
64π

(ℓ+ 2)!
(ℓ− 2)!

[∣∣∣Ψ̇ℓm
Z

∣∣∣2 + 4
∣∣∣Ψℓm

RW

∣∣∣2] ,

Ė∞ =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

Ėℓm
∞ , (2.45)
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where the overdot denotes differentiation with respect to time.
The last two sums over the multipoles only started at ℓ = 2. The

monopole (ℓ = 0) and dipole (ℓ = 1) perturbations are pure gauge
in GR and do not contribute to the radiative degrees of freedom,
though the perturbations may be non-zero in some spacetime regions.
Additionally, we have that b0

ℓm = bℓm = c0
ℓm = cℓm = 0 for ℓ = 0, and

dℓm = fℓm = 0 for ℓ ≤ 1. So the Regge-Wheeler gauge (2.38) is not
completely fixed for ℓ ≤ 1.

This property is related to the fundamental nature of gravity, which
according to GR should be mediated by a massless spin-2 boson,
the “graviton”. As a result, GR exhibits conservation of the energy-
momentum tensor, analogous to vector current conservation in elec-
tromagnetism that is mediated by a massless spin-1 boson, the photon.
Therefore, there is no dipolar radiation in GR, similarly to the absence
of monopole radiation in electromagnetism.

teukolsky equation

Obtaining a master equation for linear perturbations in Kerr is more
complicated since the loss of spherical symmetry means that separa-
tion in spherical harmonics is no longer possible. Instead, Teukolsky
was able to decouple the equations governing any type of linear per-
turbations to Kerr using the Newman-Penrose formalism, in which
tensors are projected onto a null tetrad {n, l, m, m̄} [190] (the overbar
in m̄ denotes complex conjugation).The details of this formalism are
not necessary to follow the thesis, and we refer the interested readers
to Refs. [178, 179, 190–193] for more detailed descriptions. Here it will
suffice to work with the final master equation describing any type
of linear perturbations to Kerr, which in Boyer-Lindquist coordinates
and using the Kinnersley tetrad

l =

(
r2 + a2

∆
, 1, 0,

a
∆

)
, (2.46)

n =
1

2Σ
(
r2 + a2,−∆, 0, a

)
, (2.47)

m =
1√

2 (r + ia cos θ)

(
ia sin θ, 0, 1,

i
sin θ

)
, (2.48)

reads [(
r2 + a2)2

∆
− a2 sin2 θ

]
∂2

t Ψ − ∆−s∂r

(
∆s+1∂rΨ

)
+

4aMr
∆

∂φ∂tΨ + 2s

[
r +

M
(
a2 − r2)

∆
+ ia cos θ

]
∂tΨ

− 1
sin θ

∂θ (sin θ∂θΨ)− 2s
[

a (r − M)

∆
+

i cos θ

sin2 θ

]
∂φΨ

−
[

1
sin2 θ

− a2

∆

]
∂2

φΨ +
(
s2 cot2 θ − s

)
Ψ = 4π Σ T . (2.49)
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Here, s determines the spin-weight of the master variable Ψ, which
corresponds to s = 0 for scalars, s = ±1 for electromagnetic pertur-
bations (i.e. vectors), and s = ±2 for gravitational ones. T encodes
the source term and depends on the energy-momentum tensor. We
particularize it below for a point-particle orbiting a Kerr BH.

For s = 0 the Teukolsky equation reduces to the Klein-Gordon equa-
tion for a massless scalar field. For s = ±2, it describes perturbations
to the Weyl tensor that govern the radiative degrees of freedom at the
BH horizon (s = 2), and at infinity (s = −2). Since we are interested in
studying GW emission, we will mostly focus on the s = −2 case, for
which the master variable is Ψ = ρ−4ψ4, with ρ = −1/(r − ia cos θ).
ψ4 is then related to the GW polarizations at large distances through

1
2

(
∂2h+
∂t2 − i

∂2h×
∂t2

)
= lim

r→∞
ψ4 . (2.50)

The flux of energy carried by GWs to infinity can also be computed
through ψ4

Ė∞ = lim
r→∞

r2

4π

∫
S2

dΩ
∫ t

−∞
dt′Ψ(t′, r, θ, φ) . (2.51)

2.2 numerical framework

In general, analytic solutions to the master equations we discussed
are not possible, and numerical methods must be used instead. In
this thesis, we will often use a two-step Lax-Wendroff algorithm with
second-order finite differences appropriate to solve “wave-like” partial
differential equations in the time-domain [194–197]. In this section we
provide an overview of the algorithm.

2.2.1 The Lax-Wendroff algorithm

Let us assume that we have manipulated our wave equation (e.g. the
Teukolsky equation) so that in the homogeneous version it reads

∂2
τΨ =

[
Ãτρ∂τ∂ρ + Ãρρ∂2

ρ + Ãθθ∂2
θ + B̃τ∂τ + B̃ρ∂ρ + B̃θ∂θ + C̃

]
Ψ .

(2.52)

Here, τ and ρ are redefined time and radial variables, respectively. This
coordinate ρ should not be confused with the ρ variable appearing
in the definition of the master variable Ψ in terms of ψ4, and we
adopt it for consistency with Ref. [197]. The coefficients depend only
on ρ and θ, which can be achieved even for rotating BHs due to
the axisymmetry of Kerr. In spherical symmetry, we could further
eliminate the θ dependence by expanding in spherical harmonics,
which would be absorbed in the C̃ coefficient. This procedure is easily
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generalizable for a system of two or more coupled wave equations, in
which case the coefficients above would be promoted to matrices.

Eq. (2.52) can be reduced to a system of first-order partial differential
equations by defining the auxiliary variable Π

Π =
(
∂τ + b ∂ρ

)
Ψ , (2.53)

b = −
(

Ãτρ +

√(
Ãτρ

)2
+ 4Ãρρ

)
/2 . (2.54)

We can then rewrite it as

∂τu + M · ∂ρu + L · u + A · u = T , (2.55)

where we reintroduced the source term T and

u = {ΨR, ΨI, ΠR, ΠI} , (2.56)

and the subscripts R and I refer to the real and imaginary part. The
matrices M , A , L have the general structure

M =


b 0 0 0

0 b 0 0

m31 m32 −b 0

−m32 m31 0 −b

 , (2.57)

A =


0 0 −1 0

0 0 0 −1

a31 a32 a33 a34

−a32 a31 −a34 a33

 , (2.58)

L =


0 0 0 0

0 0 0 0

l31 0 0 0

0 l31 0 0

 . (2.59)

Further below, we will make this coefficients explicit for the Teukol-
sky equation. The matrix L contains the angular derivatives in θ (in
spherical symmetry L = 0). This decomposition is particularly useful
for inferring the hyperbolicity of the system by computing the eigen-
values/eigenvectors of M . Since L contains second-order derivatives,
hyperbolicity is not guaranteed even if M has a complete set of lin-
early independent eigenvectors with real eigenvalues. However, this
method was numerically well-behaved and convergent in all the cases
we studied.

We can finally construct a time-explicit evolution scheme based
on the two-step, second-order Lax-Wendroff finite-difference method.
First, we rewrite Eq. (2.55) in the form of an advection equation(

∂τ + D ∂ρ

)
u = S , (2.60)
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with

D = diag (b, b,−b,−b) , (2.61)

S = − (M − D) · ∂ρu − L · u − A · u + T . (2.62)

We discretize this equation on a uniform two-dimensional grid,
with grid steps δρ and δθ. Each iteration of the numerical integration
has two steps. In the first step, we compute an intermediate solution
between the main grid points

un+1/2
i+1/2 =

1
2
(
un

i+1 + un
i
)
− δτ

2

[
1
δρ

Dn
i+1/2

(
un

i+1 − un
i
)
− Sn

i+1/2

]
.

(2.63)

We omit angular angular indexes to avoid cluttering and δτ is the
time step. The fields are centered in the angular direction and angular
derivatives are approximated by a centered second-order difference
stencil

∂θuj =
uj+1 − uj−1

2 δθ
+O

(
δθ2) , (2.64)

∂2
θuj =

uj+1 − 2uj + uj−1

δθ2 +O
(
δθ2) , (2.65)

while the radial derivatives are approximated using centered second-
order differences on the values i and i + 1. The algebraic terms in
Dn

i+1/2 and Sn
i+1/2 are given by an average between the values at i and

i + 1. This intermediate solution is then used to update the solution at
the next time step

un+1
i = un

i − δτ

[
1
δρ

Dn+1/2
i

(
un+1/2

i+1/2 − un+1/2
i−1/2

)
− Sn+1/2

i

]
,

(2.66)

while now the centered radial differences and averages are taken on
the values un+1/2

i+1/2 and un+1/2
i−1/2 . The only missing step is to impose

appropriate boundary conditions for ρ and θ. We will illustrate this
with a concrete example below.

2.2.2 A practical case: the Teukolsky equation

Let us now apply this method to the Teukolsky equation (2.49).

coordinate transformations .
Boyer-Lindquist coordinates suffer from several pathologies that

need to be cured for numerical schemes. The radial coordinate be-
comes singular at the BH horizon and there is a frame-dragging effect
along φ due to the BH rotation. Furthermore, the asymptotic behavior
of Ψ at both the BH horizon and infinity needs to be considered to



2.2 numerical framework 25

prevent a numerical blow-up of the solution. The general behavior for
spin-weight s is different for ingoing and outgoing waves

lim
r→+∞

|Ψ| ∼

1/r2s+1 outgoing

1/r ingoing
, (2.67)

lim
r→r+

|Ψ| ∼

1 outgoing

∆−s ingoing
. (2.68)

To deal with the radial singularity at the BH horizon we use the
radial tortoise coordinate r∗ introduced in Eq. (2.13). As mentioned
above, r∗ pushes the BH horizon to −∞, which in the numerical do-
main is put at some finite distance where artificial ingoing boundary
conditions are imposed.

To handle the angular twisting in the ergoregion, we introduce a
modified azimuthal coordinate

dφ̃ = dφ +
a
∆

dr ⇒

⇒ φ̃ = φ +
a

r+ − r−
log
∣∣∣∣ r − r+
r − r−

∣∣∣∣ . (2.69)

Finally, we rescale the master variable according to the respective
asymptotic behavior at large distances (2.67). The axisymmetry of the
Kerr background also allows us to separate the azimuthal dependence
in φ̃ with the mode number m

Ψ (t, r, θ, φ) = eimφ̃r(−2s+1)ψ (t, r, θ) . (2.70)

Applying these transformations to the Teukolsky equation (2.49) we
arrive at [(

r2 + a2)2

∆
− a2 sin2 θ

]
∂2

t ψ −
(
r2 + a2)2

∆
∂2

r∗ψ

− ∂2
θψ − cot θ ∂θψ − 2

∆

[
M s

(
r2 − a2)− rs∆

− ia (s∆ cos θ + 2Mmr)
]

∂tψ − 1
r∆

[
2iamr

(
r2 + a2)

− 2rs
(
r2 + a2) (M − r)−

(
4
(
r2 + a2) s + 2a2)∆

]
∂r∗ψ

− 1
r2∆

[
2 (1 + s) (1 + 2s)∆2 − r∆

[
r (s cot θ + m csc θ)2

− r (s − 2 (1 + s) (1 + 2s))− 2M (1 + s) (1 + 2s)
]

− 2iamr [2rs (M − r) + (1 + 2s)∆]
]

ψ = 4π Σ r2s+1e−imφ̃T .

(2.71)



26 theory and numerical framework

Multiplying it by ∆/σ2, where

σ2 =
(
r2 + a2)2 − ∆ a2 sin2 θ , (2.72)

we finally bring it to the form in Eq. (2.52) with the following coeffi-
cients

b =
r2 + a2

σ
,

m31 = −2
rs (M − r)

(
r2 + a2)+ (2 (r2 + a2) s + a2)∆

rσ2

−b2s
M
(
a2 − r2)+ r∆

σ2 + b∂r∗b ,

m32 = 2am
r2 + a2

σ2 + b2a
s∆ cos θ + 2Mmr

σ2 ,

a31 =
∆

r2σ2

[
r2 (s cot θ + m csc θ)2 − 2Mr (1 + s) (1 + 2s)

+ r2 (4s2 + 5s + 2
)
− 2 (1 + s) (1 + 2s)∆

]
,

a32 = −2am
2rs (M − r) + (1 + 2s)∆

rσ2 ,

a33 = 2s
M
(
a2 − r2)+ r∆

σ2 , a34 = −2a
2mMr + s∆ cos θ

σ2 ,

l31 = − ∆
σ2 ∂2

θ −
∆
σ2 cot θ ∂θ . (2.73)

boundary conditions

To evolve the system described above, we need to impose appropri-
ate boundary conditions for ψ. The physical solution corresponds to
having ingoing waves at the BH horizon and outgoing waves at infinity.
At the inner boundary, we exploit the asymptotic behavior of ingoing
waves ψ ∼ ∆−s as in Eq. (2.68). For s = −2, which describes the
gravitational perturbations of interest, we can then set ψ = Π = 0. Im-
posing outgoing boundary conditions at the outer boundary is more
complicated and often one obtains spurious reflections there. One
solution is to set the outer boundary far enough away so that it does
not affect the interior domain in the maximal Cauchy development
of our initial data. For example, if we evolve the system for t = 103M
and extract the fields at rext

∗ = 500M, then the outer boundary should
be placed further than rout

∗ = 103M to prevent any signal from being
reflected back and affect the field values at the extraction radius. The
same strategy can be used at the inner boundary when the asymptotic
behavior of ψ is less trivial, as in the scalar case where it asymptotes
to a constant.
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Finally, we use the symmetries of spheroidal harmonics, which
are the generalization of spherical harmonics to axisymmetric back-
grounds, to impose boundary conditions on the rotation axis [182]

ψ
∣∣∣
θ=0,π

= 0 , m odd (2.74)

∂θψ
∣∣∣
θ=0,π

= 0 , m even . (2.75)

This numerical method has been used extensively in the literature
for over two decades. Initially, it was used to study the late-time
polynomial tail decay of perturbations in Kerr [194, 195, 198, 199],
which require high precision and stable codes over long computational
times. The method exhibited second-order convergence and a Courant
condition δt ≤ (δr∗ , 5δθ). More recently, it has been applied to the
study of EMRIs [197, 200–202], as we will do. Typical choices for the
grid discretization are δr∗/M = 0.05, δθ = π/64, and δt = δr∗/2.

point-particle source term

We will now explain how to incorporate point-particle source terms
in the Teukolsky equation, which can model the secondary object in
an EMRI. The source term T appearing in Eq. (2.71) is [190, 200]

T = 2ρ−4T4 , (2.76)

T4 =
(
∆̃ + 3γ − γ̄ + 4µ + µ̄

) (
∆̃ + 2γ − 2γ̄ + µ̄

)
Tm̄m̄

−
(
∆̃ + 3γ − γ̄ + 4µ + µ̄

) (
δ̄ − 2τ̄ + 2α

)
Tnm̄

+
(
δ̄ − τ̄ + β̄ + 3α + 4π

) (
δ̄ − τ̄ + 2β̄ + 2α

)
Tnn

−
(
δ̄ − τ̄ + β̄ + 4π

) (
∆̃ + 2γ + 2µ̄

)
Tnm̄ , (2.77)

where we alert again that now this ρ = −1(r − ia cos θ) and not
the general ρ radial coordinate we used in the description of the
Lax-Wendroff method. Also Tnm̄ = nµm̄νTµν, Tnn = nµnνTµν, Tm̄m̄ =

m̄µm̄νTµν. ∆̃ and δ̄ are the differential operators

∆̃ = nµ∂µ

=
ρ2 (r2 + a2)

2
d
dt

− ρ2∆
2

d
dr

+
aimρ2

2
, (2.78)

δ̄ = m̄µ∂µ

= − ia sin θρ2 (r + ia cos θ)√
2

d
dt

+
(r + ia cos θ) ρ2

√
2

d
dθ

+
mρ2 (r + ia cos θ)√

2 sin θ
, (2.79)
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and the other coefficients are [190]

β =
1

r + ia sin θ

cot θ

2
√

2
, (2.80)

π = ia
1

(r − ia sin θ)2
sin θ√

2
, (2.81)

µ = −ρ2 1
r − ia sin θ

∆
2

, (2.82)

γ = µ + ρ2 r − M
2

, (2.83)

τ = −iaρ2 sin θ√
2

, (2.84)

α = π − β̄ . (2.85)

The energy-momentum tensor of the point-particle can be integrated
in t and rewritten as

Tµν
p =

mp

Σ sin θ

dtp

dτ

dxµ

dt
dxν

dt
δ
(
r − rp(t)

)
δ
(
θ − θp(t)

)
δ
(

φ − φp(t)
)

.

(2.86)

Axial symmetry also allows for the mode separation of the energy
momentum tensor

Tµν =
∞

∑
m=0

Tm
µνeimφ . (2.87)

Finally, the Dirac delta distributions need to be represented in
the numerical grid. For the azimuthal decomposition, we use the
representation in modes

δ
[
φ − φp(t)

]
=

1
2π

∞

∑
m=0

eim(φ−φ(t)) . (2.88)

For the radial and θ directions, we approximate the Dirac delta by a
narrow Gaussian distribution

δ
(
r − rp (t)

)
=

δ
[
r∗ − r∗p (t)

]
|dr/dr∗|

=
|dr∗/dr|√

2πλr∗
exp

[
−
(

r∗ − r∗p (t)
2
)

/2λ2
r∗

]
, (2.89)

δ
(
θ − θp (t)

)
=

1√
2πλθ

exp
[
−
(
θ − θp (t)

)2 /2λ2
θ

]
, (2.90)

where λr∗ and λθ are varied to ensure convergence of the numerical re-
sults as they approach 0. Numerical experience shows λr∗ ≈ 4dr∗ and
λθ ≈ 4dθ yield the best results [203]. Although there are more refined
numerical representations of the Dirac delta in the literature [196], the
one we follow is more practical and versatile for modeling different
orbital motion.
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When doing simulations with point-particles, we generate them at
t = 0 and prescribe as initial data for the field ψ(t = 0) = ∂tψ(t = 0) =
0. This leads to a burst of initial junk radiation which needs to dissipate
before the “physical” solution is observed. The junk radiation can,
however, be reduced by multiplying the source by a starting “window”
function that varies between 0 and 1 on some timescale T, such as
(1 − exp(−t/T))4.

2.2.3 Hyperboloidal layers

One drawback of the method described above is that the outer bound-
ary needs to be pushed to very large radius to avoid spurious reflec-
tions in the numerical solution. Additionally, GWs are only defined in
a gauge-invariant manner at null infinity. Therefore, to study radiation
numerically, one often needs to go to very large values of the radial
coordinate r∗ to ensure that extraction is performed in a region where
the fields already behave like outgoing waves.

These obstacles have motivated the study of how to include null
infinity in the computational domain. A successful strategy is hyper-
boloidal foliations. These are surfaces everywhere spacelike, that still
approach null infinity [197, 204, 205]. We will follow the method of
scri-fixing gauges [204], in which null infinity is fixed at some spatial
coordinate independent of the time coordinate. This can even coincide
with the numerical outer boundary, eliminating the need for imposing
boundary conditions.

The first step in this construction is to compactify the radial coordi-
nate

r∗ =
ρ

Ω(ρ)
, (2.91)

where Ω is a conformal factor whose zero set S corresponds to infinity
in r∗ and ρ is the new radial coordinate. It obeys to Ω(S) = 0 and
dΩ(S)/dρ ̸= 0.

The second step is to introduce a new time coordinate τ that pre-
serves the timelike Killing vector field, i.e. ∂τ = ∂t. This is achieved
by a transformation τ = t − h(r, θ, φ), where h is called the height
function. Since we are interested in studying the emission of GWs, it is
useful to pick h so that it depends only on r∗

τ = t − h(r∗) . (2.92)

In this way, surfaces of constant τ are hyperboloidal.
One advantage of this method is that the strong-field region where

the motion of the source takes place can be kept unaltered. At some
radius, a truncated hyperboloidal layer is introduced, which must be
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matched in a sufficiently smooth way. The matching procedure we
adopt follows that of Ref. [197]

Ω = 1 −
(

ρ − Rlayer

S − Rlayer

)4

Θ
(
ρ − Rlayer

)
, (2.93)

where Θ is the Heaviside function and S is the location of the outer
boundary in the numerical domain. Ω = 1 for ρ < Rlayer, so ρ = r∗ in
this region.

To choose the height function we require that outgoing null waves
have the same representation in the strong field region and the exterior
layer, which means t − r = τ − ρ. Eq. (2.92) then implies

h = t − τ = r∗ − ρ(r∗) =
ρ

Ω(ρ)
− ρ . (2.94)

For ρ < Rlayer, Ω = 1 and therefore h = 0, so that in interior region
τ = t.

How does this affect the Teukolsky equation? Suppose we have it
written in the form[

Att∂2
t + Atr∗∂t∂r∗ + Ar∗r∗∂2

r∗ + Aθθ∂2
θ + Bt∂t + Br∗∂r∗ + Bθ∂θ + C

]
Ψ = 0 .

(2.95)

The coordinate transformations in Eq. (2.91) and (2.92) change the
derivative operators

∂t = ∂τ , ∂r∗ = −H ∂τ + (1 − H) ∂ρ , (2.96)

where H is the boost function

H =
dh
dr∗

, (2.97)

which for our choice of the height function in Eq. (2.94) is

H = 1 − dρ

dr∗
= 1 − Ω2

Ω − ρ dΩ
dρ

. (2.98)

The transformed Teukolsky equation now has the form[
Aττ∂2

τ + Aτρ∂τ∂ρ + Aρρ∂2
ρ + Aθθ∂2

θ + Bτ∂τ + Bρ∂ρ + Bθ∂θ + C
]

Ψ = 0 ,

(2.99)

with the new coefficients

Aττ = Att − HAtr∗ + H2Ar∗r∗ , (2.100)

Aττ = (1 − H)
(

Atr∗ − 2HAr∗r∗
)

, (2.101)

Aρρ = (1 − H)2 Ar∗r∗ , (2.102)

Bτ = Bt − HBr∗ − dH
dρ

(1 − H) Ar∗r∗ , (2.103)

Bρ = (1 − H)

(
Br∗ − dH

dρ
Ar∗r∗

)
. (2.104)
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Note that Eq. (2.99) can be put in the form of the original wave
equation (2.52) by dividing everything by −Aττ.

This set of hyperboloidal coordinates preserves the regularity of the
Teukolksy equation, and all the coefficients appearing in it are finite
at the outer boundary Ω(S) = 0 [197]. Moreover, it ensures that the
equation does not admit ingoing solutions at the outer boundary [197].





Part I

T I D E S





3
D E F O R M A B I L I T Y O F B L A C K H O L E S I M M E R S E D I N
M AT T E R

Tidal interactions are responsible for many astrophysical phenomena
that have caught our attention since the dawn of Newton’s theory
of gravitation [155]. An obvious example is ocean tides, caused by
differences in the gravitational field produced by the Moon at different
Earth locations. Their tidal interaction also explains why the Earth is
losing angular momentum to the Moon, resulting in longer days. Tidal
effects play a crucial role in close binary systems, as demonstrated by
the spectacular tidal disruption events of stars that orbit too close to
SMBHs [206, 207].

In the first part of this thesis, we study two problems where the
matter surrounding a BH gets tidally deformed by a companion in a
binary system and examine their implications for GW astronomy.

3.1 a brief history of tidal love numbers

The tidal distortion of a compact object by an external gravitational
field is quantified, at a linear level, through its tidal Love numbers
(TLNs) [155]. They are the gravitational analogue of the electric suscep-
tibility. The TLNs depend only on the dynamics of the gravitational
field, i.e. the underlying theory of gravity and the internal structure
of the deformed body. They appear in the orbital equation of motions
of a binary system at leading Newtonian order [208, 209], and intro-
duce corrections in the gravitational waveform at fifth post-Newtonian
order [210, 211]. The prospects of using GWs measurements to un-
derstand the structure of more compact objects have motivated the
development of a relativistic theory of TLNs[212–214].

Initially, works on TLNs focused on neutron stars and provided
access to the equation of state above the currently understood nuclear
densities [215, 216]. More recently, tidal deformations have been pro-
posed as a good candidate to test strong-field gravity, the BH paradigm
and to search for new exotic, compact objects (ECOs) [217–221]. A cru-
cial aspect of this is the fact that TLNs of BHs vanish in GR [212, 213,
222, 223], even when the BH is rotating [224–227]. This property has
been geometrically linked to hidden near-horizon enhanced symme-
tries [228–230]. Therefore, a measurement of a nonvanishing TLN is

35
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evidence for new physics: either the object is not a BH, or GR is not the
most accurate description of gravity.

Consider the first possibility. Quantum corrections at the horizon
scale or exotic matter could form horizonless ECOs [231]. As the BH

limit is approached,

C = M/R → 1/2 , (3.1)

where M and R are, respectively, the mass and radius of the ECO,
its TLNs generically converge to the BH limit (zero), but, for many
models, logarithmically [231]. LVK and the Einstein Telescope can
only set constraints on low compact ECOs, but LISA would probe tidal
deformability almost up to the BH limit [218–220, 231]. Nonzero TLNs
may also signal corrections to GR. Extra degrees of freedom create extra
tidal fields for which a theory of TLNs is still poorly formulated [232],
but in some of the extensions studied in the literature, BHs in modified
gravity theories can have nonzero TLNs [231, 233] (e.g. Chern-Simons
gravity [234]).

There is, however, a third unexplored option that could be responsi-
ble for the (apparent) nonvanishing of TLNs of a BH: the presence of
external matter. Any astrophysically plausible self-gravitating object
will be surrounded by some matter, which could contribute with small
but nonzero effective TLNs. In the rest of this chapter, we will quantify
this contribution and conclude whether the matter surrounding a
binary coalescence limits our ability to test GR with TLNs.

3.2 newtonian shell

As a proxy for the relativistic case, let us start by studying the tidal
deformability of a spherical shell of matter in Newtonian gravity.
Consider an object formed by a perfect fluid (isotropic with no shear
stresses and viscosity) with matter density ρ, pressure p and velocity
uj, that obeys the Poisson-Euler equations [155]

∂i∂
iΦ = −4πG ρ , (3.2)

ρ
duj

dt
= ρ∂jΦ − ∂j p , (3.3)

where Φ is the Newtonian gravitational potential and we temporarily
recover Newton’s gravitational constant G = 6.67 × 10−11 N · m2/kg2.
This system is complemented with a mass continuity equation

∂ρ

∂t
+ ∂i (ρ ui) = 0 . (3.4)

The isotropy inherent to a perfect fluid implies that, in equilibrium, it
is spherically symmetric and we can use spherical coordinates centered
at the body’s center of mass.
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Next, we introduce an external tidal field, V, which perturbs the
equilibrium configuration of the body. We assume the regime of static
tides, meaning that the time variations of the tidal perturber are small
compared to the dynamical timescale of the system, and thus tides
are independent of time. In this regime, the condition of hydrostatic
equilibrium becomes

∂j p = ρ∂jΦ . (3.5)

In order to exploit the spherical symmetry of the system, it is useful
to define the mass function m(r)

dm(r)
dr

= 4πr2ρ , (3.6)

and rearrange Eq. (3.5) as

dp
dr

= −ρ
Gm
r2 . (3.7)

For the condition of hydrostatic equilibrium to hold, the tidal field
must be sufficiently far away from the central body. In fact, we will
assume that it is located in vacuum and satisfies Laplace’s equation

∂i∂
iV = 0 . (3.8)

which admits as solution

V = ∑
ℓ,m

4π

2ℓ+ 1
dℓmrℓYℓm, (3.9)

where dℓm are called the tidal moments.
At this point, we introduce fluid perturbations. We follow a surface

of constant density, ρ0, which in the unperturbed configuration is at
radius r0. Then, we need to consider perturbations in the mass density,
δρ, and in the radius of the surface, δr. There are two possible ways to
approach this. The Eulerian/macroscopic framework compares quan-
tities at the same position in space, while the Lagrangian/microscopic
framework describes changes in the same fluid element as it is per-
turbed. We will not delve into how to handle the differences between
them and refer the reader to Ref. [155] for a more detailed treatment.

If we follow a spherical surface of density matter ρ in the micro-
scopic description, the following macroscopic statements are true

δρ = −ρ′δr , (3.10)

δp = −p′δr , (3.11)

where primes denote derivatives with respect to r.
The fluid perturbations change the body’s gravitational potential so

that a perturbed Poisson equation holds

∂i∂
iδΦ = −4πGδ ρ . (3.12)
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Outside the body, where δρ is zero, the solution to this equation is

Φout
lm =

4πG
2ℓ+ 1

Iℓm

rℓ+1 , (3.13)

where Iℓm are the body’s multipole moments. The TLNs are defined as
the ratio

kℓ =
1
2

(
c2

G M

)2ℓ+1 G Iℓm

dℓm
, (3.14)

where we also recovered the speed of light c and M is the total mass
of the object

M = lim
r→∞

m (r) . (3.15)

To actually compute the TLNs explicitly, we need to solve Eq. (3.12)
inside the body and then match the internal and external potential
perturbations at the body’s surface.

To solve the internal problem, we start by decomposing every per-
turbation in spherical harmonics [182]

δr = ∑
ℓ,m

r fℓm (r)Yℓm (θ, φ) , (3.16)

δX = ∑
ℓ,m

δXℓm (r)Yℓm (θ, φ) , (3.17)

with X = ρ, p, Φ or V. Inserting in Eq. (3.12)

r2δΦ′′
ℓm + 2rδΦ′

ℓm − ℓ (ℓ+ 1) δΦℓm = −4πGr2δρℓm . (3.18)

Euler’s equation (3.3) expanded to first order gives

δp′ℓm = −Gm
r2 δρℓm + ρ

(
δΦ′

ℓm + V ′
ℓm
)

, (3.19)

δpℓm = ρ (δΦℓm + Vℓm) . (3.20)

Differentiating the second equation and inserting it in the first one,
and using Eq. (3.10) and (3.11), we arrive at

Gm
r

fℓm = δΦℓm + Vℓm . (3.21)

Finally, we match this expression with the external one (3.13) at the
body’s surface by demanding that the gravitational potential has to be
smooth. In practice, we impose continuity of δΦ and its first derivative,
arriving at

kℓ =
(

c2 R
G M

)2ℓ+1
ℓ+ 1 − ηℓ (R)
2 (ℓ+ ηℓ (R))

, (3.22)

where ηℓ is called the Radau’s function

ηℓ (r) = r
f ′ℓm (r)
fℓm (r)

. (3.23)



3.2 newtonian shell 39

We find that the fractional deformation modes fℓm completely deter-
mine the structure of the tidally deformed body. To compute them,
we transform the differential equation for Φℓm (3.18) into one for fℓm
by making use of Eq. (3.21)

r2 f ′′ℓm + 6D (r)
(
r f ′ℓm + fℓm

)
− ℓ (ℓ+ 1) fℓm = 0 , (3.24)

where

D (r) =
4πρ (r) r3

3 m (r)
. (3.25)

D (r) contains the information about the internal structure of the
deformed body, namely it depends on its equation of state.

We will now solve this problem for a spherical shell model given by
Vogt and Letelier [235]. This model is represented by the gravitational
potential and matter density

Φ (r) = − GM

(rn + rn
0 )

1/n , (3.26)

ρ (r) =
M (n + 1) bnrn−2

4π (rn + rn
0 )

2+1/n , (3.27)

where r0 is a parameter with units of length, M is the total mass of
the shell (3.15) and n > 0. For n > 2, ρ vanishes at r = 0 and the
mass distribution indeed represents a shell. As n increases, the shell
becomes thinner and localized around r = r0. In the limit n → ∞ this
model describes an infinitesimal thin shell located at r = r0.

The formalism developed to compute the TLNs relies on making a
match at the surface of the compact object. However, this shell does not
possess a hard surface. A possible solution to this problem occurs if
the matter density is sufficiently localized so that the matching is well
defined in the limit R → ∞. This occurs in boson stars, whose tidal
deformations in Newtonian gravity and GR were studied in Refs. [217,
236].

The solution of Eq. (3.24) for this model which is regular at r = 0 is

fℓm (y) = c1 y−d
2F̃1

(
a, b, 1 +

c
n

;−yn
)

, (3.28)

y =
r
r0

, (3.29)

a = −1 − ℓ

n
+

c − 3
2n

, (3.30)

b = −1 +
ℓ

n
+

c − 1
2n

, (3.31)

c =
√
−7 + 4n (n − 1) + 4ℓ (ℓ+ 1) , (3.32)

d = n +
1 − c

2
, (3.33)

where 2F̃1 (a, b, c; x) are the regularized hypergeometric functions [182].
The TLNs of the shell can then be computed by plugging this solution
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in Eq. (3.22) and taking the limit R → ∞. We conclude that the solution
only converges for n > 2ℓ+ 1. For smaller values of n, the equality
(3.21) is not respected in the R → ∞ limit. When the problem is
well-posed, we find

kℓ = − (1 + n) (1 − 2n + c)
2 n2 (b + 1)

Γ (a − b)
Γ (b − a)

× Γ (b)
Γ (a + 1)

Γ
(

2 + 1−2ℓ
n + b

)
Γ
(

2 + 3+2ℓ
n + a

) ( c2 r0

G M

)2ℓ+1

.

We conclude that the TLNs of this Newtonian shell are of order
O
(

c2 r0
G M

)2ℓ+1
and bounded below in the thin shell limit by

lim
n→∞

kℓ =
ℓ+ 2

2 (ℓ− 1)

(
c2 r0

G M

)2ℓ+1

. (3.34)

For the quadrupole mode ℓ = 2, which typically dominates GW emis-
sion, we obtain the scaling k2 ∝ r5

0.

3.3 tidal deformability in general relativity

We now move to the theory of tidally deformed objects in GR. The
starting setup is the same, an isolated, self-gravitating compact object
perturbed by an external tidal field. As before, we wish to describe
the gravitational field of the two bodies in terms of their multipole
moments, but now using the geometric point of view of GR. We follow
Thorne’s approach, which holds for stationary, asymptotically flat
spacetimes and requires adopting asymptotically Cartesian and mass-
centered coordinates at the isolated object [212, 213, 237].

First, we decompose the external tidal field as

Ea1...aℓ = [(ℓ− 2)!]−1 ⟨C0a1;a3...aℓ⟩ , (3.35)

Ba1...aℓ =

[
2
3
(ℓ+ 1) (ℓ− 2)!

]−1 〈
ϵa1bcCbc

a20;a3...aℓ

〉
, (3.36)

where Cabcd is the Weyl tensor, ϵabc is the permutation tensor and
the angular brackets denote symmetrization and trace removal. Ea1...al

(Ba1...al ) are the polar (axial) moments, and since we will only study
spherical symmetric configurations, they can be expanded in spherical
harmonics.

To describe the deformation induced by the tidal field on the equi-
librium configuration of the compact object, we use the framework of
linear BH perturbation theory as introduced in Sec. 2.1.3. Since we have
a spherically symmetric background, we can separate perturbations in
the polar and axial sectors and adopt the Regge-Wheeler gauge (2.38).
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The tidal fields and induced multipole moments are then extracted
from the asymptotic behavior of the full metric

gtt = −1 +
2M

r
+ ∑

ℓ≥2

(
2

rℓ+1

[√
4π

2ℓ+ 1
Mℓ Yℓ0 +

(
ℓ′ < ℓpole

)]

− 2
ℓ (ℓ− 1)

rℓ
[
EℓYℓ0 +

(
ℓ′ < ℓpole

)] )
, (3.37)

gtφ =
2J
r

sin2 θ + ∑
ℓ≥2

(
2
rℓ

[√
4π

2ℓ+ 1
Sℓ

ℓ
sin θ∂θYℓ0 +

(
ℓ′ < ℓpole

)]

+
2rℓ+1

3ℓ (ℓ− 1)

[
Bℓ sin θ∂θYℓ0 +

(
ℓ′ < ℓpole

)] )
,(3.38)

where Mℓ are the mass multipole moments, Sℓ are the current mul-
tipole moments, and Eℓ and Bℓ are, respectively, the amplitudes of
the polar and axial components of the external field with harmonic
number ℓ, where spherical symmetry was used to fix m = 0.

Finally, we define the polar and axial TLNs, respectively, as the
dimensionless ratios [217]

kE
ℓ = −1

2
ℓ (ℓ− 1)

M2ℓ+1

√
4π

2ℓ+ 1
Mℓ

Eℓ0
, (3.39)

kB
ℓ = −3

2
ℓ (ℓ− 1)

(ℓ+ 1) M2ℓ+1

√
4π

2ℓ+ 1
Sℓ

Bℓ0
, (3.40)

where M is the mass of the deformed object. Note that the axial
TLNs have no Newtonian analogous. Also, most references [212–214]
normalize the TLNs in powers of the object radius R instead of M,
because they study bodies with a hard surface (e.g. neutron stars).
Here, we instead adopt the convention of Ref. [217] since the radius
of distributions of matter surrounding BHs is in general ill-defined, as
occurs for some ECOs. The two definitions are related by

kℓours =

(
R
M

)2ℓ+1

kℓstandard . (3.41)

3.4 black holes surrounded by matter

3.4.1 Black holes with short hair

We consider two models for BHs surrounded by matter. The first one
is a static, spherically symmetric spacetime containing an anisotropic
fluid surrounding a BH, which satisfies both the weak and strong
energy condition [238]. Its line element is of the form in Eq. (2.16) with

A (r) = B (r) = 1 − 2M
r

− Q2k

r2k , (3.42)

ρ =
Q2k (2k − 1)

8πr2k+2 , P = kρ , (3.43)
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where ρ and P are, respectively, the matter density and the pres-
sure on the isotropic θ-φ surfaces, while Q is a constant. The energy-
momentum tensor of the fluid is

Tµν = ρ
(
uµuν − nµnν

)
+ Pσµν , (3.44)

where uµ is the fluid’s 4-velocity, while nν and σµν are, respectively,
the unit normal and metric of the isotropic 2-spheres

uµ =

(
− 1√

A (r)
, 0, 0, 0

)
, (3.45)

nν =

(
0,

1√
B (r)

, 0, 0

)
, (3.46)

σµν = diag
(
0, 0, r2, r2 sin2 θ

)
. (3.47)

For k = 1, this class of BHs yields the Reissner-Nordström solu-
tion [238]. For k > 1, the parameter Q corresponds to a matter-hair [80,
238], which can be arbitrarily short by taking k to be arbitrarily large.

As in the Newtonian analysis, to determine the TLNs of this config-
uration, we need to complement the gravitational perturbations with
the ones from matter, where any equilibrium background quantity
X = X0 gets perturbed by the external tide, X → X0 + δX(t, r, θ, φ).
Again, we consider static tides, so all the perturbations introduced are
independent of the coordinate time t. This immediately fixes uµ and
nµ by imposing the normalizations u2 = −1 and n2 = 1, and that uµ

remains proportional to the timelike killing vector field ∂/∂t

δuµ = ∑
ℓ,m

(
1

2
√

A
Hℓm

0 Yℓm, 0, 0, 0
)

, (3.48)

δnµ = ∑
ℓ,m

(
0,

1
2
√

B
Hℓm

2 Yℓm, 0, 0
)

. (3.49)

For σµν, we allow one more degree of freedom that respects the back-
ground spherical symmetry

δσµν = ∑
ℓ,m

diag
(

0, 0, r2 Kℓm
2 (r)Yℓm, r2 sin2 θ Kℓm

2 (r)Yℓm
)

. (3.50)

Finally, we perturb

ρ = ρ0 + ∑
ℓ,m

δρℓm (r) Yℓm , (3.51)

P = P0 + ∑
ℓ,m

δPℓm (r) Yℓm . (3.52)

3.4.1.1 Axial perturbations

The axial sector of stationary gravitational perturbations is entirely
decoupled from matter perturbations [212, 213, 239]. Consequently,
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the tφ-component of Einstein’s equations gives a decoupled ordinary
differential equation for h0

r2
(

1 − 2M
r

+
Q2k

r2k

)
h′′0 =

=

(
ℓ (ℓ+ 1)− 4M

r
+ 2k (1 + 2k)

Q2k

r2k

)
h0 .

(3.53)

We now follow a similar approach to that in Ref. [217] and treat
the matter-hair perturbatively. We expand the metric perturbations in
powers of the adimensionalized coupling Q2k/M2k,

hµν = h(0)µν +
Q2k

M2k h(2)µν , (3.54)

where h(0)µν is the vacuum GR solution. For ℓ = 2, the 0th-order axial
perturbation regular at the horizon is

h(0)0 =
B2

3
r3
(

1 − 2M
r

)
. (3.55)

Expanding Eq. (3.53) to order O (ϵ) we find(
d2

dr2 + 2
2M − 3r

r2 (r − 2M)

)
h(2)0 =

2B2

3

(
M
r

)2k

×

× r
((

2k2 + k − 3
)

r −
(
2k2 + k − 1

)
2M
)

r − 2M
. (3.56)

This equation admits a solution in closed form in terms of the homo-
geneous solution and a hypergeometric function. From it, we read the
TLNs

kB
2 =

1
5

25−2k (2k − 1)
2k2 − 9k + 10

Q2k

M2k , k > 2 . (3.57)

For k = 1 we find kB
2 = 0 which agrees with the literature for the

charged BH solution [217]. For k = 2, we find a new dominant loga-
rithmic term log(r)/r2, for which we lack a physical interpretation.
We can express the above in terms of the mass δM ∼

(
Q2k/M2k)M

contained in the fluid: kB
2 ∼ δM/M.

3.4.1.2 Polar perturbations

In the polar sector, matter perturbations are no longer decoupled from
gravitational ones. The tr- and θθ-component of Einstein’s equations,
respectively give

H1 = 0 , H2 = H0 . (3.58)
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The θ-component of the energy-momentum tensor conservation fixes
the pressure perturbation to be

δP = 2k (2k − 1)
Q2k

r2k
K − K2

16πr2 . (3.59)

The tt, rr, and the θθ component of Einstein’s equations provide
expressions for K′′

0 , K′
0 and K0 in terms of H′′

0 , H′
0, H0. Substituting

these in the tr-component of Einstein’s equations gives the following
decoupled ordinary differential equation for H0

r2
(

1 − 2M
r

+
Q2k

r2k

)2

H′′
0

+ 2r
(

1 − 2M
r

+
Q2k

r2k

)(
1 − M

r
+ (1 − k)

Q2k

r2k

)
H′

0

=

[
ℓ (ℓ+ 1) +

4M2

r2 − 2ℓ (ℓ+ 1)
M
r

+

(
ℓ (ℓ+ 1) + 2k

(
1 − 6M

r

)
− 4k2

(
1 − 2M

r

))
Q2k

r2k + 2k
Q4k

r4k

]
H0 .

(3.60)

Following the same approach as in the axial case, we treat the
matter-hair as a perturbation to GR using the expansion in Eq. (3.54).
For ℓ = 2, the polar perturbation regular at the horizon is

H(0)
0 = −E2 r2

(
1 − 2M

r

)
, (3.61)

and Eq. (3.60) can be written as(
d2

dr2 +
(r − M)

r (r − 2M)

d
dr

− 2
(
2M2 − 6Mr + 3r2)

r2 (r − 2M)

)
H(2)

0 = S (2)
P ,

with

S (2)
P = 2

M2k

r2k E2
c1 − c2r + (3 + k (2k − 3)) r2

(r − 2M)2 , (3.62)

c1 = 2 (3 + 4k (k − 2)) M2 , (3.63)

c2 = 2 (4 + k (4k − 7)) M . (3.64)

Even though this differential equation admits a solution in closed
form, it is simpler to work in terms of Green’s functions. The two
linearly independent solutions to the homogeneous equation are

Ψ− =
3A1

M2 r2
(

1 − 2M
r

)
, (3.65)

Ψ+ =
A2

M2r (r − 2M)

(
(r − M)

(
3r2 − 6Mr − 2M2)M

+ 3r2 (r − 2M)2 arctanh
(

1 − M
r

))
, (3.66)
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with A1 and A2 constants. The Wronskian is

W (r) = Ψ′
+ (r)Ψ− (r)− Ψ+ (r)Ψ′

− (r) =
24MA1A2

r (2M − r)
. (3.67)

Ψ− (r) is regular at the horizon and Ψ+ (r) at infinity. Imposing the
correct physical boundary conditions, we find the solution to the
inhomogeneous problem directly

H(2)
0 (r) = Ψ+ (r)

∫ r

2M
dr′

S (2)
P (r′)Ψ− (r′)

W (r′)

+ Ψ− (r)
∫ ∞

r
dr′

S (2)
P (r′)Ψ+ (r′)

W (r′)
. (3.68)

For k > 2 the first integral converges as r → ∞, and we find that
the second one does not contribute to the induced mass quadrupole
moment. Again, the TLNs vanish for k = 1 as expected, but in general

kE
2 =

1
5

25−2k (2k − 1)
2k2 − 9k + 10

Q2k

M2k = kB
2 , k > 2 . (3.69)

Remarkably, the polar TLNs are the same as the axial ones. This feature
was already present in the TLNs of ECOs in the BH limit [217] 1. A
similar procedure can be used to obtain the octupolar ℓ = 3 or higher
TLNs.

3.4.2 Matter away from the horizon: Thin shells

While the previous results are interesting, astrophysical BHs should
have surrounding matter distributions localized away from the horizon.
It is challenging to construct stationary solutions describing astrophys-
ically realistic BH spacetimes. As a surrogate for those setups, we
will pack all the interstellar material in a (infinitesimally) thin shell
surrounding a Schwarzschild BH. The dynamics of thin shells are a
vastly explored subject, both in GR [240–245] and in modified theories
of gravity; we refer the interested reader to Ref. [246] for a pedagogical
introduction to the subject. As physical systems, thin shells are nothing
more than very crude approximations. However, their mathematical
description is much simpler than more realistic distributions of matter
and they often present the key features of these. While there are many
studies regarding the stability of thin shells, little has been made in
studying the explicit form of gravitational perturbations in spacetimes
containing them [80, 247–251].

Let us then consider the tidal deformation of a distribution of matter
whose metric is again given by the general spherically symmetric line
element in Eq. (2.16) withA (r) = ᾱ

(
1 − 2M

r

)
, B (r) = 1

ᾱ A (r) , r < r0

A (r) =
(

1 − 2M0
r

)
, B (r) = A (r) , r > r0

, (3.70)

1 We are grateful to Lam Hui for highlighting this property.
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where r0 is the radius at which the shell is located, ᾱ = 1−2M0/r0
1−2M/r0

, M is
the BH horizon mass, M0 the ADM mass and for future reference we
define the shell energy

δM = M0 − M . (3.71)

3.4.2.1 Unperturbed solution

We start by analyzing the unperturbed configuration. The wordline of
matter elements of the shell is parametrized by

xµ
± = xµ

± (ya) , (3.72)

where ya are the intrinsic coordinate functions of the shell, the sub-
script + or − refers to, respectively, the coordinate chart used outside
and inside the shell, and momentarily latin indices denote objects
defined on the 3D hypersurface of the shell. We choose the intrinsic
coordinates of the shell to be

ya = (T, Θ, Φ) , (3.73)

and the unperturbed shell is located at

xµ
+ = (T, r0, Θ, Φ) , (3.74)

xµ
− = (AT T, r0, Θ, Φ) . (3.75)

The constant AT reflects a possible time-rescaling so that the proper
time of the shell is the same for both the exterior and interior coor-
dinate chart. These two regions have to be matched according to the
Darmois-Israel junction conditions, which relate the discontinuities
on the metric functions with the matter properties of the thin shell
[240]. The first of these imposes that the induced metric, γab, on the
3D hypersurface defined by the shell is continuous

[[γab]] = 0 , (3.76)

where [[...]] denotes a jump on a quantity across the shell

[[E]] = E (r0+)− E (r0−) . (3.77)

The induced metric can be computed through

γab = gµν eµ
a eν

b , (3.78)

where eµ
a are a set of three linearly independent tangent vectors to the

shell

eµ
a =

∂xµ

∂ya . (3.79)
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The second junction condition determines the stress-energy tensor
of the shell, Sab, in terms of the jump of the extrinsic curvature Kab

Sab = − 1
8π

([[Kab]]− γab [[K]]) , (3.80)

Kab = eµ
a eν

b ∇µnν , (3.81)

K = γabKab , (3.82)

where nµ is the unit normal to the thin shell

nµ eµ
a = 0 , nµnµ = 1 . (3.83)

The first junction equation (3.76) yields

A2
T =

A+ (r0)

A− (r0)
, (3.84)

which for our model gives AT = 1. Since the configuration is stationary,
we can always rescale time such that this is verified and we assume it
hereafter. From the second junction condition (3.80) we obtain

STT = − 1
4πr0

[[
A
√

B
]]

, (3.85)

SΘΘ =
1

8π

[[√
B
]]

+
r0

16π

[[
A′

A

√
B
]]

. (3.86)

If we consider the thin shell to be composed of a perfect fluid, its
stress-energy tensor is simply

Sab = (σ + p) uaub + p γab , (3.87)

where σ is the surface energy density, p the surface tension and ua is
the fluid’s velocity (normalized as uaua = −1). For the unperturbed
configuration, the latter is given by

ua =

(
1√

A (r0)
, 0, 0

)
. (3.88)

Using Eqs. (3.85)-(3.86) the surface energy density and pressure are
determined by

σ = − 1
4πr0

[[√
B
]]

, (3.89)

σ + 2p =
1

8π

[[
A′

A

√
B
]]

, (3.90)

which agrees with previous results on thin shell dynamics [241, 247,
250, 252].
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3.4.2.2 Perturbed configuration

To compute the TLNs of this object, we need to derive the junction
conditions for the stationary, axisymmetric perturbed configuration
when the external tidal field is introduced. First, we perturb the shell
radius by

δr± = ∑
ℓ,m

δrℓm
± Yℓm (Θ, Φ) . (3.91)

The junction condition (3.76) evaluated at first order yields

[[h0]] = 0 , (3.92)

[[H0]] =

[[
δr A′

A

]]
, (3.93)

2
r0

[[δr]] = − [[K]] , (3.94)

where from now on, we omit the harmonic indexes ℓ, m in the junction
conditions to avoid cluttering.

To apply the second junction condition, we need to consider pertur-
bations to the surface energy density, δσ, and the surface tension, δp.
These are scalars and therefore can be expanded as

(δσ, δp) = ∑
ℓ,m

(δσℓm, δpℓm)Yℓm (Θ, Φ) . (3.95)

Finally, we need to perturb the fluid velocity and the unit normal to
the shell. The former is determined by imposing the correct normal-
ization and the stationarity condition as in the previous sections

δua = ∑
ℓ,m

1
2
√

A

(
Hℓm

0 − A′

A
δrℓm, 0, 0

)
Yℓm , (3.96)

while the latter is computed using (3.83)

δnµ± = ∑
ℓ,m

1√
B

(
0,

1
2

Hℓm
2 Yℓm,−δrℓm

± ∂θYℓm, 0
)

. (3.97)

The second junction condition (3.80) gives[[
h1
√

B
]]

= 0 , (3.98)

1
2

[[
h′0
√

B
]]

− 2
r0

[[√
B
]]

h0 −
1
2

[[
A′

A

√
B
]]

h0 = 8πσ h0 .

(3.99)

While the first of these agrees with previous results [247, 250], as far
as we are aware, the second equation above has not been presented in
this form anywhere.
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The polar sector couples to matter perturbations and we find more
complicated junction conditions[[

H1
√

B
]]

=

[[
δr√

B

]]
= 0 , (3.100)

2
r2

0

[[
δr
√

B
]]

+
2
r0

[[
H0

√
B
]]

+
1
r0

[[
H2

√
B
]]

−
[[

K′√B
]]

− 1
r0

[[
δr B′
√

B

]]
− 2

r0

[[
δr

A′

A

√
B
]]

= 8π δσ + 8π σ

(
A′

A
δr − H0

)
, (3.101)

1
2 r2

0

[[
δr
√

B
]]

− 1
2r0

[[
H2

√
B
]]

+
2
r0

[[
K
√

B
]]

−1
4

[[
H2

A′

A

√
B
]]

+
1
2

[[
K

A′

A

√
B
]]

+
1
2

[[
A′√B

]]
−1

2

[[
H′

0

√
B
]]

+
1

2r0

[[
δr B′
√

B

]]
+

1
r0

[[
δr

A′

A

√
B
]]

+
1
2

[[
δr

A′

A

√
B
]]′

= 8π δp + 8π p
(

K + 2
δr
r0

)
. (3.102)

We have to complement this with an equation of state

δp = v2
s δσ , v2

s =

(
dp
dσ

)∣∣∣
σ0

. (3.103)

For ordinary matter, vs is the sound of speed of the fluid and ranges
between 0 < v2

s < 1. Again, the first two of the above conditions agree
with previous results [250] while we could not find the last two written
in this manner anywhere.

3.4.2.3 Axial TLNs

The exterior spacetime has the form of a Schwarzschild metric, so
using known results [212, 217, 247]

hext
1 = 0 , (3.104)

hext
0 = A1r2

2F1
(

1 − ℓ, ℓ+ 2; 4;
r

2M0

)
+ A2G2,2

2,0

(
r

2M0

∣∣∣∣1 − ℓ ℓ+ 2

−1 2

)
, (3.105)

where G2,2
2,0 is the Meijer function [182]. The first term of hext

0 cor-
responds to the external tidal field and the second to the object’s
response.

For the interior region, the final equation for hint
0 is similar to that in

the exterior, with M0 replaced by M(
hint

0

)′′
=

4M − ℓ (ℓ+ 1) r
r2 (2M − r)

hint
0 . (3.106)
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Consequently, the solution is of the form above substituting M by
M0. Imposing regularity of h0 at the BH horizon means the term with
Meijer function has to vanish

hint
0 = A3r2

2F1
(

1 − ℓ, ℓ+ 2; 4;
r

2M

)
, (3.107)

and hint
1 = 0.

Now, we can impose the junction conditions derived previously.
For ℓ = 2, the general large-distance behavior of h0 is given by a
complicated expression. In the limit where the shell is far away

kB
2 =

δM
5M0

r4
0

M4
0

, r0 → ∞ . (3.108)

Notice that when the shell disappears, δM → 0, kB
2 → 0. This agrees

with the vanishing of the TLNs of a BH [212, 217]. The TLN is propor-
tional to the mass in the shell, as we had found for the “short-hair”
solution. However, the presence of a length scale r0 now implies that
the TLNs are very sensitive to the location of the matter. In fact, the
r4

0/M4 dependence is expected on general dimensional grounds and
from comparison with the TLNs of extended configurations, such as
boson stars.

In the BH limit, when M0 → M and r → 2M

kB
2 → 8

5
δM
M

( r0

M
− 2
)

, (3.109)

which is also compatible with the result for an isolated BH.
It is also interesting to see the system’s behavior when we start

without a BH, i.e. M = 0. In this case, one finds the exact result

kB
2 =

8 ξ

10 C
(

3 − 3C − 2C2 + 2C3
√

1
ξ

)
+ 15ξ log ξ

,

ξ = 1 − 2M0

r0
, C =

M0

r0
.

This result seems to be at odds with the claims of Ref. [231] that the
general scaling of the TLNs of an ECO in the BH limit is k ∼ 1/ log ξ

(see their discussion around Eq. (95)). The proof presented there relies
on imposing Robin-type boundary conditions, aΨ + bΨ′ = c, on the
Zerilli function Ψ, at the surface of the compact object, where a, b and
c depend on the background spacetime. However, the true scaling
goes as k ∝ 1/ (b + log ξ), so if in the BH limit b is diverging faster
than the logarithm, the claim does not hold. Notice that the factor b is
related with the term containing information about the derivatives of
the perturbations at the boundary. For a thin shell, the perturbations
will not be differentiable at such boundary. Therefore, it is not clear
how we can rephrase the boundary conditions imposed in Eqs. (3.92)
and (3.99), which relate quantities on both sides of the boundary but
which are not well defined at it, in terms of Robin-type boundary
conditions for which the result of Ref. [231] applies.
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3.4.2.4 Polar perturbations

For the polar sector, the behavior of the perturbations inside and
outside the shell is similar to the axial case. They are [212, 217, 247]

Hext
0 = A1P2

ℓ (r/M0 − 1) + A2Q2
ℓ (r/M − 1) , (3.110)

Hint
0 = A3P2

ℓ (r/M − 1) , (3.111)

Hint
1 = Hext

1 = 0 , (3.112)

where regularity of Hint
0 at the BH horizon fixes one of the constants.

K is determined by the field equations

K =

(
4M2

i + 2
(
ℓ2 + ℓ− 4

)
Mir −

(
ℓ2 + ℓ− 2

)
r2)Hi

(ℓ2 + ℓ− 2) (2Mi − r) r

+
2Mi (2Mi − r) H′

i
(ℓ2 + ℓ− 2) (2Mi − r) r

, (3.113)

where i labels the interior or exterior solution which correspond,
respectively, to M or M0.

We can impose the junction conditions and obtain the polar TLNs.
For ℓ = 2, the large distance behavior of H0 is again given by a
complicated expression. However, in the large shell radius pressureless
limit (vs = 0), the polar TLN is simply

kE
2 =

(
1 +

M0

M

)
δM
2 M

r5
0

M5
0

, r0 → ∞ , (3.114)

in such a way that kE
2 vanishes when δM → 0, as it should. We note

an important dependence on the speed of sound vs. As consequence,
kE

2 is positive for small vs (in the Newtonian limit), but can become
negative at large values of vs. Negative TLNs have been found in other
models involving infinitesimal thin shells [250, 253] and extended
configurations of ECOs [217]. They are usually interpreted as leading
to a prolation of the deformed compact object instead of a more
intuitive oblate shape. We find the same scaling kE

2 ∼ r5
0 as in the

Newtonian analysis (3.69).
In the BH limit, M0 → M and r0 → 2M, we find

kE
2 → 8

(
3 − 8v2

s
)

5
δM
M

( r0

M
− 2
)

, (3.115)

which has a similar dependence as the axial case (3.109). Although
the numerical coefficients do not exactly match, as occurred for the
short hair and ECOs [217], we can attribute this difference to the lack
of specification of the equation of state. There is perfect agreement
between the ℓ = 2 axial TLN (3.109) and the corresponding polar one
(3.115) when v2

s = 0.25, which is in the allowed range for vs. Also
when v2

s > 3/8, the ℓ = 2 polar TLN becomes negative.



52 deformability of black holes immersed in matter

If we start without a BH, i.e. M = 0, and analyze now the BH limit
r0 → 2M0 we obtain

kE
2 → 8

5
(

9 +
√

2
ξ + 4v2

s + 3 log ξ
) . (3.116)

3.5 implications for tests of fundamental physics

We showed that the leading tidal deformability of a thin shell of matter
surrounding a BH scales with the shell radius as kE

2 ∝ r5
0. Let us then

extrapolate it for more generic matter distributions. We would be led
to conclude that TLNs diverge when matter is located sufficiently far
away, as r0 → ∞, which would have a massive impact on GW signals.
This sounds physically unreasonable and has not been observed.

Consider a binary system composed of two objects of masses M1

and M2 (total mass Mtot = M1 + M2) at a Newtonian level. To sim-
plify, consider that both bodies only develop a non-negligible mass
quadrupole moment through tidal interactions. The EOM for the rel-
ative position between the objects, rj = rj

1 − rj
2, to linear order in the

quadrupole moments is [155, 209]

d2rj

dt2 = −Mtot

r2

(
1 +

9
r5

(
λ1

M2

M1
+ λ2

M1

M2

))
nj , (3.117)

where

λi =
2
3

k2i M
5
i , r =

∣∣∣rj
∣∣∣ , nj =

rj

r
, (3.118)

being k2i the ℓ = 2 polar TLN of each object.
Simplifying even further, take only object “1” to be immersed in

matter, the other being “isolated.” This fixes k22 = 0 [212, 217]. Then,
inserting our results for the r0 → ∞ limit of the ℓ = 2 polar TLNs of a
BH surrounded by a thin shell (3.114) in the EOM (3.117), we expect a
dependence as

d2rj

dt2 ∼ δM
M1

r5
0

r5
M2

M1
nj , (3.119)

where we have used that in realistic astrophysical scenarios δM ≪ M0.
We assumed that tidal interactions are weak and can be treated

perturbatively. The external tidal field is caused by a body in a region
far away from the deformed one, which fixes r0/r ≪ 1. However, this
condition might not be sufficient. From Eq. (3.117) and the results for
the asymptotic behavior of kE

2 in the limit r0 → ∞ (3.114), to treat the
tidal terms as perturbations we can only consider matter in a region
around the compact objects such that

r0

r
≪ min

(
1 ,
(

M1

δM
M1

M2

)1/5
)

. (3.120)
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Although this does not fix r0 to an unambiguous value, it justifies why
the divergence of the TLNs with r0 is not problematic.

3.5.1 Binaries in astrophysical settings

Let us now consider a realistic astrophysical system in which the
environment may have a measurable impact. As discussed in the
previous section, the leading order effect of tidal interactions in the
dynamics of a binary comes from the polar ℓ = 2 TLN. We also
concluded that to use our results for the TLNs of a thin shell, we had to
consider a lengthscale r0 for the environment smaller than the typical
separation r between the binary objects.

LISA will observe in the frequency band
[
10−4, 1

]
Hz. For a circu-

lar binary, the relation between the orbital separation r and the GW

frequency fGW is

r ∼
(

GMtot

(π fGW )2

)1/3

. (3.121)

Consequently, the lower bound of the LISA frequency band corre-
sponds to binaries separated by r ∼ 106 (Mtot/M⊙)

1/3 km .
To obtain the properties of the environmental matter, we can use

the steady-state model of a Shakura-Sunyaev thin accretion disk [47,
48, 80]. This is an axisymmetric, vertically thin disk, i.e. H < r being
H the height of the disk. Following Ref. [80], we parametrize the mass
accretion rate with the mass Eddington ratio fEdd, which for thin disks
varies between 10−2 ≲ fEdd ≲ 0.2. The surface density of the thin disk
Σdisk and the disk height H can be written as

Σdisk

109 ≈ f 7/10
Edd
r̃3/4

(
1 −

√
r̃in

r̃

)7/10 (
0.1
α

)4/5 ( M
106M⊙

)1/5

kg · m−2 ,

(3.122)

103H
GM/c2 ≈ f 3/20

Edd

(
1 −

√
r̃in

r̃

)3/20 (
0.1
α

)1/10 (106M⊙
M

)1/10

r̃9/8 ,

(3.123)

where M is the mass of the accreting object, r̃ = r/
(
GM/c2), α ∼

0.01 − 0.1 is the viscosity parameter and r̃in ∼ 6 is the radius of the
inner edge of the disk. The total mass of the disk is then

δM ≈ 2π
∫ rout

rin

Σdiskr dr , (3.124)

where rout is the radius of the disk’s outer edge.
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Figure 3.1: The quadrupolar tidal Love number kE
2 for a central BH of mass

M surrounded by a Shakura-Sunayev thin accretion disk in a
circular binary and a companion of the same mass. We present
two different binary distances d for M/M⊙ = 5 × 104, M/M⊙ =
5 × 105 and M/M⊙ = 5 × 106. For each d we present estimations
in the most efficient accretion scenario (labeled by E), fEdd = 0.2
and α = 0.01, and in the most inefficient one (labeled by I)
fEdd = 0.01 and α = 0.1.

3.5.2 On the minimum measurable TLN

We can finally compute the dominant TLN, kE
2 , of a “dirty” BH. Fig. 3.1

shows kE
2 for representative values of the distance d = (50 , 100)M and

for two different accretion scenarios, an efficient (“E”) with fEdd =

0.2, α = 0.01, and an inefficient (“I”) with fEdd = 0.01, α = 0.1.
The lesson to be learned from Fig. 3.1 is that massive objects are typ-

ically surrounded by enough matter that they are perceived as having
TLNs of order ≳ 1. Thus, extreme care and account of environmental
effects must be considered when inferring the properties and nature
of ultracompact objects from a measurement of TLNs [217–219]. This
is especially important for EMRIs, where the long time in band would
ideally allow for extremely precise constraints on TLNs [220]. More
recent studies for other types of matter distribution have confirmed
our conclusions [254–257].



4
T I D A L E F F E C T S I N S U P E R R A D I A N T C L O U D S

As discussed in the Introduction, ultralight bosonic fields are predicted
in various extensions of the Standard Model [101–104] and have been
proposed as a component of DM [104]. Through superradiance [103],
they can extract rotational energy from spinning BHs and grow into
macroscopic clouds. This mechanism only requires the bosonic field
to be minimally coupled to gravity. However, for it to be efficient in
astrophysical timescales, the BH radius needs to be of the order of
the Compton wavelength G/(c2µ) of the field, where µ = GmB/(ch̄)
and mB is the mass of boson. Restoring geometric units, we therefore
require Mµ ∼ 1. Considering BHs in the Universe appear across ten
orders of magnitude, superradiance allows to constrain the existence
of new bosonic fields by the same range [103, 127, 258].

As also mentioned before, the existence of superradiant clouds
would lead to observable signatures, such as peculiar holes in the mass-
spin plane of BHs [127, 258], monochromatic emission of GWs [127,
259], and a significant stochastic background of GWs [128, 129]. They
can also leave dynamical imprints through Lindblad and co-rotation
resonances [260, 261], or through floating or sinking orbits [136, 262–
264]. However, there are a few factors that could alter, in a significant
way, the formation of boson clouds around BHs. For example, in the
presence of couplings with standard model fields the cloud growth
can be suppressed, while stimulating bursts of light [265, 266].

In this chapter, we will focus on the effects that a companion object,
like a BH, has on the structure of the boson cloud. Previous works have
looked into this problem from the analytical standpoint, restricting
the analysis to Newtonian dynamics and non-relativistic fields [135,
136, 263, 264, 267, 268]. At specific orbital frequencies, the motion
of the binary can induce resonant transitions between growing and
decaying modes, that enhance the cloud’s depletion or transfer energy
and angular momentum to the companion [269]. This would leave
distinctive imprints in the GW signal emitted by the binary, both in the
monochromatic signal from the cloud or as modifications in the GW

waveform of the binary, due to finite-size effects like variations on the
spin-induced quadrupole or the TLNs [135].

55
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Figure 4.1: A dipolar scalar cloud around a Schwarzschild BH. This figure
shows the time evolution of initial conditions (4.6) for a dipole
with gravitational coupling Mµ = 0.1 around a non-spinning BH,
and in absence of a companion (ϵ = 0). The field is extracted
at r = 60M. For the timescales of interest for our problem, the
amplitude of the field varies by only a few percent and is therefore
a good description of a quasi-stationary state.

4.1 setup

Our starting point is that of a Kerr BH surrounded by a superradiant
cloud being perturbed by a distant companion at a fixed location. We
also assume the test-field approximation in which the backreaction
of the cloud in the spacetime geometry is negligible. This is a good
approximation because the timescales we will probe are much shorter
than any superradiant-growth timescales [127] (τs

growth ∼ (Mµ)−9M
for scalar fields [270]). The unperturbed background is therefore as-
sumed to be described by a Kerr BH (line element in Eq. (2.11)).

The tidal field is created by a companion of mass Mc, at a distance
R, and located at θ = θc, φ = φc in the BH sky. The companion induces
a change δds2

tidal in the geometry, so our full spacetime is

ds2 = ds2
Kerr + δds2

tidal . (4.1)

For the tidal perturbation, we consider the non-spinning approxima-
tion and import the results from the previous chapter. Taking into
account only the dominant quadrupole term [171, 217, 271]

δds2
tidal =

2

∑
m=−2

r2E2mY2m(θ, ϕ)(A2dt2 + dr2 + (r2 − 2M2)dΩ2)

E2m =
8πϵ

5M2 Y∗
2m(θc, ϕc) , (4.2)
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Figure 4.2: Field (left) and energy density (right) distribution along the equa-
torial plane for the same initial data as Fig. 4.1. The field is dipolar,
as expected, whereas the energy density at the equator is almost –
but not exactly – symmetric along the rotation axis. The length
scale of these images is of order 1000M.

where A(r) = 1 − 2M/r and we neglect subdominant magnetic-type
contributions and higher multipoles. We introduce a dimensionless
tidal parameter

ϵ =
Mc M2

R3 , (4.3)

which measures the strength of the tidal moment.
The tidal field we are considering is not accurate close to the central

BH, where spin effects will change the tidal potential. Yet, in the
parameter space we will explore, most of the cloud is localized far
away from the horizon, where these effects are minimal and should not
affect our qualitative conclusions. As in the previous chapter, we will
focus exclusively on static tides, which are independent of coordinate
time t. We stress that we are using coordinates adapted to the BH:
the companion position should in general be time-dependent, but we
focus exclusively on slowly moving companions (or equivalently, large
separations R).

The superradiant cloud is described by a massive, minimally cou-
pled scalar field Φ evolving on the above fixed geometry

□Φ = µ2Φ . (4.4)

We evolve this equation numerically using a 3 + 1 decomposition
in Cartesian Kerr-Schild coordinates (t, x, y, z). We refer the reader to
Ref. [272] for more details on the numerical implementation. 1

We will be interested in extracting from our numerical simulation
the multipolar components of the scalar Φ

Φℓ,m(t, r) =
∫

S2

dΩ Φ(t, r, θ, φ)Yℓ,m(θ, φ) . (4.5)

1 The numerical implementation of this work was performed by Taishi Ikeda.
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Figure 4.3: Dependence of the field Φ along the x− axis at different instants
for a coupling Mµ = 0.1. In the absence of a companion (ϵ = 0)
and despite a slight change in the profile, the field has no nodes.
It has a local extremum at ∼ r = 200M as predicted by a small
Mµ expansion for the fundamental mode. When a weak tidal
field is turned on (ϵ = 10−8) the field develops a different radial
profile with one node, pointing to a significant component of
overtones. Our results indicate a sizeable excitation of the second
excited state n = 4, which has extrema at r/M ∼ 170, 850 (see
Appendix A).

As initial data for our numerical evolutions we will use a fundamen-
tal superradiant dipolar mode adequate to describing quasi-stationary
states around a BH [127, 273]

Φ(t, r, θ, φ) = A0 rMµ2e−rMµ2/2 cos(φ − ωRt) sin θ . (4.6)

A0 is an amplitude related to the mass in the axion cloud, and ωR ∼ µ

is the bound-state frequency.
The spacetime of a real astrophysical binary is asymptotically flat.

However, because we are using only an approximation to the full
problem, where the companion is supposed to be far away, the geome-
try (4.2) is no longer asymptotically flat. To avoid unphysical behavior
at large distances, we force the geometry to be asymptotically flat by
replacing the far region with

ds2 = ds2
Kerr + (1 −W) δds2

tidal , (4.7)

where W = W(r̃) is a following piecewise function

W(r̃) =


1 (r̃ > 1)

W5 (0 < r̃ < 1)

0 (r̃ < 0).

(4.8)
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(n ℓm) ttrans/M cnℓm
c211

( ϕnℓm
ϕ211

) cNum
n

cNum
2

311 1888 1.03(0.85) 0.221

411 458 0.236(0.13) 0.094

511 173 0.113(0.046) 0.058

Table 4.1: Timescales ttrans and relative amplitudes predicted by time-
independent perturbation theory (see Appendix A) and those
obtained from numerical simulations data at t = 1000M, for the
most relevant 1st order transitions from the initial dipolar state
(ℓ = m = 1) for a gravitational coupling of Mµ = 0.1. The sec-
ond column shows the timescale to transition from the initial to
the (nℓm) state, as obtained from time-dependent perturbation
theory. The third column shows the relative amplitude of the
overtones with respect to the fundamental mode, predicated by
time-independent perturbation theory (in parenthesis is the cor-
responding ratio of the field components at r = 60M). The last
column shows this same quantity but for our numerical results.
They agree with perturbation theory within a factor of two, except
for the ℓ = m = 1, n = 3 mode. In this case, the timescale needed
for excitation is larger than the instant at which the coefficients
were extracted.

Here, r̃ = (r− r th)/w and W5(r̃) is chosen to match smoothly with the
required asymptotic behavior, so we choose a 5th-order polynomial sat-
isfying W5(1) = 1,W5(0) = W ′

5(0) = W ′′
5 (0) = W ′

5(1) = W ′′
5 (1) = 0.

The transition region has a width w = 500M and is located at
rth/M ≃

√
0.9 × 5/(8πϵ). These parameters were chosen to ensure

that the bosonic cloud sits entirely in a region described by Eq. (4.2).
Accuracy requirements, finite size of the numerical grid and compu-
tational power all contribute to limit the timescales that one is able
to access numerically. Here, we evolve these systems for timescales
∼ 7000M.

Although we have results for general BH spin, we focus mostly on
states around a non-spinning BH. These states are not superradiant
in origin and arise due to the fine-tuned initial data. However, they
are extremely long-lived (the decay timescale is of the order of the
superradiant growth timescale if the BH was spinning), as we show
below, with a lifetime that far exceeds that of all the tidally-induced
transitions studied here. Thus, BH spin is important to generate the
scalar clouds but has little impact on some of the physics of tides. In
addition, the tidal field in Eq. (4.2) is adapted to a non-spinning BH.
Our numerical results show only a very mild dependence on BH spin.
With the exception of Ref. [268], all previous results on tidal effects
in superradiant clouds focus on the small Mµ coupling parameter,
consider a flat background on which the superradiant states evolve,
and have only used linearized analysis for small tidal fields. Our
framework can go beyond all these limitations.
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Figure 4.4: Dipolar (ℓ = m = 1, left) and octupolar (ℓ = 3, m = 1, 3, right)
component of the scalar cloud when in the presence of a weak
tidal field ϵ = 10−8, for the same initial conditions as in Fig. 4.1
(non-spinning BH and gravitational coupling Mµ = 0.1). The
ℓ = 3, m = 1 mode amplitude relative to the ℓ = m = 3 was
rescaled by the perturbation theory prediction (

√
5/3 ∼ 1.29).

The agreement is very good throughout the evolution.

4.2 weak tides : transitions to new stationary states

To show that our initial dipolar state is a (quasi-)stationary state in the
timescales of interest of our problem, we start by evolving the initial
data described above (4.6) around an isolated, non-spinning BH (ϵ = 0).
Its non-vanishing multipolar component, the dipole ℓ = m = 1, is
shown in Fig. 4.1. The amplitude of the field varies by a few percent
over a time interval of ∼ 7000M, which corresponds to ∼ 100 scalar
field periods of oscillation (∼ 2π/µ). The scalar field and energy
density along an equatorial slice are shown in Fig. 4.2 at t = 7000M.
The density is almost (but not exactly) symmetric along this slice.

We now turn on a tidal field with ϵ = 10−8 produced by a com-
panion star on the x-axis. We consider this to be a weak tide since
no nonperturbative feature is seen on timescales of ∼ 6000M. The
first feature we observe is the transition from the fundamental dipolar
state to higher excited overtones, in the same spirit as previous an-
alytical studies [135, 268]. The n-th overtone is localized at a radius
r Bohr ∼ n2/(Mµ2), which means their excitation leads to an expansion
of the cloud. Fig. 4.3 shows the x− dependence of the field initially
and at t = 2000M. If the cloud stayed on the fundamental dipolar
mode it should not have any node along the radial direction, as it
happens for t = 0M. Instead, we observe one node at t = 2000M,
meaning the cloud is transitioning to excited states. This profile also
includes the octupolar ℓ = 3 component, though this is two orders of
magnitude smaller than the dipolar term.

In Appendix A we outline how to study the transition between
bound states of the cloud using standard perturbation theory in Quan-
tum Mechanics. In the small coupling limit, Mµ ≪ 1, the description
of the cloud state is analogous to that of the hydrogen atom, with
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Figure 4.5: Snapshot of a tidally deformed scalar cloud with ϵ = 10−8 for
the strength of the tidal field and Mµ = 0.1 for the gravitational
coupling. In the absence of a companion, the energy density
is almost spherical and remains so for thousands of dynamical
timescales. Instead, here we observe that after 7000M the system
settles to a new stationary configuration.

α = Mµ playing the role of a gravitational fine-structure constant. The
properties of the radial distribution of the cloud can then be studied
using the typical radial “hydrogenic” functions Rnℓ (r). From them,
we know the n = 3 state has extrema at r/M = 175, 1024, which are
not apparent in Fig. 4.3 (in our convention, states are labeled by an
integer n = ℓ+ 1, ℓ+ 2, ...). Instead, the second excited state n = 4 is
known to have extrema at r/M = 170, 875, 2155, which agrees with
those of the numerical results (the last point is challenging to confirm,
as the grid size and spurious reflections affect a proper evaluation of
eigenfunctions at large distances).

Moreover, since in this limit the eigenstates of the cloud are or-
thonormal, we can extract the amplitude cn of a specific overtone from
the numerical data by a simple projection

cn =
∫ ∞

0
dr r2 R∗

n1 (r)Φ (r) , (4.9)

where Φ (r) corresponds to the numerical data at a given radial direc-
tion (e.g. θ = π/2 and φ = 0). We are implicitly assuming that our
data is only composed of ℓ = 1 modes, which again, as we will see
below, is a reasonable approximation. Since our grid size is limited,
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Figure 4.6: Cloud being tidally disrupted as it loses energy to asymptotically
far-away distances from the central BH. The field cascades to
smaller angular scales, and thus transitions to higher multipoles.
This figure shows the time evolution of the dipolar (ℓ = m = 2)
and octupolar (ℓ = m = 3) components of the scalar field for a
gravitational coupling Mµ = 0.1, and a companion with ϵ = 10−7.
The extraction radius is r = 60M.

we can only capture a few nodes along the radial direction and for
later times our data at large radius will be contaminated by spurious
reflections from the outer boundary. For this reason we restrict this
analysis to times t ≲ 1000M.

Our results are shown in Table 4.1. They are within a factor two from
the estimates of perturbation theory, which is an excellent agreement
considering: 1. perturbation theory uses a small Mµ expansion which
is already inaccurate at Mµ ≳ 0.1 (e.g. Fig. 1 in Ref. [268] shows
how factors of two can easily arise from such an approximation); 2.
there can be intermediate transitions between states which complicate
the analysis. Nevertheless, perturbation theory justifies why the first
excited state, the n = 3 mode, is not yet dominant, since the timescale
for its excitation is larger than higher overtones. Our numerical results
are consistent with transition occurring on the timescales predicted
from the table for the n = 3, 4, 5 overtones.

Another important feature of our simulations are transitions to
octupolar and higher multipoles, as illustrated in Fig. 4.4. There we
show the time evolution of the dipolar ℓ = m = 1 and octupolar
ℓ = m = 3 mode. It is apparent that the magnitude of the dipolar
mode is now decreasing, and that a fraction of this energy is going
into higher multipoles, specifically the octupolar ℓ = 3, m = 1, 3.
Such migration changes the spatial distribution of energy density, as
depicted in Fig. 4.5.

Again, our results are consistent with the prediction from perturba-
tion theory, in particular that the amplitude of the ℓ = 3 mode scales
with the external tide ϵ [135, 268]. One of the cleanest indications
of the validity of the perturbative framework is the excitation of the
ℓ = 3, m = 1 mode. Perturbation theory predicts that the relative am-
plitude of the ℓ = m = 3 mode is

√
5/3 ∼ 1.29 larger than that of the
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Figure 4.7: Snapshot of a tidally disrupting cloud. The snapshot depicts the
energy density along the equator of a scalar cloud which was set
initially around a non-spinning BH. In the absence of a companion
mass, the energy density is almost spherical and remains so for
thousands of dynamical timescales. Here, the simulation starts
with one symmetric initial scalar energy distribution, but in the
presence of a star for which ϵ = 10−7. The gravitational coupling
is Mµ = 0.1. The snapshot is taken after 7000M and is leading to
the disruption of the cloud.

ℓ = 3, m = 1 mode, and this depends exclusively on an angular matrix
with no radial dependence. Our results show a relative amplitude
across all times and extraction radii consistent with such prediction,
as shown in the figure.

4.3 strong tides : tidal disruption of clouds

We now move to study stronger tidal fields. If too strong, we expect
the scalar configuration to be tidally disrupted. A star of mass M∗,
radius R∗, in the presence of a companion of mass Mc at distance R
is on the verge of disruption when the tidal force surpasses its own
self-gravity, known as the Roche limit. Up to numerical factors of order
one this is

M∗/R2
∗ = 2McR∗/R3 . (4.10)
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When the mass in the scalar cloud is a fraction of that of the BH, M∗ ≈
M and its radius is of the order of R∗ ≳ 5/(Mµ2) (see Appendix A).
This corresponds to a critical tide

ϵcrit ≈
(Mµ)6

250
. (4.11)

The simulations presented in Figs 4.6–4.7 corroborate this behavior.
For large masses of the companion, the initial dipolar mode quickly
transfers energy to the octupole, which then drains into higher and
higher multipoles. This signals a transfer of energy to smaller and
smaller angular scales, as the cloud is disrupted and loses mass to
far-away distances, as illustrated in Fig. 4.7.

Extracting precise values for the critical tide from our simulations
is complicated because: 1. these are extended scalar configurations,
and to understand whether there is mass being lost to large distances
requires large numerical grids; 2. a seemingly stable cloud on the
simulation timescale can eventually be disrupted when evolved for
longer times. Typically, our numerical simulations last for ∼ 6000M.
With this in mind, we estimate ϵcrit ∼ 2× 10−7 for Mµ = 0.2, for which
disruption is clear after 4000M. This critical tide agrees remarkably
well with our crude estimate of Eq. (4.11). On the other hand, for
Mµ = 0.1 we see disruption on the simulated timescales only for
ϵ ≳ 2 × 10−8, a factor of four bigger than Eq. (4.11). Disruption may
occur for smaller tides, but on timescales that we are currently unable
to probe. Disruption can also be stimulated by transitions to overtones
which would “puff up” the cloud and increase its size to a few times
the estimate ∼ 1/(Mµ2). Consequently, the critical tide would be
reduced.

To summarize, our results are consistent with the behavior of
Eq. (4.11), though longer evolutions are needed to understand better
the correct prefactor in the critical tide ϵcrit.

4.4 astrophysical systems

We will now apply our results to some known astrophysical systems.
Examples of BHs with companions are the Cygnus X-1 system and
Sagittarius A* at the center of our galaxy. Cygnus X-1 is a binary
system composed of a BH of mass MBH ∼ 15M⊙ and a companion
with Mc ∼ 20M⊙ at a distance R ∼ 0.2 AU ∼ 3 × 1010 m [274].
Plugging these in Eq. (4.3) we find ϵ ∼ 5 × 10−19. Then, for it to
sit at the critical tide, Mµ ∼ 2 × 10−3. The growth timescale τ of
scalar clouds via superradiance is of order τs

growth ∼ (Mµ)−9M ∼(
Mµ/(2 × 10−3)

)−9 (M/105M⊙
)

1016 years [103], which for Cygnus
X-1 is too large to be meaningful compared to the age of the universe
(∼ 1010 years). However, for vector fields the growth timescale is
smaller, τv

growth ∼ (Mµ)−7M [272, 275, 276]. If our results extrapolate
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to vector fields, this mechanism becomes astrophysically relevant for
this system. Note also that the tide is small enough that it should not
affect any of the constraints derived from the non-observation of GWs
emitted by the cloud [277, 278].

Moving to Sagittarius A*, there is a supermassive BH at the center
of our galaxy with mass ∼ 4 × 106M⊙, The closest known compan-
ion is the S2 star [279, 280], with mass MS2 ∼ 20M⊙ and a peri-
center distance of ∼ 1400MBH ∼ 120 AU [281]. Then ϵ ∼ 2 × 10−15,
which corresponds to a critical coupling for disruption of Mµ ∼
9 × 10−3 ∼

(
Mµ/10−2)−9 (M/105M⊙

)
1010 years. This means tidal

disruption may occur in astrophysically relevant timescales, which
would affect the estimates of GW emission using just the dipolar mode.
However, note that our approximations always require that the com-
panion sits outside the cloud (R > R∗, or the approximation in Eq. (4.2)
would break down). Using Eq. (4.10), disruption together with such a
condition always requires Mc > M/2, which is not the case here.

At the verge of tidal disruption, the binary system composed of the
central BH and the companion is emitting GWs which carry energy at
a rate approximately given by the quadrupole formula

Ėbinary =
32
5

M2
c M3

R5 , (4.12)

where we assume the companion to be much lighter than the BH. On
the other hand, the GW flux emitted by the cloud-BH system scales
as [127, 129, 273]

Ėcloud ∼ 1
50

(
MS

M

)2

(Mµ)14 , (4.13)

with MS being the mass of the scalar cloud. Thus, GW emission by the
binary dominates the signal when

Mc

MS
≳
(

MS

M

)5 (5
2

Mµ

)12

, (4.14)

Therefore, in the context of GW emission and detection, disruption
will not affect our ability to probe the system: if it was visible via
monochromatic emission by the cloud before disruption, it would be
seen after disruption as a binary.

Note that tidal disruption of the cloud is a relevant possibility
for these systems, since the cloud is generically not depleted due to
mode mixing by the time the system reaches the Roche radius. In fact,
for cloud depletion due to mode mixing to be effective, the system
needs to be in a resonant epoch for a long time [135]. This requires a
particular combination of the mass ratio and gravitational coupling
Mµ, which can only be realized in a small region in the possible
parameter space (see Figs. 7 and 8 in Ref. [135]).
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4.5 discussion

In this chapter, we performed the first numerical study of the im-
pact of a possible companion star or BH on the development of such
superradiant cloud. We observe transitions to higher overtones and
to higher multipoles, which stretch and deform the cloud. Weak tidal
fields slightly deform the cloud, affecting GW emission by the system.
These changes have not been computed. For tidal fields larger than
the threshold of Eq. (4.11), the companion simply breaks the cloud
apart. This could potentially occur for BH systems such as the one at
the center of our galaxy or the Cygnus X-1 binary system.

Our results generalize to a number of situations. Although we have
discussed only tides acting along the equator, we have performed
evolutions for polar tides along the z−axis, and found the same phe-
nomenology. This includes overtone excitation and transitions between
multipoles and tidal disruption, even if quantitatively different. Our
setup is that of a real scalar field, but the results generalize to complex
scalars.

The phenomena we studied are in similar spirit to the cloud ionization
discussed recently in Refs. [137, 282, 283]. In this case, the cloud is
depleted by the transition from bounded to unbounded states induced
by the orbital motion of the binary. The necessary energy for this
transition comes from gravitational binding energy of the binary, so
ionization accelerates the inspiral and acts as an effective dynamical
friction.
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5
O N E R I N G T O R U L E T H E M A L L

In the previous chapters, we discussed various physical processes
involving BHs, where we assumed a stationary “background”, where
“matter probes” and evolves. These setups are, therefore, particularly
apt at providing detailed information on the geometry and under-
lying theory of gravity. For instance, Earth’s gravitational multipole
moments can be determined in this way by studying the motion of
orbiting satellites [284–286]. In astrophysics, accretion flows around
SMBHs can also be well described as flows on a fixed Kerr geometry.
The matter density outside the BH is so low that its backreaction can
be safely neglected for practical purposes [287].

Thus, a fixed Kerr geometry suffices to understand and study
the physics associated with observations by the Event Horizon Tele-
scope [288] or GRAVITY [289]. The appearance of BHs is determined
by photons reaching far-away observers [290–295]. It is therefore no
surprise that the separatrix between photons escaping to infinity and
those eventually plunging into the BH horizon plays an important role
in BH imaging. Photons sent in from large distances with a decreas-
ing impact parameter will be deflected with a larger angle, probing
stronger-gravity regions before being scattered to far-away observers.
Below a critical impact parameter, they fall onto the BH. At the critical
impact parameter, the photon circles the BH an infinite number of
times. These trajectories asymptote to a closed, unstable, circular orbit,
known as the light-ring (LR). For non-rotating BHs, it is located at
radius rLR = 3M.

The LR is therefore associated with the amount of information
that one can gather related to the BH geometry, and this does not
restrict just to electromagnetic waves. If we give a little “kick” to a
BH, it will relax to stationarity as it vibrates according to some proper
frequencies - its quasinormal modes (QNMs). They are quasinormal
because there is a loss of energy to both infinity and the BH horizon,
leading to an imaginary part in their frequencies. Formally, the QNM

modes are the eigenfunctions of the Teukolsy equation (2.49) (or the
Zerilli/Regge-Wheeler for non-rotating BHs) with ingoing behavior
at the BH horizon and outgoing at far-away distances. The Zerilli and
Regge-Wheeler equation are actually isospectral, i.e. they have the same
QNM frequencies [296].

69
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In a binary coalescence, the final BH remnant approaches stationarity
as it ringdowns and emits GWs that can be described by a superposition
of exponentially damped sinusoidals [188, 297–301]. Each multipole
(ℓ, m) is described by a sum over possible overtones (labeled by n)

ψℓm(t) = ∑
n

Aℓmn e−i[ωℓmn(t−tstart)+ϕℓmn] , (5.1)

where ωℓmn are the QNM frequencies, which depend only on the mass
M and spin a of the remnant. On the other hand, tstart is an arbitrary
starting time and Aℓmn and ϕℓmn are, respectively, an amplitude and
phase that depend on the source of the perturbation, i.e. the full
history of the merger. By extracting the frequencies ωℓmn from the
waveform we can then estimate the mass and spin of the remnant, and
if multiple overtones are detected, perform tests of the no-hair theorem.
This program is dubbed BH spectroscopy [302–305]. Its importance was
accurately foretold by Detweiler in 1980 [306, 307]

After the advent of GW astronomy, the observation of [the BH’s]
resonant frequencies might finally provide direct evidence of
BHs with the same certainty as, say, the 21 cm line identifies
interstellar hydrogen.

So far, the LVK has only confirmed the presence of the fundamental
ℓ = m = 2 mode in its ringdown catalog [17, 308]. These observations
have provided constraints on BH charge [309], the Bekenstein-Hound
bound on the BH information emission rate [310], and modifications
to GR [311, 312]. Independent analyses have suggested the inclusion of
overtones in the ringdown model improves agreement with numerical
relativity simulations up to (or even before) the peak amplitude of
radiation [313–316]. Subsequent works claimed the presence of one
overtone in GW150914 [317–321]. However, including these overtones
in the early ringdown appears to be an overfit of the signal which
lacks physical significance [307, 322–324]. More recently, two indepen-
dent studies found nonlinearities in the early ringdown of numerical
relativity waveforms [325, 326] 1.

Returning to our discussion, what is the connection between the
QNMs and the LR after all? It turns out the ringdown can be interpreted
in terms of high-frequency waves trapped in unstable orbits at the LR

that slowly leak out to infinity. The real part of the QNMs, ωQNM =

ωR + iωI, is determined by the angular velocity at the LR, while the
imaginary part is related to the instability timescale of the orbit, i.e.
how fast particles can escape from the LR [298, 327, 328]. Then, the
presence of a non-trivial environment can change the structure of
geodesics, including the LR, but also interact and excite the waves that
are trapped there. In this second part of the thesis, we will explore
the latter possibility and draw consequences for the observation of
compact objects.

1 We recommend the interested reader the introduction of Ref. [307] for a more detailed
discussion on this topic
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5.1 light-rings : the key to compact objects

Let us again consider generic spherically symmetric spacetimes de-
scribed by the line element in Eq. (2.16). Null geodesics are described
by Eq. (2.9) together with the condition they are null, i.e. gµν

dxµ

dλ
dxν

dλ = 0,
where λ parametrizes the geodesic. Spherically symmetry allows to
restrict movement to the θ = π/2 plane, while the other EOM are [2,
178, 328]

dt
dλ

=
E

A(r)
, (5.2)

dφ

dλ
=

L
r2 , (5.3)

dr
dλ

= E

√
1 − A(r)

b2

r2 =
√

Vr(r) , (5.4)

b =
L
E

. (5.5)

where E, L are , respectively, the “energy” and “angular momentum”
constants of motion, and b is the impact parameter. Circular orbits are
defined by the condition

dr
dλ

=
d2r
dλ2 = 0 ⇒ Vr =

dVr

dr
= 0 , (5.6)

which have as implicit solution

rLR = 2
A(rLR)

A′(rLR)
, (5.7)

b2
c =

r2
LR

A(rLR)
, (5.8)

ΩLR =
dφ

dt
=

√
A′(rLR)

2r

√
A(rLR)

rLR
. (5.9)

For Schwarzschild they are

rLR = 3M , (5.10)

bc = 3
√

3M , (5.11)

ΩLR =
1

3
√

3M
. (5.12)

Since we are considering spherically symmetric spacetimes, the LR

defines more broadly a photonsphere, where high-frequency waves
can be trapped, whether they are photons or GWs. It is an unstable
trapping since any small perturbation r = rLR + δ grows exponentially.
Expanding the potential close to the LR one finds(

dδ

dλ

)2

= Vr(rLR) + V ′
r (rLR)(r − rLR) +

V ′′
r (rLR)

2
(r − rLR) + ... (5.13)
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By the definition of circular orbit (5.6) the first two terms vanish and
one is left with (

dδ

dλ

)2

=
δ2

2
V ′′

r (rLR) . (5.14)

Rewriting it as

dδ/dt
δ

=

√
V ′′

r (rLR)

2(dt/dλ)2 , (5.15)

we arrive at the solution

δ ∼ δ0 eλL t , (5.16)

λL =

√
V ′′

r (rLR)

2(dt/dλ)2 =
A (rLR)

E

√
V ′′

r (rLR)

2
. (5.17)

λL is known as the Lyupanov exponent, and for Schwarzschild λL =

ΩLR . In other words, a null ray slightly displaced off the LR will orbit
on a timescale t ∼ log δ/λL, during which the null particle does a
number of orbits

N ∼ ΩLRt
2π

= − log δ

2π
, (5.18)

close to the LR.
Because of the above trapping properties, LRs play a crucial role

in our understanding of BHs. They are, for many purposes, the inner
surface probed by high-frequency observations. Ref. [328] formalized
this relation by showing that in this high-frequency limit the QNM

frequencies of spherically symmetric, asymptotically flat spacetimes
are

ωQNM = ΩLRℓ− i
(

n +
1
2

)
λL , (5.19)

where n = 0, 1, ..., labels the overtone. This correspondence is only
valid in the eikonal limit (ℓ ≫ 1) but gives excellent predictions even
for low values of ℓ [329] (relative differences below 5 % already for
ℓ = 4).

In this chapter, we will show that the LR also dictates the late-time
behavior of the luminosity of sources plunging into BHs. Such events
appear to occur periodically in the vicinities of Sagittarius A* [330, 331].
Similar events were reported in the past for Cygnus X-1. In particular,
dying pulses from BH accretion were discussed in the context of
Cygnus X-1 years ago [332, 333]. Emitters falling onto BHs may also
radiate in the GW window. These could be, for example, a hierarchical
triple system where the CM of a small binary is inspiralling onto a
SMBH [175].

Previous studies on the dynamical appearance of bright sources
follow a number of approximations and are restricted to spherically
symmetric gravitational collapse [334–336]. Here, we extend those and
investigate how a pointlike source that emits GWs or electromagnetic
waves fades out as it is accreted by a BH.
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Figure 5.1: Redshift of two different sources as they plunge radially into a
Schwarzschild BH, emitting null particles (e.g. photons, gravitons)
of fixed proper frequency ωe. The source, located in the equatorial
plane at θ = π/2, φ = 0 begins from rest at infinity, but (for nu-
merical purposes) starts emitting only when it crosses r = 30.65M.
Beam: this source emits only radially outwards. The observer is
located at ro = 100M, θ = π/2, ϕ = 0, and receives particles
whose frequency/energy decreases with time. At late times, the
frequency ωo measured by the observer decays exponentially
as ωo ∼ ωee−t/(4M), according to our analytic prediction (5.29).
Isotropic star: the second source is a pointlike “star” emitting
isotropically in its local rest frame. At a fixed instant, far-away ob-
servers distributed along the sphere at ro = 100M receive a wide
range of redshifts. The lower part of the curve is due to radially
propagating null particles, whereas the top part of the curve is
due to particles with a near critical impact parameter bc ≈ 3

√
3M

that linger close to the LR, which can be blueshifted [293].

5.2 how do bright objects fade out?

5.2.1 An outward-pointing beam

We start by focusing on the geometric optics regime, where one con-
siders that high-frequency waves follow null geodesics on a fixed
background geometry, independently of their nature.

Let us imagine a laser pointer shooting a “beam” of light outwards
as it falls radially onto a Schwarzschild BH from rest at infinity. The
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Figure 5.2: Normalized luminosity (L = dE/dt) of the two different sources
discussed in Fig. 5.1. The observed luminosity of the radial beam
scales as L ∼ e−t/(2M) at late times, again in agreement with our
prediction. The luminosity of the isotropic star was calculated by
“binning” null particles in packets of 20, to avoid large scatters.
At late times, the luminosity is dominated by those particles
lingering on the LR, hence L ∼ e−t/(3

√
3M).

4-velocity of this source and its radial position in terms of the proper
time is

vµ
e =

dxµ
e

dτe
=

(
1

1 − 2M/re
,−
√

2M
re

, 0, 0

)
, (5.20)

re = 2M
(
− 3τe

4M

)2/3

, (5.21)

and the coordinate time at the source position is given implicitly by

dte

dτe
=

1
1 − 2M/re

. (5.22)

Now, consider a photon with 4-momentum kµ such that its proper
frequency is ωe = −vµ

e ku. This photon will intersect the world-line
of an observer with 4-velocity vo which measures a frequency ωo =

−vµ
o kµ. For a static observer at large distances and for radial null

geodesics followed by the photon

vµ
o = (1, 0, 0, 0) , (5.23)

kµ = E
(

1
1 − 2M/r

, 1, 0, 0
)

, (5.24)

which implies

ωo = ωe

(
1 −

√
2M
re

)
. (5.25)
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Figure 5.3: The blueshift distribution of photons with near-critical impact
parameter, emitted from an object freely-falling onto a BH. The
blueshift is maximum, ωo = 4ωe/3, at r0 = 12M, and is unit at
re = 3

√
3M (see also Ref.[337]).

We now want to compute the redshift as seen by a distant observer
as a function of the coordinate time t. We need to take into account
that the null particle is being emitted by a source that is getting closer
to the horizon and which also needs time to reach the observer. An
outward-directed photon obeys

dttravel

dr
=

1
1 − 2M/r

. (5.26)

We can integrate this to find the arrival time of the null particle as
measured by a far-away observer

to = te + (ro − re) + 2M log
(

ro − 2M
re − 2M

)
. (5.27)

We can obtain the behavior when the source is close to the BH

horizon by solving

dre

dte
= −

√
2M
re

(
1 − 2M

re

)
, (5.28)

when re ∼ 2M. We find te ∼ −2M log (re − 2M), and plugging these
in Eq. (5.27) we find re − 2M ∝ e−to/(4M). Therefore, at late times

ωo

ωe
∼ e−to/(4M) . (5.29)

The total luminosity dEo/dto can be calculated similarly. At late
times dEo/dto ∼ e−to/(2M).
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Figure 5.4: The redshift distribution of light emitted by an infalling (isotropic)
star as measured by observers at r = 100M on the infalling
axis. For φ = 0 the star is between the BH and the observer,
whereas observers at φ = π only see the star due to gravitational
lensing, as the BH sits between them and the star. Note the delay
with which the φ = π observer receives the first signal, with
respect to φ = 0. Note also that the signal is mostly Doppler
blueshifted for φ = π, as the observer sees light emitted from an
approaching source. Some of the details of this figure, in particular
the graininess and isolated points, are due to insufficient number
of null particles being sent from the star.

Figure 5.1-5.2 shows the numerical solution of this problem (black
dashed line). An emitter starts falling at ri = 30.65M and sources 20000
null particles, one every (proper) time interval δτe = 4× 10−3M. These
particles are collected by an observer at ro = 100M. Our numerical
results show that at late times the frequency as measured by far-away
observers decreases exponentially as described by Eq. (5.29). Note that
ωo is always redshifted. The same applies to the luminosity, shown in
Fig. 5.2.

5.2.2 An isotropically-emitting star

Most astrophysical sources of radiation are not “beams”. Even if
they can be studied within the geometric optics limit, they should
be emitting in different directions. The easiest generalization one can
then make is to consider an isotropic pointlike source. Now, there
are two new physical structures: the BH horizon, which captures null
particles, and the LR, which traps them in unstable geodesics.

We consider a similar situation as before, where a body is falling
radially from rest at infinity onto a BH. However, now it constitutes
a luminous “hot spot” which emits radiation isotropically in its rest
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frame, where it has total luminosity Le. To compute the total luminosity
Lo measured by a stationary far-away observer as a function of time,
we need to follow each particle emitted.

Spherical symmetry allows us to focus on the emission on the
equatorial plane without loss of generality. The conserved quantities
E and L characterizing each emitted particle should be related to
observables in the local freely falling frame, where they have energy
ωe and are emitted at an angle α with respect to the radial direction.
In Appendix B, we outline how to obtain the following relations

ωo = ωe

(
1 +

√
2M

r
cos α

)
, (5.30)

b = re
sin α

1 +
√

2M
r cos α

. (5.31)

We can now study the infall of an isotropic star by shooting null
particles uniformly distributed in α and collecting them at some fixed
radius ro. Particles with impact parameter smaller than the critical
impact parameter bc (5.11) will fall into the BH and are not considered
in our calculation.

Equations (5.30)-(5.31) can be solved for the redshift of particles
with critical impact parameter

ωo

ωe
=

r3
e +

√
2M
√

r5
e − b2

c r2
e (re − 2M)

2Mb2
c + r3

e
. (5.32)

This relation is shown in Fig. 5.3 as the star falls. For most of the fall,
radiation with near-critical impact parameter is blueshifted for values
of around 1.2 − 1.3 (in particular, it is larger than 1.2 for 6.7M < re <

49M). The blueshift peaks at re = 12M and crosses unit at re = b

ωo

ωe

∣∣∣∣
max

=
4
3

, r = 12M , (5.33)

ωo

ωe
= 1 , r = 3

√
3M , (5.34)

in agreement with previous results [337].
We repeated the same numerical analysis as in the collimated beam

but now distributing 1600 particles uniformly in the emission angle α.
The results are illustrated in red in Figs. 5.1-5.2.

The first difference with respect to the “beam” is that now radiation
reaches far-away observers (distributed along the whole sky) with
different redshifts, depending on their propagation history. As can be
seen in Fig. 5.1, the most redshift occurs for photons emitted radially
outwards (the lower part of the red region that is limited by the
dashed-black line corresponding to the collimated “beam”). On the
other hand, some null rays can also be blueshifted (ωo/ωe > 1). These
occur due to the extreme bending of rays close to or at the LR, where
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rays with near-critical impact parameter can make a U-turn. This
example is similar to having a moving source and a mirror, as studied
in Ref. [293], where a similar blueshift was observed. Note that as
the critical impact parameter is approached, the rays linger longer
and closer to the LR, and consequently take more time to reach the
observer.

Now, we focus on a fixed angular position to understand what a
particular observer measures. We selected among all the outgoing
photons those that reach the observer with cos φ > 0.99 (which we
label “φ = 0”) and those with cos φ < −0.99 (which we label “φ =

π”). The former sees the BH behind the source, while the latter sees
the opposite. The corresponding redshift distributions are shown in
Fig. 5.4 for observers at ro = 100M. At early times, “φ = 0” observers
see only radially-outward particles, with maximum redshift. At late
times, particles with near-critical impact parameter circle the BH and
return to reach this observer, with maximum blueshift. Recall that
the source starts infalling at ri ∼ 30M. The first blueshifted particles
should then arrive at a time ∆t1 ∼ T LR/2 + 60M ∼ 76M after the first
outwards particles reach the observer, with T LR/2 being the time it
takes to circle the LR and come back in the opposite direction. On the
other hand, an observer on the opposite side of the BH would see the
first null particles to be always blueshifted, since the observer sees an
approaching source, a time ∆t2 ∼ 60M after the first signal arrives at
the φ = 0 observer. These estimates do not take into account Shapiro
time delay, but the estimate ∆t1 − ∆t2 ∼ T LR/2 ∼ 16M should be
more reliable. All these features are apparent in Fig. 5.4.

The total luminosity is shown in Fig. 5.2 and follows the same trend.
Note that due to the finite number of “photons” that we used in
our numerical study, the total luminosity is not smooth. The jagged
features carry no physical information and are purely a result of
the numerical method used to estimate the luminosity. We opted
to “bin” 20 particles at a time, and we have explicitly checked that
larger binnings produce smoother luminosity functions, as it should.
For realistic sources the true curve is single-valued and smooth. At
late times our results are consistent with a decay controlled by LR

L ∼ e−to/(3
√

3M) (recall the LR frequency in Eq. (5.12), which as we see
below is generic for similar sources.

5.2.3 An isotropic body emitting scalar waves

With the geometric-optics limit in control, we generalize the problem
by solving for the full dynamics of wave propagation. We first con-
sider a toy-model where a source with scalar charge is emitting scalar
waves. This problem can be modeled by the Klein-Gordon equation
for a massless scalar field, which is the s = 0 case of the Teukol-
sky equation (2.49). For the source term, we take the trace T of the
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Figure 5.5: Total luminosity in scalar waves (s = 0) and GWs (s = −2) from a
source plunging into a Schwarzschild BH, and emitting at fixed
proper frequency Mωe = 2.5. The source is located on the equa-
torial plane at θe = π/2 and starts from rest at re(t = 0) = 35M.
We consider both a radial plunge (Le = 0) and one with finite an-
gular momentum (Le = 3.0M). For both processes, the luminosity
follows the exponential decay at late times dictated by the LR,
Lo ∼ e−t/(3

√
3M), in accordance with the geometric optics limit

for the isotropic star in Fig. 5.2. The different features between
scalar and GWs are due to the source structure in both scenarios.
The low frequency oscillations in the GW spectrum come from
the plunge of the CM of the binary system. The high-frequency
content of the signal for both scalar and GWs is dominated by
frequencies around Mωo ∼ 3.0, blueshifted with respect to ωe by
a factor ∼ 1.2, which is consistent with Fig. 5.3.

stress-energy tensor of a pointlike body of mass mp (2.10) vibrating
at constant proper frequency ωe (and therefore emitting spherical
waves in its rest frame) [338, 339]. This body couples to the scalar field
through a scalar charge q

□Ψ = q T sin (ωeτe(t)) , (5.35)

which we can set to 1 in our analysis without loss of generality.
Again, spherical symmetry allows us to restrict the motion of the
point-particle to the equator. The emitter can have non-zero angular
momentum Le, so its EOM are

dre

dt
= −

√
E2

e −
(

1 − 2M
re

)(
1 +

L2
e

r2
e

)
, (5.36)

dφe

dt
=

Le

Ee

1 − 2M/re

r2
e

. (5.37)

We solved this problem using the time-domain code described in
Sec. 2.2.
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Figure 5.6: Energy flux for a scalar source plunging radially into a BH (from
re(t = 0) = 35M as in Fig. 5.5), extracted at specific angular
positions on the equator. All signals exhibit the same global
exponential decay dictated by the LR as seen in Figs. 5.2 and
Fig. 5.5. Stationary observers now see a periodic structure, whose
period may differ for different observers (notice that at φ = π/2
the period is half that at φ = 0, π). Once again, the high frequency
content of the spectrum corresponds to waves with Mωo ∼ 3.0,
in accordance with the blueshift predictions of Fig. 5.3.

In Fig. 5.5 we show the total luminosity for this system for a
monochromatic source with Mωe = 2.5, with and without angular
momentum. This flux of energy is computed through

Ė∞ = Lo = lim
r→∞

∫
S2

dΩ
√
−gTtr

Φ =

= lim
r→∞

∫
S2

dΩ r2 sin θ ∂tΦ ∂rΦ . (5.38)

Even though the source is now emitting radiation whose wavelength
is comparable to the BH size, the late time behavior is still described
by the exponential decay, Lo ∝ e−to/(3

√
3M), independently of whether

the body falls with non-zero angular momentum or not.
The luminosity per solid angle at different angular positions is

presented in Fig. 5.6. The global LR decay is the same but we notice
the presence of additional structure. In particular, there are periodic
oscillations whose period may differ for different observers. Their
frequency is a multiple of half of the frequency of the LR MωLR ≈ 0.192
(corresponding to a period TLR ≈ 32.6M). Each of these LR pulsations
is succeeded by a sharp, fast transition, lasting for ∼ 5M, a behavior
and timescale that we do not fully understand.

As we might have anticipated, the spectral content is dominated
by blueshifted radiation emitted in the past with a near-critical an-
gle, which is absorbed by the LR and re-emitted later. Referring to
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Figure 5.7: Same as Fig. 5.6, but for a source emitting high-frequency GWs.
The source is a binary, and is plunging radially onto a mas-
sive BH, while emitting GWs of proper frequency Mωe = 2.5.
The frequency of the signal measured by far away observers is
blueshifted to Mωo ∼ 3.

Fig. 5.3, such radiation is blueshifted to ωo ∼ 1.2 − 1.3ωe, in this case
corresponding to Mωo ∼ 3.0 − 3.1 during most of the infall.

5.2.4 An infalling binary

The final system we will study is a possible astrophysical realization of
the previous toy model. We consider a BHB whose CM is falling onto a
massive BH. We consider that the binary is composed of two pointlike
masses, which can be treated within linear perturbation theory on
the background spacetime of the massive BH. This system constitutes
a hierarchical triple system and it emits GWs which can be studied
using the Teukolsky equation, where the source term is characterized
by two pointlike particles.

To simplify the analysis, we assume the binary has a very eccentric
orbit while its CM is radially plunging into the central BH

r± = rCM(t) , θ± = θCM(t) , (5.39)

φ± = φCM + ϵ sin(ωeτe) , (5.40)

where ± refers to the two bodies composing the binary and ϵ = ϵ(rCM)

defines the axis of the very eccentric ellipse followed by the binary

ϵ =

(
1 − 2M

rCM

)
δr

rCM
, (5.41)

where δr is the proper length of the binary axis around its CM. For
the examples we will discuss, we fix δr = 0.1M, but our qualitative
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Figure 5.8: Left panel: Luminosity in scalar waves for the system studied in
Section 5.2.3. Now, the source is turned off below a certain radius
(which we selected to be either r = 2.5M or r = 4M). When the
source is turned off inside or close to the LR, the flux is nearly
unchanged, as it is controlled by waves emitted in the past and
lingering close to the photonsphere. Right panel: Luminosity for
the scalar system studied in Section 5.2.3 but whose source is
suddenly increased by a factor of 10 at the same radii as in the left
panel. In flat spacetimes, this would correspond to a luminosity
100 times higher. However, since the process takes place close
to the LR, the luminosity is very weakly affected and has the
same global exponential decay. As expected, when the increase in
amplitude occurs deep inside the light ring, the increase in the
luminosity is less significant.

conclusions are independent of this value. The two point-particles
enter as sources of the Teukolsky equation for s = −2 as described in
Sec. 2.2.2.

The flux of energy carried by GWs to infinity (cf. Eq. (2.51)) is
shown in Fig. 5.7 for different angular locations. Even though it is
impossible to decouple the contribution of the motion of the CM

from that of the binary itself, we see again the late time exponential
decay dLo/dΩ ∼ e−t/(3

√
3M).

The peculiar nature of gravity is manifest in the low-frequency
components in Fig. 5.7. They are contributions to the flux due to the
motion of the CM, which modulates the high-frequency components
of the signal emitted by the small binary. As a consequence, for certain
directions, such as θ = π/2, φ = 0, π, the high-frequency content
dominates the spectrum, whereas for others the signal is controlled by
the lower frequencies from the plunge of the CM.

5.3 testing horizons

Our results strengthen the point of view that LRs control how dy-
namical processes look to outside observers, while horizons play a
secondary role on this. We can test this further by studying how our
results change when the near-horizon physics of the compact object
is altered, or when we change the properties of the source close to or
within the LR. We have tested this with two different processes:
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Figure 5.9: Luminosity in GWs from the system described in Section 5.2.4, for
which the binary is shut off below a certain radius, signaling for
example a sudden merger of the binary. In line with the findings
for scalar waves in Fig. 5.8, near-horizon details are irrelevant for
the appearance of these objects, and it is the LR that controls the
late time signal.

• First, we turn off the source after it reaches a selected radius
(e.g. r = 4M, 2.5M ). This could represent a merging binary
before its CM plunges on the BH. Our results are summarized
in Figs. 5.8-5.9. For both types of waves, the spectrum is mostly
independent of the cutoff radius if this is located close or inside
the LR. The late-time decay is still given by the exponential
law we observed previously, which reinforces the interpretation
that it really describes waves trapped close to the LR (which
accumulated during the infall), and are slowly leaking out to
infinity (and the horizon). This result also indicates that two
different compact objects with similar LR structures may be hard
to distinguish based on observations of matter surrounding it,
whether they possess a horizon or not.

• In the second case the source becomes suddenly brighter, increas-
ing its proper luminosity after it falls within some radius. In
Fig. 5.8 we show results when the proper luminosity is increased
by a factor of 100. As before, the late-time behavior decay is un-
altered and the change in the luminosity measured by far-away
observers is small when the burst occurs inside the LR.

The punchline is What happens inside the light ring stays inside the light
ring, or more seriously, near horizon details are mostly irrelevant for
how matter accreted onto a BH appears to distant observers.
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5.4 discussion

In this chapter, we showcased how the properties of LRs control the
appearance and late-time dynamics of BHs and other compact ob-
jects [231, 290–295, 328, 335, 336, 340–343]. The LR can be seen as a re-
gion where high frequency waves are trapped on timescales ∼ 3

√
3M

or more [231]. A GW or bright electromagnetic source falling onto
a BH will “heat up” this cavity as it falls. As the source enters the
photonsphere, the transfer of energy from the source to the LR is max-
imum. From then onwards, the source gets progressively redshifted
away, and the energy leaking from the LR dominates emission. Thus,
observers see a late-time appearance of infalling stars dominated by
the LR cooling down process: the signal has a spectral content domi-
nated by frequencies slightly blueshifted with respect to the proper
frequency of the source, and a luminosity dying off as L ∼ e−t/(3

√
3 M).

This behavior is best understood within a null-particle approach.
Literature on waves around BHs usually discusses, instead, a mode
analysis where the late-time behavior is dominated by QNM ringdown
and power-law tails from the backscattering of radiation from curva-
ture [188, 300]. GWs are emitted by coherent motion of sources, and
usually excite only a few modes. For high-frequency sources, however,
a large number of multipoles are excited. The quasinormal frequencies
at large mode number ℓ, are described by Eq. (5.19) [188], and the
ringdown amplitude is given by Eq. (5.1). If we plug the asymptotic
expression above in this sum over all the multipoles, we obtain a ring-
down stage with a global modulation given by Φ ∝ e−ΩLR t/2, which in
the Schwarzschild case corresponds exactly to the decay in luminosity
we observed (L ∝ |Φ|2) . In other words, both results (geometric optics
and wave propagation) are compatible. Finally, late-time polynomial
tails are extremely challenging to observe in the presence of these
sources, as their amplitude is expected to be many orders of magni-
tude below the ringdown signal [344]. Consequently, they should only
appear at later timescales than the ones we probed and for this reason
are not expected to be astrophysically relevant.

The decay timescale is controlled by the LR, whose properties de-
pend on the BH spin. We studied only non-spinning BHs, but geometric-
optics approximation can be used to predict that rapidly spinning
BHs will show a much larger relaxation timescale, and a breaking of
degeneracy with respect to different angular directions [328, 340]. This
raises the interesting possibility of determining the BH spin from the
ratio of amplitudes of different redshifts.

Dying pulses from BH accretion were discussed in the context of
Cygnus X-1, years ago [332, 333]. These works assume that light from
such pulses mimics the motion of the source, which as we discussed
is not correct. It is challenging to explain such observations through
LR properties, since timescales seem to be off by almost an order of
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magnitude. Nevertheless, these observations show how LR relaxation
could show up in observations with enough precision. This is relevant
for BH imaging [45, 46, 294, 345], in particular for the next generation
Event Horizon Telescope [346, 347]. This collaboration plans to add
10 new observation points to the current Event Horizon Telescope,
which will increase the precision of current images and open the
possibility of producing movies monitoring the evolution of matter
being accreted by BHs, which could be compared with our general
results for the luminosity decay.





6
T H E E L E P H A N T T H E F L E A

In the previous chapter, we discussed BH spectroscopy, the research
program that aims to measure the characteristic frequencies of the
late-time ringdown of a binary coalescence, where the waveform is de-
scribed by a superposition of exponentially damped sinusoidals, and
compare them with the theoretically predicted QNM frequencies of BHs
in GR. However, for this comparison to make sense, the QNM spectrum
should be stable, meaning that the QNM frequencies should not be
very sensitive to possible perturbations in the spacetime. Otherwise,
small environmental perturbations could produce large deviations in
the QNM spectrum and hide hypothetical signatures of new physics.

It turns out this is exactly the case! Recent computations of the
pseudospectrum 1 in GR confirm that the QNM spectrum is unstable
under small perturbations [349–351] (see also [352] for a prelimi-
nary suggestion of this result). For example, the fundamental QNM

of Schwarzschild, which dominates the ringdown, can have order
O(1) corrections if a “tiny” perturbation is added to the gravitational
potential (see Fig. 1 and 2 in Ref. [353]).

However, the instability has been demonstrated in the frequency
domain. This only describes the late-time behavior of a binary coales-
cence. Although results in the frequency domain should translate to
the time domain by a Fourier transformation, in practice, this could be
challenging to achieve in an experiment, as one would need to observe
the GW signal for very long times and with precision above what is
achievable.

This is what happens for horizonless exotic (ultra)compact objects
(ECO) [231]. To recall, these are BH mimickers where the BH horizon
is substituted by reflecting surfaces, and the exterior geometry and
dynamics are usually left unchanged. This leads to a QNM spectrum
very distinct from that of a BH. In particular, ECOs develop cavity
modes that are trapped between the LR and their surface/interior,
which decay much slower than the fundamental QNM of Schwarzschild.
However, by causality, the time-domain response of a BH and an ECO

1 The pseudospectrum of an operator are the level sets of numbers that are “close" to
the eingenvalues of the operator, where the meaning of close can be put more formally.
This notion is particularly useful to study non-self-adjoint operators, as those arising
in BH spacetimes, where the eingenvectors are not complete and orthogonal [348].

87
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Figure 6.1: The unperturbed (ϵ = 0) and perturbed potentials used in this
study. The Regge-Wheeler potential with ℓ = 2 is shown in black,
while two perturbative bumps ϵVbump, with ϵ = 0.1, are shown
in blue (a = 10) and orange (a = 30). The unperturbed potential
has a peak close to the LR.

is the same for the time necessary for a perturbation to travel to the
surface of the ECO, which should be close to the BH horizon limit, and
then be reflected back [341, 354, 355]. The prompt ringdown is instead
controlled by the LR (5.19), in line with our results from the previous
chapter.

In this chapter, we are thus interested in understanding how the
QNM spectrum instability manifests itself in GW observations, and if it
jeopardizes the BH spectroscopy program.

6.1 perturbations of the potential

In order to do that, we will study a modified version of the equations
that govern (linear) gravitational perturbations around nonrotating
BHs in GR, which were introduced in Sec. 2.1.3 [185, 187]. There, we
saw they have the general homogeneous form

−∂2Ψ
∂t2 +

∂2Ψ
∂r2∗

− V Ψ = 0 , (6.1)

where Ψ is the complex “master" function. V = V(r) is the perturbed
effective gravitational potential

V = V0 + ϵVbump . (6.2)

V0 denotes the unperturbed potential of a Schwarzschild BH, and
ϵVbump, with ϵ ≪ 1, represents a small perturbation or “bump” to it.
These perturbations can arise in different physical scenarios, such as
modifications to GR [356, 357], environmental matter [80, 248, 358, 359],
and non-linearities [325, 360–367]. For concreteness, we will mostly
focus on the Regge-Wheeler case with ℓ = 2. Also, in this chapter, we
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will exceptionally work in units where M = 1/2, to be consistent with
the work of Ref. [353] on this problem.

Following Ref. [353], we assume that the bump is localized around
some radius r∗ = a and that it goes to zero faster than V0 as r∗ → ∞.
We will study a Gaussian bump of the form

Vbump = exp
[
− (r∗ − a)2

2σ2

]
. (6.3)

The specific form of the bump in Eq. (6.3) is chosen as an illustrative
example. However, we have considered other perturbations, such as:
1. a bump which is concave rather than convex, corresponding to
negative ϵ; 2. a bump which decays as r−3 at large distances and
which is exactly zero for small r, mimicking a perturbation due to
a thin shell of matter. The qualitative behavior of the time-domain
signal is the same in all these different cases, so we will not report all
the results here. In fact, the only relevant aspect of the perturbation is
that it introduces a second small peak. When this is not the case, e.g.,
when a is very small, the instability is not present [353]. Note also that
the isospectrality of the Zerilli and Regge-Wheeler potentials is broken
even if we use the same perturbative bump in both equations [356, 357],
though in realistic astrophysical scenarios the odd- and even-parity
perturbative “bumps” are not expected to be the same.

To solve the perturbed Regge-Wheeler equation, we again use the
numerical framework introduced in Sec. (2.2). We prescribe as initial
data for the perturbation, a Gaussian pulse of the form

Ψ
∣∣∣
t=0

= 0 ,
∂Ψ
∂t

∣∣∣
t=0

= e−(r∗−5)2/2 , (6.4)

but our qualitative conclusions are independent of this choice.
We also want to extract the spectrum at late times, when the time-

domain signal is decaying as a linear combination of exponentially
damped sinusoids. Their frequencies and damping times can be ex-
tracted by fitting the waveform with the N-mode template 2

Ψ(t) = Re
N−1

∑
n=0

Ane−i(ωnt−ϕn) (6.5)

=
N−1

∑
n=0

AneωnI t cos(ωnRt − ϕn) , (6.6)

where the index n labels the different modes we find by fitting, and it
does not necessarily coincide with the overtone number. Each mode is
characterized by four parameters: an amplitude An, a phase ϕn, and
the real and imaginary parts of the QNM frequency ωn = ωnR + iωnI .
We will find that several QNMs could have similar decay times, and

2 The fitting procedure and frequency-domain analysis was conducted by Mark Ho-
Yeuk Cheung.
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hence comparable amplitudes. In this situation, a good fit of the
waveform requires a relatively large number of modes N. The largest
number of modes we will look for is N = 8, corresponding to 8 × 4 =

32 fitting parameters.
The eigenfrequencies ωn of Eq. (6.5) can also be computed directly

from Eq. (6.1) with a Laplace transform

∂2Ψ
∂r2∗

+
(
ω2 − V

)
Ψ = 0 . (6.7)

The QNM frequencies ωn correspond to the poles of the Green’s
function of Eq. (6.7) with boundary conditions of ingoing waves at
r∗ = −∞ (the BH horizon), and outgoing waves at r∗ = +∞ (far-away
distances). The frequencies can be found by a shooting method [296]:
starting from each of the two boundaries and numerically integrate
inwards or outwards iteratively searching for the values of ω for which
the two solutions match smoothly in an intermediate region.

We have performed this direct-integration analysis using a modifi-
cation of the Mathematica notebook used in Ref. [368] and available
online [369].

6.2 stability of the waveform

We will say that “destabilization” occurs when a quantity that char-
acterizes the BH’s’ response (e.g. the QNM frequency or the waveform
amplitude) changes by an amount much larger than the magnitude
of the perturbation. We will now show that while the fundamental
QNM mode of Schwarzschild is spectrally unstable, in accordance to
Ref. [353], the change in the time-domain waveform amplitude is of
the same order as the size of the perturbation. In this sense, the time-
domain waveform itself is stable under perturbations. Furthermore,
the observed QNM frequency is also stable because the early part of the
waveform is not significantly affected by the perturbation.

In Fig. 6.2, we show the waveform resulting from the scattering
of Gaussian pulses for different locations a and magnitudes ϵ of the
bump. tmax is the time at which |Ψ| reaches its maximum value, and
we only show the signal afterward. In the “clean” Schwarzschild
case (ϵ = 0 in black), we observe the typical exponentially decaying
ringdown followed by an expected power-law tail coming from the
backscattering of radiation at large distances [300, 370]. As expected,
the larger the ϵ, the larger the difference in the waveform with respect
to Schwarzschild, even at early times. For times t − tmax ≲ a, the
absolute difference of the waveform with respect to the unperturbed
potential scales linearly with ϵ. The prompt ringdown signal close to
the waveform peak is affected by environmental disturbances but
not destabilized in the sense defined above. This is the portion of
the ringdown with the most interest to GW astronomy, meaning such



6.2 stability of the waveform 91

0 50 100 150 200 250 300

t− tmax

10−9

10−7

10−5

10−3

10−1

101

|Ψ
|

a = 10 ε = 0

ε = 0.1

ε = 0.01

ε = 0.001

0 50 100 150 200 250 300

t− tmax

10−9

10−7

10−5

10−3

10−1

101

|Ψ
|

a = 30

0 50 100 150 200 250 300

t− tmax

10−12

10−10

10−8

10−6

10−4

10−2

100

|Ψ
−

Ψ
cl

ea
n
|

a = 10 ε = 0.1

ε = 0.01

ε = 0.001

0 50 100 150 200 250 300

t− tmax

10−12

10−10

10−8

10−6

10−4

10−2

100

|Ψ
−

Ψ
cl

ea
n
|

a = 30

Figure 6.2: Top panels: absolute value of the waveform arising from the scat-
tering of the Gaussian pulse of Eq. (6.4) for “bumps” with dif-
ferent amplitudes ϵ, located at two selected distances a from the
main peak. The bump width σ in Eq. (6.3) is fixed at σ = 0.5.
“Echoes” are apparent when the bumps are located at large dis-
tances (a = 30). The dotted and dashed vertical gray lines corre-
spond to t − tmax = a and 2a, and they illustrate how the delay
between echoes is related to the size of the “cavity” between the
two maxima in the perturbed potential. Bottom panels: absolute
value of the difference between the waveforms shown in the top
panels and the unperturbed clean waveform without a bump
(ϵ = 0).

differences are not expected to be observable with the SNRs achievable
by today’s interferometers [80, 231].

After this initial regime, for tmax ≳ 2a, we start to observe echoes
of the original ringdown due to the leakage of waves being reflected
between the peak of the potential and the bump. At late times, the
bump can drastically modify the signal’s frequency content. At this
stage, the waveform is well-described by a superposition of the long-
lived QNMs of the perturbed potential, as illustrated in Fig. 6.3. For
smaller ϵ, the late time power-law tail can hide the difference in the
late-time behavior with respect to the unperturbed waveform.

In general, when we add a large bump in the potential, the QNMs
have a longer damping time, and hence they survive longer before
“diving below the tail”. When the bump is located far from the orig-
inal potential peak, we first observe lower amplitude echoes of the
original pulse, which eventually give way to a different ringdown
signal. For large a, there is a clear separation of timescales between
the ringdown pulse produced at the LR and the light travel time char-
acterizing the “cavity” between the LR and the bump. Thus, we have a
pulse bouncing back and forth within the cavity and gradually losing
its high-frequency component, which tunnels out more easily. This
produces a sequence of echoes repeating at a characteristic frequency
defined by the cavity size and damped on a timescale defined by the
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Figure 6.3: Waveform for a = 30 and ϵ = 0.1 over long time windows, where
the late-time behavior is dominated by the new fundamental
mode QNM. The dashed blue line represents its expected decay,
which corresponds to the bottom blue cross with smallest |ωI | in
the top panel of Fig. 6.6.

transmission coefficient of the small peak, as shown in Fig. 6.2 (see
also Refs. [231, 341, 342, 371] for similar behavior when the bump is
arbitrarily close to the horizon). These two scales determine the QNM

spectrum of the bumpy potential, which can be nonperturbatively
different from the ϵ = 0 case. A simple rule of thumb for the echoes to
be visible is that the prompt ringdown lifetime ∼ 9

√
3M (allowing for

three e-folding times) should be smaller than the travel time within the
cavity ∼ 2a [231, 371], and therefore we should require a ≳ 4 (in units
where M = 1/2). Note that, however, the amplitude of the echoes and
the induced QNM ringing is proportional to ϵ.

The prompt ringdown is excited mainly at the peak of the poten-
tial, which broadly coincides with location of the LR. If the bump is
placed close to the peak, it will change its shape and consequently the
frequency content of the prompt ringdown. When the bump is placed
farther, the spectrum still changes because the QNMs are sensitive to
the entire potential. However, the wave train excited at the LR should
be similar to the one in the case of the unperturbed potential. As it
meets the bump, part of it will be reflected and the other will tunnel
out to far-away distances. The reflection coefficient is O(ϵ) for any
frequency, and consequently the change in the prompt ringdown also
scales with this factor.

In the prompt ringdown, the relative difference in the waveform
|Ψ − Ψclean| / |Ψ| scales linearly with ϵ, while in the echo-dominated
regime the difference is larger. The reason for this is the following:
the original ringdown signal decays as e−ωI t. Each reflection of the
waves in the cavity reduces their order of magnitude by ∼ ϵ. On the
other hand, each back-and-forth bounces inside the cavity occurs on
timescales of tbounce ∼ 2a. This means the amplitude of the n-th echo
will be larger than the ringdown by a factor of

(
ϵ/e−ωI tbounce

)n, or



6.3 extraction of qnm frequencies 93

0 50 100 150 200 250 300

t− tmax

10−12

10−9

10−6

10−3

100

|Ψ
−

Ψ
cl

ea
n
|

early

full

Figure 6.4: The portion of the waveform used for the damped-sinusoid fitting
in the two different regimes of interest. For completeness, this
waveform corresponds to the case a = 30, ϵ = 0.01, but the same
procedure applies to other examples.

ϵnen2a|ωI |. When the power-law tail starts dominating, the modification
returns to order ϵ because the tail can be formally seen as a “direct”
zero-frequency signal.

6.3 extraction of qnm frequencies

We now move to the core problem of BH spectroscopy, which is the
comparison between the QNM frequency theoretically predicted and
those extracted by fitting the waveform with damped sinusoids.

Regarding the fitting of time-domain waveforms, we wish to answer
two separate questions:

1. How the spectral instability affects the prompt ringdown radia-
tion emitted in binary coalescences, which is the louder portion
of the signal and consequently more easily detectable by GW

interferometers.

2. If the full waveform, in particular the late-time portion, is well
described by the destabilized QNM spectrum, including the long-
lived cavity trapped modes.

In Fig. 6.4 we highlight the portions of the signal used in the inves-
tigation of both problems. In all cases, we discard times t − tmax ≲ 5,
where there is contamination from the direct signal coming from the
initial data. For the full signal (shaded in blue), we also discard the por-
tion of the waveform dominated by the power-law tail. For the prompt
ringdown analysis (shaded in green), we only consider the portion
of the signal before the appearance of the first echo (t − tmax ≲ a). In
both cases the starting time of the fit is varied to ensure convergence
of the frequencies obtained.
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Figure 6.5: Comparison between the QNM frequencies computed with the
shooting method in the frequency domain (crosses) and those
extracted by fitting the full time domain waveform (dots).
The black cross is the unperturbed clean fundamental QNM of
Schwarzschild, with Mω = 0.374 − 0.089i. The starting times
used are t − tmax = 10, 15, 20, 25, 30M.

6.3.1 The full time-domain signal

We start by addressing the second problem, where the full signal is
used (shaded in blue in Fig. 6.4).

In Fig. 6.5, we present results for a bump located close to the peak
of the unperturbed potential (a = 10) and in Fig. 6.6 another case
where the bump is farther away (a = 30). The frequencies recovered
from the fitting procedure using different starting times are shown
as dots with different shades, where the darker the dot, the later
the starting time. The crosses correspond to the QNM frequencies
computed with the shooting method in the frequency domain, with
the black cross representing the fundamental QNM of the unperturbed
potential (ϵ = 0). Finally, different colors refer to different values of ϵ

used.
The fitted frequencies for the bump closer to the potential peak are in

very good agreement with the ones predicted by the frequency-domain
computations for all values of ϵ presented. The minor discrepancies
can be attributed to numerical error and contamination by the initial
data and the power-law tail.

For the further bump, the destabilization of the spectrum is more
noticeable. Since in this case the new QNMs are longer lived, after one
echo the waveform transitions to a combination of new QNMs from
the cavity in the effective potential until their amplitude becomes so
small that they are masked by the late-time power-law tail. For ϵ = 0.1
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Figure 6.6: Top panel: same as in Fig. 6.5 but with a = 30. For ϵ = 0.001, the
full time-domain fits can only confidently detect a mode close
to the fundamental mode of Schwarzschild, because the power-
law tail dominates the signal before it transitions to the new set
of QNMs. Bottom panel: The same analysis as in the top panel for
ϵ = 0.001 but subtracting the unperturbed clean waveform to the
waveform before performing the fit. The frequencies extracted
do not converge exactly to the QNMs, but the structure is more
similar, in particular for the real part.

it can even transition to a clean exponential decay controlled by the
new fundamental mode, as illustrated in Fig. 6.3. Because of this, we
are able to extract multiple slowly decaying modes from the fit as long
as ϵ ≳ 0.01.

The time-domain fit is more difficult when ϵ ≲ 0.001. Our fits can
only confidently detect a mode close to the clean fundamental mode
of the unperturbed potential, because the QNMs have a very short
decay time for such small ϵ, and the waveform does not have time to
transition to the “new” trapped QNM spectrum before decaying below
the power-law tail. Therefore, the fitting algorithm can only pick up
the clean mode, which is excited promptly at the LR and therefore
observable at early times. To remove the contribution of the tail, in the
bottom panel of Fig. 6.6 we subtract the clean (ϵ = 0) waveform from



96 the elephant the flea

0.2 0.3 0.4 0.5 0.6 0.7 0.8

ωR

0.00

0.05

0.10

0.15

0.20

−
ω
I

a = 30ε = 0.001

ε = 0.01

ε = 0.1

0.72 0.74 0.76 0.78

ωR

0.165

0.170

0.175

0.180

0.185

0.190

0.195

−
ω
I

Figure 6.7: Same as Fig. 6.6, but we only fit the first train of the initial
ringdown without echoes. The starting times are t − tmax =
10, 11, 12, . . . , 20M. All the dots obtained using the fitting
method now cluster around the clean fundamental mode of the
unperturbed potential. The zoom-in in the right panel shows that
a perturbation of order ϵ can induce systematic errors (approxi-
mately of order ϵ) in the measurement of the fundamental mode’s
frequency and damping time.

the signal and repeat the fit using the green curve in the bottom-right
panel of Fig. 6.2, which as we can see contains more QNM oscillation
periods that were previously hidden below the late-time power-law
tail. The fitted modes do not converge as in the cases with ϵ ≥ 0.01,
but their general structure is now in good agreement with the trapped
QNM spectrum computed in the frequency domain.

6.3.2 The prompt ringdown

As mentioned before, in a real detector we do not have access to the full
signal due to noise. Also, for astrophysical systems, the perturbation
bump should be rather small. The presence of matter typically intro-
duces corrections on the potential of amplitude ϵVbump ∼ ρ, where ρ

is the matter density [176, 301, 353]. In units of the BH mass

ρM2 = 1.6 × 10−18 ρ

ρwater

M2

M2
⊙

, (6.8)

so ϵ will be very small for most realistic scenarios. Consequently, with
current SNRs we should only have access to the prompt ringdown.

Considering this, in Fig. 6.7 we repeated the analysis of the previous
section but restricting it to prompt ringdown, i.e. the portion of the
signal before the appearance of the first echo (t − tmax ≲ a, shaded
in green in Fig. 6.4). We find it is well fitted by a single mode, whose
frequency appears to converge to the frequency of the unperturbed
fundamental QNM, instead of the rich QNM spectrum recovered using
the full signal. We then conclude that as the waveform itself, the
observed QNM frequency associated with the prompt ringdown is not
destabilized.
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6.4 discussion

In this chapter, we studied how the QNM spectral instability manifests
in time-domain waveforms. Formally, our analysis should be equiv-
alent to frequency-domain results if we could observe the full GW

signal, which in practice is not achievable due to noise. We concluded
that it is necessary to include the late-time portion of the signal in the
fitting procedure to recover the “correct” destabilized QNM spectrum
predicted in the frequency domain. Even that might not be sufficient if
the power-law tail dominates over the amplitude of the perturbations
at late times. Thus, all calculations of QNM frequencies using modified
potentials or modified boundary conditions should be complemented
by time-domain studies to verify that these modifications affect the
prompt ringdown. In the problem we studied, if we only analyze this
early part of the signal, which is the portion relevant for GW astronomy,
we instead detect the fundamental QNM with corrections of the same
order as those introduced in the potential. Therefore, even though the
QNM spectrum of BHs is unstable, the BH spectroscopy program is not
compromised. Nonetheless, an immediate question that arises is what
is the needed SNR to observe structure beyond the prompt ringdown.
In principle, this can be computed using specific astrophysical models,
such as the one studied in Chapter 9 for a BH immersed in a galactic
DM halo. We leave this exploration for future work.

In addition to that, it is important to note that we restricted the anal-
ysis to the spectral instability of the fundamental QNM. Overtone desta-
bilization tends to be more dramatic for the type of short-wavelength
perturbations used in our study [350], and these modes affect the
signal at early times. Yet, the extraction of overtones from waveforms
is highly nontrivial, even at the linear level, and is a subject of cur-
rent research and debate [307, 324, 372]. Any future investigation of
the impact of overtone spectral instability in GW signals needs to be
complemented by a better understanding of how to fit them accurately.





7
R E S O N A N C E S I N B L A C K H O L E M I M I C K E R S

In our previous discussions, we have been assuming that very compact
dark objects are BHs described by GR. However, we have already seen
how the absence a horizon can dramatically change the dynamics
of compact objects. Horizonless exotic compact objects (ECOs) have
a QNM spectrum very different from that of BHs. Even though the
prompt ringdown should be the same, these BH mimickers exhibit
late-time echoes in the ringdown similar to the ones we observed in
the previous chapter [231, 308, 341, 342, 373–375]. Echoes of ECOs have
already been searched in GW data with conflicting conclusions [17,
308, 376–380]. In Chapter 3 we also mentioned that ECOs have nonzero
TLNs, while BHs in GR have vanishing TLNs. Finally, since they lack a
horizon, ECOs absorb radiation very differently from BHs, which could
impact the inspiral of a binary [218, 381].

Additionally, it has been observed that massive bodies on stable
orbits around ECOs could resonantly excite the small-frequency, long-
lived QNMs that characterize them [382–387]. This cannot occur in BHs
because their proper modes are localized close to the LR, and their
frequency is always greater than that of stable orbits.

However, previous analyses of detectability of resonance-crossing
in BH mimickers were conducted in the frequency domain [382–386],
assuming that the field is stationary and superposing an adiabatic
evolution to evolve the binary, as driven by GW emission. However, as
we have seen in the previous chapter, the frequency and time domain
results only coincide when the physical process occurs for an “infinite”
time. Here, infinite refers to a time much longer than the relevant
timescales of the problem. For the resonant excitation of ECOs in a
binary, the time it takes for the resonance to develop compete with the
inspiral timescale. The resonance does not have time to grow if the
latter is much shorter than the former .

In this chapter, we will complement the previous studies on inspirals
around BH mimickers but with a time domain analysis using our
numerical framework.

99
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7.1 toy model : a constant-density star

For the background spacetime of our BH mimicker we use constant-
density stars. They are spherically symmetric and, therefore, their
interior is described by the line element in Eq. (2.16). The metric
functions [388] are

A =

(
3
2

(
1 − 2M

R

)1/2

− 1
2

(
1 − 2Mr2

R3

)1/2
)2

, (7.1)

B = 1 − 8πρ

3
r2 , (7.2)

where R is the star’s radius, M is its mass, and ρ = 3M/(4πR3) is its
density. Outside the star, Birkhoff’s theorem asserts that the geometry
is Schwarzschild, described by the line element in Eq. (2.14).

The geometry above only describes “realistic" stars when R > 9M/4.
Otherwise, the pressure diverges somewhere inside the star. Above
some compactness, the geometry admits two LRs at the roots of 2A =

rA′ [328] 1. When R < 3M, they are located at

r+LR = 3M , (7.3)

r−LR =
R
√

4R2 − 9MR√
9MR − 18M2

, (7.4)

where r+LR coincides with the unstable LR in Schwarzschild, and the
second solution corresponds to a stable LR located inside the star.

We can also compute the transit time between the unstable LR and
the center of the star, which dictates the period of trapped oscillations,
and thus of the ensuing echoes in the waveform [231, 341, 342]. It
turns out that this time, Techo, is also approximately Techo ≈ 2π/Ω+

LR,
although this may be a fortuitous aspect of very compact constant
density stars [389].

For definiteness, we will primarily focus on a configuration with
R = 2.26M and compare it with less compact geometries. This choice
is close to the maximum possible compactness for this equation of
state (the so-called Buchdahl limit), and the spacetime has two pho-
tonspheres, sufficiently compact to mimic some aspects of BHs.

We will perturb the constant density star with the toy model already
used in Chapter 5.2.3, the massless scalar field being sourced by the
trace of a point-particle coupled to the scalar field.

7.2 the build-up time of black hole mimickers

7.2.1 A scattering approach

An object sufficiently compact as to develop photonspheres is expected
to behave as a cavity [231, 341, 342, 371, 390, 391], in the sense that

1 If needed revisit the discussion on Sec. 5.1 where we discussed null circular orbits
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Figure 7.1: Effective potential governing massless fields on a horizonless
ultracompact spacetime. The peak of the potential is close to the
location of the unstable LR, and the potential in its vicinities is
indistinguishable from that of a BH spacetime (compare with the
black curve in Fig. 6.1). The centrifugal barrier in the object’s inte-
rior produces an effective cavity in spacetime, from which waves
can slowly tunnel out. As discussed below, a cavity illuminated
from the exterior “heats-up”, akin to a greenhouse effect.

radiation is trapped in its interior, bouncing back and forth between
its center (or surface) and the unstable photonsphere. Massless fields
are subject to an effective potential with two “barriers”, as illustrated
in Fig. 7.1, in contrast with BHs where the potential still has the peak
near the LR but asymptotes to zero in both boundaries.

Now let us consider the following gedankenexperiment: we bombard
a cavity with a constant flux of radiation I from a spin-s wave carry-
ing angular mode ℓ. This flux may correspond to radiation emitted
directed toward the central object by the secondary body in orbit.
When the wave meets the barrier, a small fraction Z tunnels in, and
another part is reflected back. Conservation of energy implies that
the reflected flux is (1 − Z)I , where the absorption coefficient Z is
frequency-dependent (Z = Z(ω)).

The transmitted part will then meet the interior barrier and be
reflected. For simplicity, consider this interior is a reflecting mirror,
so reflection is total (there is no absorption). After a roundtrip time
within the cavity, Techo, radiation will now be impinging the outside
barrier from within. Again, a fraction Z of this incident radiation
tunnels out, corresponding to Z2I of the initial one. This outgoing
re-transmitted fraction of radiation will add up to the flux of outgoing
radiation that is directly emitted to far-away distances.

The reflection/outward transmission keeps happening inside the
cavity. After N reflections (or a time interval NTecho), the outgoing
flux of radiation is

FNTecho = (1 − Z)I + Z2I
N

∑
j=0

(1 − Z)j = I − IZ(1 − Z)N+1 . (7.5)
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This tell us that the flux at large distances should be increasing in time
steps of Techo and relaxing to the final state on a timescale

τrelax =
Techo

Z
. (7.6)

The final state is that of an outgoing flux I , as it should be since the
object is not absorbing.

The absorption factors can be computed analytically in the low-
frequency limit [103, 392, 393] from solving the Teukolsky equa-
tion (2.49)

Zsℓm = C
[
(ℓ− s)!(ℓ+ s)!

(ℓ!)2

]2

, (7.7)

C = 4 (2Mω)2ℓ+2
[

(ℓ!)2

(2ℓ)!(2ℓ+ 1)!!

]2 ℓ

∏
k=1

[
1 +

16M2ω2

k2

]
.

(7.8)

For example, for small frequencies where we can ignore the terms
involving 16M2ω2/k2

Z010 =
16M4ω4

9
, Z020 =

64M6ω6

2025
, Z220 =

256M6ω6

225
.

For binary systems, Mω ∼ 10−2 − 10−1, so we conclude that the build-
up time can be very large. This puts in question the assumption of
stationarity for the evolution of astrophysical binaries. As a side note,
this calculation is very similar to how the greenhouse effect for planet
Earth is estimated in a naïve approach.

The timescale in Eq. (7.6) is the time the system needs to “settle”.
We will see below that this also corresponds to the resonant timescale,
which is implied through the QNMs.

7.2.2 Resonances and forced oscillators

Before diving into our results, it is pedagogical to recall the results of
a simple forced system with resonances, the driven harmonic oscilla-
tor [394]

d2Ψ
dt2 + Γ

dΨ
dt

+ ω2
0Ψ = F0 cos ωt , (7.9)

with F0 being a generic force per unit mass, ω0 the natural frequency
of the system and Γ a dissipation coefficient. The solution that starts
off at Ψ(t = 0) = ∂tΨ(t = 0) = 0 is

Ψ(t) = F0
(ω2

0 − ω2)

(ω2
0 − ω2)2 + Γ2ω2

(
cos ωt − e−Γt/2 cos ωΓt

)
+ F0

Γω

(ω2
0 − ω2)2 + Γ2ω2

(
sin ωt − e−Γt/2 sin ωΓt

)
, (7.10)
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where ωΓ =
√

ω2
0 − Γ2/4. When Γt ≪ 1 and for small damping

Γ ≪ ω0, Ψ grows on a timescale

τDHO ≈ 2π

ω − ω0
. (7.11)

This is valid for short timescales and off the resonance. On resonance,
i.e. ω = ω0, the field attains a maximum on a timescale of τ ∼ 1/Γ. Γ
is intrinsic to the resonating system and corresponds roughly to ωI,
so as we suggested above, for compact horizonless objects one should
identify 1/Γ with the relaxation timescale in Eq. (7.6).

7.3 numerical results

7.3.1 A point particle orbiting a compact object

MωQNM
rp/M

a = 0M a = 0.9M

0.0881 − i1.197 × 10−7 5.051 4.780

0.1259 − i2.687 × 10−6 3.981 3.674

0.1633 − i2.470 × 10−5 3.347 3.011

Table 7.1: The lowest ℓ = 1 scalar quasinormal frequencies of a uniform-
density relativistic star with R = 2.26M. We also show the cor-
responding orbital radius at which the mode would be excited,
calculated by equating the orbital frequency Ω in Eq. (7.13) to the
real part of the QNM frequency and solving for rp. The value of a
corresponds to the used in the expression for the orbital frequency
Ω (7.13). For less compact stars, resonant frequencies are impos-
sible to excite with matter on circular orbits outside the object.
For example, for R = 6M the lowest dipolar QNM frequency is
Mω = 0.262189 − i 0.204880.

We now place a pointlike particle of mass mp in a circular orbit
around a constant-density star,

rp(t) = const , θp(t) =
π

2
, φp(t) = Ω t . (7.12)

The Schwarzschild geometry admits stable timelike circular geodesics
for radius larger than the ISCO at rISCO = 6M [178] with ΩISCO =√

M/r3
ISCO ∼ 0.068M. While they can excite some proper modes of

very compact constant-density stars (reference values are shown in
Table 7.1), the timescales of these resonances are too large to be probed
by our numerical setup in a reasonable time frame. The only possibility
would be to consider unstable circular geodesics, which have larger
frequencies and can excite modes that grow on smaller timescales.
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However, since we eventually want to understand the impact of energy
loss on the orbit, unstable motion is not the best option to study.

To circumvent this, we consider non-geodesic motion. To keep the
analysis simple and satisfy the requirement that it excites resonant
modes, we consider the orbital motion to be equivalent to that around
a Kerr BH with mass M and spin a. While this is not geodesic motion,
prescribing it allows us to numerically investigate resonances and
resonance-crossing scenarios in feasible timescales with acceptable
accuracy. The actual nature of the motion is not relevant for the
excitation of the resonances. We therefore take [2]

Ω =

√
M

r3/2
p + a

√
M

, (7.13)

(7.14)

where 0 ≤ a/M ≤ 1 should be seen as a free “knob” (which, were
the central object a Kerr BH, would be the BH spin). The energy E and
angular momentum L of these orbits is

E
mp

=
r3/2

p − 2Mr1/2
p + a

√
M

r3/4
p

√
r3/2

p − 3Mr1/2
p + 2a

√
M

, (7.15)

L
mp

=

√
M
(

r2
p − 2a

√
M r1/2

p + a2
)

r3/4
p

√
r3/2

p − 3Mr1/2
p + 2a

√
M

. (7.16)

We will also show in Appendix C that the timescale associated
with the excitation of the resonance is independent of this choice,
being completely controlled by the frequency of the circular orbit. Our
imposition of this artificial motion is purely pragmatic, as this is a
simple way to make circular orbits have higher frequency without
changing the geometry of the central object.

To solve this problem in the time-domain, we again used the nu-
merical framework presented in Sec. 2.2. The only difference is that
we also solve the Klein-Gordon equation inside the star and impose
regular boundary conditions for the scalar field at the center of the star.
To compare both results, we also solved the problem in the frequency
domain using standard Green function techniques [191, 395–397]. Sim-
ilar techniques have been employed in the past for the problem of
particle scattering by the constant density stars [398–401], where a
transient excitation of QNMs can also be observed.

7.3.2 The build-up time

We consider a = 0.9M in Eq. (7.13) because it is one of the smallest
values for the spin that allow us to probe a fast-growing resonance
while keeping the circular motion stable. Our time-domain numerical
results are summarized in Figs. 7.2-7.3.
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Figure 7.2: Evolution of the scalar energy flux F (Eq. (5.38)) emitted by a
point-particle of mass mp, made to orbit a constant-density star
of mass M on a circular orbit of constant radius rp (the orbit
is not allowed to evolve). The flux is normalized by the mass
ratio q = mp/M. The results refer to the dipolar mode (ℓ = 1),
but results are similar for higher multipoles. Except for the right
bottom panel, the star has radius R = 2.26M, and the frequency ω
corresponds to the angular frequency Ω of the circular orbit, with
a = 0.9M in Eq. (7.13) (rISCO ≈ 2.321M). At late times, the flux
asymptotes to a constant that agrees with the value computed in
the frequency domain. The relaxation time is large for stars with
photonspheres, but very short for less compact stars, where the
system quickly becomes stationary, as seen in the right-bottom
panel.

For the less compact spacetimes, which do not have trapping regions
(in this context without LRs), the initial data relaxes on a few dynami-
cal timescales to a final stationary result, which coincides with that
obtained via a frequency-domain approach. This behavior is apparent
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Figure 7.3: Scalar energy flux emitted by a point particle in circular orbit at
rp = 1.28 rISCO, with angular frequency Ω given by Eq. (7.13) with
a = 0.9M, around a constant density star of radius R = 2.26M
(the orbit is not evolving, the particle remains at fixed rp). There
are three different timescales in the signal: a high-frequency com-
ponent corresponding to the “direct signal” with an orbital period
TOrb/2 = π/Ω ∼ 19M (the 1/2 factor appears since we are show-
ing fluxes); the traveling time Techo ∼ 150M of waves inside the
cavity potential; a lower frequency “envelope” corresponding
to the excitation of the QNM of the constant density star with
frequency MωQNM = 0.16333 − i2.470 × 10−5. This leads to a
beating whose frequency is given by the semi-difference between
the orbital and the QNM frequency τbeating ∼ 2π/(Ω − ωQNM) ∼
1800M.

for the dipolar mode of an R = 4M uniform-density star in Fig. 7.2
(results are similar for other modes).

By contrast, for spacetimes sufficiently compact as to have photon-
spheres, the approach to stationarity is a long process. As explained
above, the photonsphere is responsible for a potential barrier, through
which waves need to tunnel and “build-up” until a stationary state
is reached. The very first stages of this process are – in accordance
with the analysis of Section 7.2.1– a slow growth of the outgoing
flux in steps of Techo, the light travel time inside the photonsphere
(see also the inset of Fig. 7.3, where the steps are clear). The relax-
ation timescale is also in good agreement with our greenhouse es-
timate made in Section 7.2.1. For R = 2.26M and rp = 1.14 rISCO

(MΩ = 0.193 as set by Eq. (7.13)) our results indicate a relaxation
timescale τrelax ∼ 6500M, 4500M for ℓ = 1, 2, whereas Eq. (7.6) would
indicate τrelax ∼ 4000M, 3100M, respectively. The relaxation time in-
creases when the circular orbit radius increases, again in line with our
prediction (7.6).
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Figure 7.4: Resonant excitation of the dipolar QNM of a constant-density star
of radius R = 2.26M with frequency MΩ = MωR = 0.1633 (cf.
Table 7.1), corresponding to a point particle at rp = 3.011M. A
small deviation of this radius resulting in a frequency shift of
δΩ ≳ 2ωI can significantly hinder the excitation of the resonance.
This agrees with standard results for the driven-harmonic oscil-
lator, where the frequency bandwidth of the resonance peak is
δΩ ∼ ωI.

.

Our results also show finer details, in particular beatings and finer
structure at small timescales, apparent in Fig. 7.2. A zoom-in for
MΩ = 0.167M (rp = 1.28rISCO) is shown in Fig. 7.3 for the dipolar
mode. These features can be understood with the three different scales
of the problem: 1. the orbital timescale, TOrb/2 = π/Ω ∼ 19M shows
up as the smallest timescale in the problem and is clear in the inset
of Fig. 7.3 (the 1/2 factor appears since we are discussing fluxes);
2. the orbital frequency MΩ = 0.1668 is close to the resonant QNM

frequency MωR = 0.1633 (see Table 7.1). By our parallelism with
the driven harmonic oscillator, we then anticipate a beating mode
of frequency Ω − ωR, i.e. a beating period τbeating ∼ 1800M, in good
agreement with our numerics; 3 the travel time of waves inside the
cavity. This is clear in Fig. 7.3 where we see steps of Techo ∼ 150M for
the build-up of the field in the cavity.

To excite resonances, we need to tune the orbital frequency closer to
the resonant QNM. Our results are shown in Fig. 7.4, for the dipolar
mode. The flux reaches amplitudes which are two orders of magni-
tude larger, but large timescales of order ∼ O

[
min

(
1

ωI
, 2π

Ω−ωR

)]
are

required for this build-up. The frequency needs to be very fine-tuned
in order to properly excite the resonance, since as expected from the
driven-harmonic oscillator, the bandwidth of the resonance peak is
δω ∼ ωI. Hence, when ωI is very small, as it happens for the proper
modes of horizonless ultracompact objects, the region of the param-
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eter space where the resonance can be triggered is very limited and
the resonance takes a long time to grow. These two conditions can
jeopardize the ability to excite a resonance in a binary coalescence
effectively .

One could question the generality of our results considering the ar-
tificial motion we took for the point particle. However, in Appendix C
we repeat the analysis for a = 0M, which makes motion geodesic.
By placing the particle at radii that yields the same orbital angu-
lar frequency as the ones presented in Fig. 7.2, we observe that the
timescales involved are exactly the same for every single case, with
only the relative magnitude between the fluxes changing. Note that
in order to excite the QNM with MωQNM = 0.16333 − i2.470 × 10−5

with a circular geodesic, the point particle would have to be placed at
rp = 3.347M.

7.4 consequences for gravitational-wave physics

We have shown that very compact objects can effectively absorb GWs
for a significant time due to the spacetime geometry that traps waves
within the photonsphere. This trapping process occurs on timescales of
the order of Eq. (7.6), after which radiation is re-emitted. The physics
of these objects must take into account such delay, which has not been
considered with due care in the literature [382–386].

First, we consider the dynamics away from resonances. When they
happen on short timescales, such as the final stages of a coalescence,
then the cavity has no time to “fuel up” and absorbs most of the im-
pinging radiation. In this regime, horizonless compact objects behave
similarly to BHs, with equivalent absorption properties, and possibly
indistinguishable from them.

The second effect concerns the crossing of resonances, a generic
effect not particular to compact horizonless objects. We show that
frequency-domain adiabatic evolutions do not capture the entire
physics and must be complemented by additional constraints when
time evolutions are prohibitive.

7.4.1 Adiabatic evolution of orbits and energy balance

To study GW-driven inspirals, we consider adiabatic evolutions, where
the point particle is always on a circular orbit with some associated
energy E and angular momentum L. We place the particle at some ini-
tial radius r0, and determine its initial energy and angular momentum
as dictated by the EOM. Then, we need to evaluate the backreaction on
these due to energy emission (and angular momentum). As argued,
the flux needs to include the energy loss to infinity, but it should also
include the energy piling up within the cavity. However, considering
the effects of the cavity is a challenging problem that we will not ad-
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dress here. We will only consider the energy radiated away to infinity,
but we insist that the cavity may play an important role. For circular
orbits, the angular momentum net balance is completely determined
by the energy balance, so we only need to solve

dE
dt

= −F , (7.17)

with the appropriate initial energy and use this to evolve

dr
dt

= −F
(

dr
dE

)
, (7.18)

again with the appropriate initial conditions. Having the updated
value for rp, we can compute the angular frequency Ω again.

This procedure can be applied both for the time and the frequency
domain. However, the flux computed in the frequency domain implic-
itly assumes stationarity, i.e. that the oscillations around the average
flux vary out to zero much faster than the timescale on which the
particle inspirals. For the systems we are discussing, this implies the
cavity has had time to fuel-up. For the time domain instead, the en-
ergy balance is done at every instant and therefore can account for
the inhomogeneities in the flux as the star is relaxing or the cavity is
fueling-up.

7.4.2 Off resonance

As a binary coalesces, its orbital frequency changes. For objects on
quasi-circular orbit millions of years prior to the merger, a “stationary
state” (to be read as where the frequency-domain calculation yields
the same result as the time-domain) is reached. However, in the late
stages of the inspiral, the frequency varies rapidly, hence not allowing
the compact object to “fuel up”. This happens whenever the frequency
changes by ∆ω ≳ ωR and the corresponding inspiral time is small
enough that it does not allow for relaxation.

Let us start the inspiral at some radius rp(t = 0) = ri. Then, for
quasi-circular orbits, and including only the leading terms in GW

reaction [402]

rp(t) = (ri − 4βt)1/4 , (7.19)

β =
64
5

M2mp . (7.20)

The time taken to inspiral from r0 to rp(t) can also be written in terms
of the initial and final GW frequency ωi, ω f as [402]

tinspiral =
22/3M4/3 (1 − (ωi/ω f )

8/3)
βω8/3

i

, (7.21)
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and therefore

tinspiral

τrelax
∼ 10−2 100M

Techo

10−5M
mp

(
Mω

0.06

)10/3

. (7.22)

Considering the typical values for EMRIs (mp/M ≲ 10−5, Mω ∼
10−2 − 10−1), the result above implies that cavity effects should be
taken into account in the evolution of the inspiral. Time or frequency
domain analysis should include the temporary pile-up of energy in the
cavity in the computation of radiation-reaction effects as the inspiral
progresses.

Our results also show how the BH limit is approached naturally
when Techo → ∞ in the previous construction. In this limit, the central
object is a perfect absorber during the entire inspiral. We forecast that
properly handling the cavity problem in radiation-reaction should
recover the BH result continuously.

Previous works suggested that the cavity would only be impor-
tant for the evolution of the binary when the traveling time inside it
is comparable (or larger) than the radiation-reaction timescale [218,
383]. However, as discussed above, energy can be trapped by being
reflected back and forth in the cavity until it saturates. This process
corresponds to multiple travel times, as dictated by Eq. (7.6). In gen-
eral, this timescale can be much bigger than the travel time inside
the cavity, making the latter more relevant for larger mass-ratios than
previously considered.

7.4.3 Crossing resonances

The above results strongly suggest that in order to excite a resonance,
the system needs to spend at least a time ∼ 1/ωI in a frequency band
δω ∼ ωI around the resonance at ωR. Rigorous estimates for simple
linear differential equations were obtained in Refs. [403, 404]. We can
work out the consequences for GW science: the time δtcross that the
system takes to cross the resonance is [382]

δtcross ∼ ωI/ (dΩ/dt) , (7.23)

with
dΩ
dt

=

(
dΩ
dr

)(
dr
dE

)
F . (7.24)

Then, for the resonance to be effectively excited

ωIδtcross ≳ 1

⇔ q ≲ qmax =
(MωI)

2

q−2F

(
1

mp

dE
dr

)/(
M

dΩ
dr

)
. (7.25)

In this estimate, orbital quantities on the right-hand side are meant to
be evaluated at the radius where the resonance is excited, and the flux
is to be taken outside the resonance since this is the actual energy flux
emitted by the binary while the resonance grows.
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Figure 7.5: Largest mass ratio qmax predicted by the estimate (7.25) that
would allow the resonant excitation, by GWs, of a QNM of an
ECO with frequency ωR = 2Ω. We considered that ωI ∼ ω2l+3

R
[382, 383] and only took into account the quadrupolar mode in
the energy flux, making this estimate conservative, since F will
increase if higher multipoles are considered. We show orbital
frequencies Ω corresponding to radius of the particle from rp =
10M up to almost the ISCO for each spin a. For mass ratios larger
than these limits, the particle crosses the resonance too quickly
for it to grow effectively.

7.5 discussion

In this chapter, we have demonstrated that spacetimes with LRs behave
as cavity resonators. They have large “build-up” times, determined by
the transmission amplitudes at the LR, and are prone to resonances.
To properly evolve binaries composed by ECOs, it is necessary to
take into account the energy piling up within the photonsphere. For
systems evolving rapidly under radiation reaction, these objects act
as effective absorbers and may mimic BHs. A proper modeling of
this process and the full evolution of an EMRI is therefore an open
problem. Additionally, the secondary object can excite resonances of
these objects, but for the resonances to fully develop, the binary has
to evolve slower than the time needed for the resonance to grow.

We focused on a simple toy-model of a scalar field around a constant-
density star and considered an artificial motion for the point-particle
that is not dictated by its equations of motion. Nonetheless, all our
analytical estimates for the relaxation timescale (7.6), resonance growth
time, and the upper limit on the mass ratio that excites a resonance in
an inspiralling binary (7.25) are model indepedent, and agree with the
numerical results for the particular system that we studied. Therefore,
our conclusions should be applicable to any astrophysical system.
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Refs. [383, 386] studied EMRIs around spinning horizonless compact
objects (see also [382, 384] for the non-spinning case). As in our toy-
model, the low-frequency QNMs of the spinning ECO can be resonantly
excited during the inspiral, leading to non-negligible effects in the
waveform that must be considered for the detection and parameter
estimation of these sources. However, their work in the frequency
domain ignores the growth time of the resonance, implicitly assuming
stationarity at all instants. This approximation is only correct when
the mass ratio of the system obeys the condition of Eq. (7.25).

In Fig. 7.5, we apply this estimate to the type of systems studied
in Refs. [383, 386]. Typically, the resonance width for these exotic
compact objects is δω ∼ ωI ∼ ω2ℓ+3

R [382, 383]. In a binary system, the
frequency of the emitted GWs is determined by the orbital frequency
and, for circular orbits, corresponds to ωGW = 2Ω. We can then
compute, for every orbital frequency Ω (or radial location of the
particle), how light the point particle must be to resonantly excite
an ECO with a QNM of frequency ωR = 2Ω, ωI ∼ (2Ω)2ℓ+3. For the
off-resonance flux F , we used the same values as in Kerr since the
relative difference with respect to a horizonless ultracompact object
should be small (though non-negligible when accumulated over many
orbits). We only took into consideration the quadrupolar mode ℓ = 2,
and higher multipoles will typically increase F , therefore placing
even more stringent limits on the mass ratio. We conclude that for
the reference value of q = 3 × 10−5 used in most results presented
in Ref. [383], the particle should only be able to excite resonances in
ECOs with spins a > 0.9M, and on a limited region of the parameter
space where it is very close to the central object.

Our conclusions should apply to other systems where resonances
are excited, such as massive scalar theories [405–407]. In these theories,
matter orbiting a Kerr BH can resonantly excite superradiant modes,
which might lead to so-called floating orbits [103, 408], where the en-
ergy absorbed by the horizon is positive and counterbalances the loss
of energy to infinity [262, 409]. As a consequence, the inspiral freezes
and the radiated energy is solely provided by the rotational energy of
the BH. These resonances occur for ω2

res = µ2
s − µ2

s (Mµs/(ℓ+ 1 + n))2,
where µ = ms/h̄ is the reduced mass of the scalar field, and have
typical widths of δω ∼ ωI ∝ µ4ℓ+5

s [262, 270]. These are even more
narrow than the QNMs of ECOs we have been discussing. Generically,
the off-resonance energy flux is dominated by GWs, which means that
for the same orbital frequency, the mass ratios needed to properly ex-
cite superradiant resonances of massive scalars would be even smaller
than the ones in Fig. 7.5.

Additional dissipation mechanisms could undermine the fueling-
up of the cavity and the excitation of resonances. However, GWs are
known to interact very weakly with matter, with effects only being
relevant at the Hubble timescale [410–413]. Hence, any additional
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channel of dissipation should be subdominant with respect to the
emission of waves to infinity and the trapping of energy by the central
object on the timescales of interest for these systems. We cannot rule
out, however, that extremely stiff equations of state giving rise to large
viscosities and large sound speeds strongly suppress resonances in
compact objects. Even in such case, our results still apply to other
systems, e.g. the resonances of massive boson fields around spinning
BHs discussed in the Introduction of Chapter 4 [136, 137].

Our conclusions have obvious implications to GW astronomy, and
highlight the necessity of a better understanding of GW emission in
less conventional systems that are not typical BHBs in vacuum GR.
The proper modeling of “transient” resonances which do not have
time to fully develop in binary inspirals has already been tackled in
Refs. [414–417], in the context of tidal resonances induced by a third
companion. The steps laid there could be adapted for EMRIs involving
ECOs.





8
G R AV I TAT I O N A L T U N I N G F O R K S

At the end of the Introduction, we discussed how hierarchical triple
systems are common in a variety of astrophysical scenarios, such as
globular clusters, AGNs, and other dense stellar environments[143,
145–151, 418]. “’Hierarchical” here refers to the distinct length scales
between the orbit of a binary and the one of its CM around the third
body. Recalling, around 90% of low mass binaries with periods shorter
than 3 days are expected to belong to some hierarchical structure [152–
154].

This has motivated recent studies on the dynamics and GW emission
in hierarchical triple systems. Kozai-Lidov resonances, in particular,
have attracted some attention [155, 163, 164]. As we had already men-
tioned, these describe secular changes in the binary eccentricity and
inclination with respect to the orbit described by its CM around the
third object. This mechanism triggers periods of high eccentricity,
where GW emission increases significantly, potentially inducing co-
alescence in eccentric orbits detectable by LISA [165–168], that then
enter in the frequency band of ground-based detectors still at high
eccentricities [418–421]. A direct integration of the EOM confirms these
systems have unique GW signatures [169, 170], which may be detected
indirectly via radio observations of binary pulsars [422]. There are
also attempts at modeling the effects of a third body directly into the
waveform. These include Doppler shifts [156–160], relativistic beaming
effects [161, 162], gravitational lensing [423, 424] and other dynamical
effects [414, 415, 425].

In this final chapter of the second part of this thesis, we will study
hierarchical triples using BH perturbation theory and investigate GW

emission from binaries around SMBHs. Using the methods we already
applied in previous chapters, we will be able to probe resonant excita-
tion of QNMs in triple systems, and capture for free all of the relativistic
effects which have so far been included only at a phenomenological
level in the literature.

8.1 setup

Our setup is similar to the one used in Chapter. 5, where we had a
small binary in the vicinity of a large BH. An illustration of this sytem
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Figure 8.1: Equatorial slice of a spacetime with a hierarchical triple system.
In the center there is a SMBH. At large distances away from the
central region, physics is nearly Newtonian. The external gray
area is the entire region where stable circular motion is possible.
We place a small compact binary here, with characteristic fre-
quency ω0. Its CM orbits the SMBH with angular frequency ΩCM.
At the ISCO (rISCO = 6M when the SMBH is non-spinning), circu-
lar motion is marginally stable, and unstable for smaller radius.
High-frequency waves can be trapped at the LR (rLR = 3M for
non-spinning BHs). Such motion is unstable, and as seen in previ-
ous chapter, can also be associated with the “ringdown” excited
during BH mergers.

can be found in Fig. 8.1. We consider the small binary is sourcing
perturbations to a Kerr background (2.11) and model it as two point-
particles. In Chapter 5 we considered the CM of the small binary was
plunging onto the central BH, but here we will take it to be at some
fixed radius, rCM, while it describes a circular orbit around the central
BH. For the small binary, we again take elliptic orbits around its CM

r± = rCM , (8.1)

φ± = ΩCMt ± ϵφ sin ω0t , θ± = π/2 ± ϵθ cos ω0t , (8.2)

where ϵθ , ϵφ ≪ 1 parametrize the two axis of the ellipse δrθ = ϵθrCM,
δrφ = ϵφrCM of the small binary, and ΩCM is the angular velocity of
the CM. ΩCM and ω0 are coordinate frequencies, while the proper
oscillation frequency of the small binary, ω′

0, is obtained by rescaling
the time component of the 4-velocity of the CM, i.e. ω′

0 = ut
CMω0.

For concreteness, we focus exclusively on equal-mass binaries, m±
p =

mp and a highly eccentric orbit with ϵθ = 0. We do not see any
qualitatively new phenomena in the general case, and this particular
choice could mimic high-eccentricity binaries driven by Kozai-Lidov
resonances [155, 163, 164].

There is a physical relation between ϵφ and ω0. In the rest frame
of the small binary, δr′φ ∝ 1/(ω′

0)
2/3, where the prime refers to proper
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quantities. For binaries on circular geodesics, for example, doing the
appropriate rescaling ω′

0 = ut
CMω0 and δrφ = ∆/ρ2 · δr′φ, we find

ϵφ ∝
∆
ρ2

1
rCM(ut

CMω0)2/3 . (8.3)

We will be looking for possible resonances in this triple system,
which may happen when the forcing frequency of the binary equals
the natural frequencies of the background, i.e its QNMs. There are
three important frequencies in the problem: the angular frequency of
the CM, the frequency of the LR, which as we saw in Chapter 5 controls
the QNMs [188]), and the angular velocity of the BH horizon ΩH (2.12).
Close to the central BH, all of them are of order O(1/M). To have
Mω0 ∼ 1, we need to ensure δrφ/mp ∼ (M/mp)2/3. For a SMBH with
M ∼ 104 − 106M⊙, like Sagittarius A*, and a small binary composed
by stellar-mass BHs with mp ∼ 1 − 100M⊙, this would correspond to
δr/mp ∼ 102 − 104, so well within the inspiral phase.

As before, the small binary enters as a source term in the Teukolsky
equation (2.49), which governs perturbations to the background space-
time of the central Kerr BH. We study both the case of GWs (s = −2
in the Teukolsky equation) and also scalar radiation (s = 0) where
the source term is again given by the trace of the energy-momentum
tensor of the point particles composing the binary, as presented in
Sec. 5.2.3.

Again, we solve this problem numerically in the time domain with
the Lax-Wendroff method introduced in Sec. 2.2.

8.2 resonant excitation of qnms and energy emission

We start by using the small binary as a tuning fork, placing it at some
fixed radius, with its CM fixed with respect to distant observers, and
letting its frequency ω0 vary. We want to compare the (time-averaged)
flux of energy in each (ℓ, m) mode with the corresponding value in
flat space. We define this as the ratio

sRℓm = sĖℓm/sĖN ℓm , (8.4)

where N refers to the result in flat space, i.e setting the mass of the
central BH to zero. This can be computed numerically or through
analytical estimates using the method of matched asymptotic expan-
sions [382]. When the binary is put at large distances from the central
BH this ratio tends to unity.

Figure 8.2 shows the behavior of −2R33 as the small binary frequency
ω0 changes, for a binary sitting at the ISCO of a SMBH. The behavior
is similar for other modes and fields. We observe a peak which we
identify as a resonant excitation of the ℓ = m = 3 QNM. As shown
in Table 8.1, the location of the peak is well described by the lowest
QNM frequency [188], for general binary locations. When the small
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Figure 8.2: Energy output when a small binary stands at the ISCO of a SMBH

with spin a = 0.9M, as a function of the orbital frequency of the
binary components, ω0. The modal energy output, as measured
by the ratio with respect to flat spacetime −2R, peaks at a finite
ω0 well described by the lowest QNM (cf. Table 8.1). Also shown is
the flux integrated over all modes: it has a substantial component
going down the SMBH horizon (ĖH), and the total flux at infinity is
modulated by QNM contributions (Ė∞). Here, ω̂ℓm = MωQNM/2.

binary is placed at the LR, the agreement is excellent (better than 1%
for scalars, and 4% for GWs for the lowest modes). Recall from our
discussion at the beginning of Chapter 5, that QNMs can be interpreted
as waves marginally trapped in unstable orbits at the LR [328]. We
conclude that a hierarchical triple system behaves as a driven harmonic
oscillator [394], where the small binary is the external harmonic force
and the central BH behaves as a damped oscillator.

As a side note, this behavior is analogous to the Purcell effect in
quantum electrodynamics [426, 427], describing the enhancement in
the spontaneous decay of a quantum emitter inside a cavity, when its
frequency matches those of the cavity modes. Our results are consistent
with recent findings [427], namely that the contribution to the power
spectrum independent of rCM is described by a Lorentzian curve R ∝
ω2

QNM/(ω2
QNM + 4Q2(ω0 −ωQNM)2), where Q = Re(ωQNM)/2Im(ωQNM)

is the quality factor of the central BH. Our results extend those of
Ref. [428], which also observed the resonant excitation of QNMs in
very eccentric EMRIs, during passage on the periapsis. The effect is
stronger the closer the particle can get to the LR [429].

As a rule of thumb, the flux peaks at lower frequencies the fur-
ther the small binary is placed from the BH, in agreement with
blueshift/redshift corrections. Note that R smaller than unity does
not imply that the system is emitting less energy than expected, since
a portion of the radiation falls into the BH. Also, a possible CM orbital
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ℓ s a/M MωQNM/2 Mω0LR Mω0ISCO sRLR sRISCO

2 0 0 0.242 0.242 0.189 4.5 2.0

2 −2 0 0.186 0.175 0.156 0.6 1.5

2 −2 0.9 0.335 0.332 0.319 88.0 0.8

3 0 0 0.338 0.337 0.255 10.0 2.5

3 −2 0 0.300 0.289 0.250 2.0 2.3

3 −2 0.9 0.522 0.520 0.500 515.8 2.7

4 0 0 0.434 0.433 0.317 21.6 3.0

4 −2 0 0.405 0.395 0.326 5.6 3.0

4 −2 0.9 0.705 0.704 0.675 1896.4 5.4

Table 8.1: Frequency Mω0 X which maximizes the energy output of a small
binary standing at location X close to a SMBH, in a given (ℓ, ℓ) mode,
as measured by the ratio sR (s = 0,−2 for scalar or gravitational
perturbations, respectively). The binary’s CM is static, and sitting
at the LR or at the ISCO. Notice the excellent agreement with the
lowest QNM frequency. The results for orbiting binaries are similar.

motion contributes to a shift in the resonant frequencies by ±mΩCM,
fully consistent with our results. The maximum value of R in the
entire (rCM, ω0) parameter space does not occur precisely at the LR,
but close to it. The maximum is attained at locations rCM closer to the
horizon for large ℓ. Finally, the magnitude of the resonance grows with
ℓ. For a fixed CM location rCM and multipole ℓ we searched for ω0 for
which sR is a maximum sR peak. We find an exponential dependence
on ℓ, sR peak ∼ a + b exp(c · ℓ), at large ℓ with a, b, c constants.

Since we are using a mode decomposition centered at the SMBH,
radiation has support in higher modes as the binary is placed further
away from it [430, 431]. Consequently, the lowest modes will not be
dominant, and we need to sum over a sufficient amount of modes
for the total fluxes to converge. Already for a small binary at the
ISCO of a non-rotating BH, we find that the GW flux at infinity is
comparable to that at the horizon of the SMBH. To compute it we use
the Starobinsky identities that relate ψ0, which controls the radiative
degrees of freedom at the BH horizon, with ψ4 which controls them at
infinity as seen in Eq. (2.50) [432, 433]. At the BH horizon, the ingoing
solution of the s = −2 master function in the Teukolsky equation (2.49)
behaves as

Ψ ∼ ∆2Zine−i(ωt+kr∗)eimφ −2Sℓm (θ) , (8.5)
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with k = ω−mΩH and Sℓm (θ) the spin-weighted spheroidal harmonic
obeying to [182]

1
sin θ

d
dθ

(
sin θ

dS
dθ

)
+

(
a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ

sin2 θ
− 2ms cos θ

sin2 θ

)
S

= −
(
λ − s2) S , (8.6)

where the eingenvalues λ are available online from the Black Hole
Perturbation Theory Toolkit [434]. We can then compute the energy
flux carried by GWs through the BH event horizon with

ĖH =
128ωk

(
k2 + 4ϵ2

BH
) (

k2 + 16ϵ2
BH
)
(2Mr+)

5

|C|2
|Zin|2 , (8.7)

ϵBH =

√
M2 − a2

4Mr+
, (8.8)

|C|2 =
(
Q2 + 4aωm − 4a2ω2) [(Q − 2)2 + 36aωm − 36a2ω2

]
+ (2Q − 1)

(
96a2ω2 − 48aωm

)
+ 144ω2 (M2 − a2) , (8.9)

Q = λ + a2ω2 − 2aωm . (8.10)

Formally, this equivalence is valid only in the frequency-domain but
has been shown to yield correct results for circular orbits in the time-
domain also.

As seen in Fig. 8.2, the effect is more dramatic when spin is included.
This peculiar aspect is due to the similar length scales of the central
BH horizon and the radiation wavelength. GWs are then efficiently
absorbed by the BH, in clear contrast with the inspiral phase of an
EMRI, whose wavelength is much larger than the BH radius. This is our
second result: hierarchical triple systems where the SMBH occupies a
large fraction of the small binary’s sky will naturally probe strong-
field physics, since the fraction of radiation that falls into the SMBH is
non-negligible. This property is essential for the dynamical evolutions
of these systems.

For a fixed radius rCM, the field has support on higher ℓ modes as
the binary is vibrating at higher frequencies ω0. If we place it close
enough to the SMBH, it can resonantly excite its QNMs, leading to
characteristic peaks in the flux at infinity/horizon, as seen in Fig. 8.2.
These structures correspond to the single multipolar excitations.

8.3 waveforms : doppler , aberration & lensing

In addition to energy fluxes, we can also study qualitative strong-field
effects in the waveforms from hierarchical triple systems. In Fig. 8.3 we
show the Teukolsky function extracted at large distances for a small bi-
nary on circular motion at the ISCO of a non-rotating BH. We removed
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Figure 8.3: Teukolsky function Ψ measured by a stationary observer at large
distances (either edge- or face-on, θ = π/2, 0 respectively), for a
stellar binary around the ISCO of a non-rotating BH (we removed
the CM contribution, which just causes a low-frequency modu-
lation). The orbital CM period is TCM ≈ 93M and at t = 0M
the observer is aligned with the small binary. Doppler effect
induces frequency shifts, relativistic beaming and gravitational
lensing modulations in the amplitude. The maximum blue-shift is
well described by ωmax = ω′

0Υ( (Υ + vCM)/(Υ − vCM))1/2, with
Υ =

√
1 − 2M/rCM, Mω′

0 = 1 the proper frequency and vCM the
CM velocity [156, 290]. In this case, ωmax/ω′

0 ≈ 1.4.

the (linear) CM contribution, which only induces a low-frequency
modulation. Observers on the equatorial plane see gravitational and
Doppler-induced frequency shifts, consistent with analytical predic-
tions when the CM is moving towards the observer [156, 290]. The
amplitude of the wave can vary by orders of magnitude because of
relativistic beaming [161, 162, 170] and gravitational lensing [424, 435].
Relativistic beaming focuses radiation along the direction of motion,
and is significant for fast CM motion (in this case vCM ≈ 0.4). Hence,
when the binary is moving away from the observer, the radiation
reaching it is small, and vice-versa. The maximum amplitude does
not occur precisely when the stellar binary is moving towards the ob-
server (t ∼ 70M in Fig. 8.3) but slightly before, when it is still behind
the SMBH with respect to the observer. This is due to lensing by the
central SMBH, which distorts the path taken by GWs and concentrates
radiation on certain directions, amplifying the signal [338, 339]. This
effect is more relevant for larger frequencies, closer to the geometric
optics limit when the radiation wavelength is much smaller than the
SMBH radius. These different effects are illustrated in Fig. 8.4, which
corresponds to two snapshots of an animation representing the time
evolution of wave emission of the hierarchical triple system.

Observers facing the plane of motion “face-on” (θ = 0) do not mea-
sure such modulations since the motion of the CM is now transverse.
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Figure 8.4: Snapshots of the time-evolution of the hierarchical triple system
with the CM of the small binary orbiting the SMBH at the ISCO

anti-clockwise. The shaded blues illustrate the wave emission by
the system projected on the equatorial plane. There is a focus of
radiation along the direction of motion, corresponding to rela-
tivistic beaming. We also observe the distortion of the path taken
by waves due to gravitational pull exerted by the central BH.

The only feature is a modulation in amplitude coming from the CM

motion, which has also been reported in post-Newtonian studies of
triple systems [170].

8.4 discussion

This chapter highlights both the versatility of BH perturbation theory
and the robustness of our numerical framework to study GW emission
in more complicated systems than a standard binary. Effects like GW

lensing, aberration and amplitude modulations are naturally built-
in, without the need to prescribe slow-motion approximations and
force the orbital motion into the quadrupolar approximation. As a
drawback, we need to sum over various multipoles in order to resolve
the length scales of the small binary.

One could question if it is physically possible for a stellar-mass
binary to get so close to a SMBH before being disrupted. While quanti-
fying a detectability rate for the resonances we studied goes beyond
the scope of our work, we can make an estimate based on the Hills
mechanism already mentioned in Chapter 4 [436–438]. Disruption oc-
curs if the tidal forces induced by the central BH overcome the binary’s
self-gravity, which happens at a radius rCM ∼ 2δr

(
M/2mp

)1/3. The
binary’s frequency will be related to its separation by the Kepler’s

law ω0 ∼
√

2mp/δr3
CM. We thus find rCM ≲ 1/(Mω0)2/3M. Already

for Mω0 = 0.2, tidal disruption happens at rCM ∼ 5.84M, smaller
than the ISCO of a Schwarzschild BH. Thus, small binaries very close
to a central BH and oscillating at relevant frequencies of the system
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have astrophysical interest. This is supported by more sophisticated
numerical works [439].

We neglected spin-spin effects in the motion of the binary. The cor-
rections are proportional to σ = qJ/m2

0, with J the angular momentum
of the binary [440]. Again using Kepler’s law, one finds that correc-
tions to the motion scale like σ ∝ q2/3, which are extremely small for
the systems we consider.

We also did not consider a situation where the small binary is
coalescing, or when its CM describes a highly eccentric orbit around a
spinning SMBH [77]. As the binary gets closer to the LR in these orbits,
the resonant excitation of the SMBH’s modes is enhanced and can lead
to the excitation of superradiant modes [103]. Another interesting
hierarchical triple system is a pair of same-sized BHs and a third
lighter compact object orbiting around them. These spacetimes have
been shown to have global properties not present in isolated BHs (e.g.
global QNMs) [441, 442] and our results suggest that the lighter object
can excite these global modes.





Part III

B I N A R I E S I N A S T R O P H Y S I C A L
E N V I R O N M E N T S
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G A L A C T I C B L A C K H O L E

In the Introduction, we went to great lengths to illustrate that the
lack of relativistic models has arguably been the major flaw of studies
on environmental effects for GW astronomy. In the last part of this
thesis we will use standard techniques of BH perturbation theory to
develop a generic, fully-relativistic formalism to handle environmental
effects in EMRIs in spherically-symmetric, but otherwise generic back-
grounds [184, 189, 443–448]. The main novelty in our approach is to
treat perturbations to matter on the same ground as those induced by
the binary in the gravitational field, which allows to capture for free
environmental effects such as dynamical friction, accretion, and halo
feedback. This is inspired in studies of perturbations to relativistic
stars [447], but here we want to apply it to extended distributions of
matter surrounding BHs.

Our starting point is therefore a static, spherically symmetric space-
time (2.16) describing a BH immersed in some environment, like an
accretion disk or DM halo. The environment is characterized in general
by an anisotropic fluid with energy-momentum tensor

Tenv
µν = ρuµuν + prkµkν + ptΠµν , (9.1)

where ρ is the total energy density of the fluid, pr and pt are its radial
and tangential pressure, respectively, uµ the 4-velocity of the fluid, kµ a
unit spacelike vector orthogonal to uµ, such that kµkµ = 1 and uµkµ =

0, and Πµν = gµν + uµuν − kµkν is a projection operator orthogonal
to uµ and kµ (environmental quantities are hereafter denoted with a
superscript “env”). We now envision a secondary object of mass mp

(a star, asteroid or stellar-mass BH for example) orbiting the primary
BH and causing perturbations to the geometry and matter energy-
momentum tensor

gµν = g(0)µν + g(1)µν , Tenv
µν = Tenv(0)

µν + Tenv(1)
µν , (9.2)

127
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where a superscript “(1)” denotes perturbations to the background
“(0)”. The 0-th order Einstein’s equations give

A′

A
=

2
r

m + 4πr3 p(0)r

r − 2m
, (9.3)

ρ(0) =
m′

4πr2 , (9.4)

dp(0)r

dr
= −p(0)r

2r − 2m + 4πr3 p(0)r − rm′

r(r − 2m)
, (9.5)

p(0)t =
m m′

8πr2(r − 2m)
+

2rm′ − m
2(r − 2m)

p(0)r (9.6)

where the prime denotes a derivative with respect to r, and m = m(r)
is the mass function

m(r) =
r
2
(1 − B(r)) . (9.7)

In Appendix D, we derive a set of “wave-like” partial differential
equations governing the time evolution of gravitational and matter
perturbations for this setup. We extend the framework introduced in
Sec. 2.1.3 to include matter perturbations. Also, recall that spherical
symmetry allows us to separate this problem in the axial and polar
sectors. For the axial sector, gravitational perturbations decouple from
matter ones, and we obtain a single master equation with an effective
potential

L1Ψax − VaxΨax = Sax , (9.8)

where Lv = v2∂2/∂r2
∗ − ∂2/∂t2 denotes the wave operator with char-

acteristic speed of propagation v. Axial perturbations propagate with
the speed of light v = 1, and in vacuum the equation above corre-
sponds to the Regge-Wheeler equation (2.39). The source depends on
the motion of the secondary object (which we explicitly compute for
circular motion in the Appendix D).

The polar sector is more involved because matter perturbations
source gravitational ones and vice-versa. We re-expressed the problem
as a set of 3 equations for Ψ⃗ = (S, K, δρ)

L̂Ψ⃗ = B̂∂r∗Ψ⃗ + ÂΨ⃗ + S⃗ , (9.9)

with S = A/r (H0 − K), and L̂Ψ⃗ =
(
L1S,L1K,Lcsr

δρ
)
, i.e., S, K have

characteristic velocity v = 1, and δρ has v = csr . We recall K and H0

are the gravitational perturbations given by Eq. (2.19) and δρ is the
perturbation of the energy density of the fluid. csr is the speed of sound
along the radial direction and depends on the internal properties of
the environment, i.e. its equation of state. This relates the pressure
with density perturbations via

δpℓm
t,r (t, r) = c2

st,r
(r) δρℓm(t, r) . (9.10)

where csr(r) and cst(r) are, respectively, the radial and transverse
sound speeds.
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9.1 black holes in dark matter halos

9.1.1 The Hernquist Profile

We now want to apply our framework to a particular background
describing a BH surrounded by a galactic DM halo. Observations and
large-scale simulations guide the profile of the halo matter distribution.
Here, we pick Hernquist-type distributions appropriate to describe
central bulges of galaxies and elliptical galaxies at the Newtonian
level [90]. Their matter density is

ρ =
Ma0

2πr (r + a0)
3 , (9.11)

where M is the total mass of the “halo” and a0 a typical lengthscale,
where for astrophysical solutions a0 ≫ M. Recall that the Milky
Way halo has ∼ 1012M⊙ extended along ∼ 102 kpc, which in geo-
metric units gives M/a0 ∼ 10−6. Our choice is mainly practical since
the Hernquist profile has “well-behaved” mathematical properties in
comparison with other popular profiles such as the Navarro-Frenk-
White [52], Jaffe [449] or King [450] which are known to have patho-
logical behavior at large distances.

The Hernquist model – as well as others in the same “family” [52,
90, 449, 450] – have an increased density in the cores of the galaxies.
However, in the presence of a BH at the core, the density profile is
zero close to the horizon [109, 111, 124]. The DM profile develops
a cusp close to the horizon, with a length scale dictated by the BH.
The density profile vanishes at the horizon. The precise details of the
profile depend on the equation of state, but eventually give way to
Hernquist-like profiles.

9.1.2 The Einstein Cluster

Now let us place a BH at the center of the Hernquist profile (9.11) and
find a spherically symmetric GR geometry which on small scales de-
scribes a BH and on large scales describes matter distributed according
to (9.11). We can follow Einstein in his construction of a stationary sys-
tem of many gravitating masses, an “Einstein Cluster” [451, 452], and
generalize it to include a central BH. This recipe takes particles in all
possible circular geodesics, and deals with an “average” stress-energy
tensor [451, 452], characterized by the matter density ρ.

The Einstein construction assumes then an effective energy momen-
tum tensor ⟨Tµν⟩ = n

mp
⟨pµ pν⟩, with n the number density of particles

with mass mp, and pµ the four-momentum satisfying the geodesic
equations. This construction is equivalent to having an anisotropic
material with energy-momentum tensor as in Eq. (9.1) with only tan-
gential pressure p(0)t , and vanishing radial pressure (p(0)r = 0).
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The second step in the Einstein Cluster construction is to assign
a mass function m(r) to the system. W explore the following choice
inspired by the Hernquist profile

m(r) = MBH +
Mr2

(a0 + r)2

(
1 − 2MBH

r

)2

. (9.12)

At small distances, this profile describes a source of mass MBH and
at large distances recovers the mass function of the Hernquist dis-
tribution. Note that for astrophysical systems, the mass of the halo
is much bigger than the mass of the BH, so we have the hierarchy
a0 ≫ M ≫ MBH. We experimented with other mass functions and the
qualitative conclusions below do not change.

Plugging this mass function in the Einstein’s equations, we obtain a
simple analytic solution for the background spacetime

A(r) =

(
1 − 2MBH

r

)
eΥ(r) , (9.13)

Υ(r) = −π

√
M
ξ

+ 2

√
M
ξ

arctan
r + a0 − M√

Mξ
, (9.14)

ξ = 2a0 − M + 4MBH . (9.15)

4πρ(r) = =
2M(a0 + 2MBH)(1 − 2MBH/r)

r(r + a0)3 . (9.16)

Let us dissect some of its properties. It has a horizon at rH =

2MBH, as Schwarzschild, and a curvature singularity at r = 0, thus
describing a BH spacetime. At large distances away from the BH, the
Newtonian potential recovers that of the Hernquist profile, and the
spacetime is asymptotically flat. The ADM mass is M + MBH. For
astrophysical relevant solutions, the gravitational potential at far away
distances is dominated by the halo and the Ricci scalar behaves as
R ∼ 4Ma0/r4, while as it approaches the horizon it goes as R ∼
M/(a2

0MBH), which can be made small in a controlled way. For non-
astrophysical parameters it is possible to have pathological solutions.
For example if M > 2 (a0 + 2MBH), there are curvature singularities
at r = M − a0 ±

√
M2 − 2Ma0 − 4M MBH.

The weak and strong energy conditions are satisfied everywhere.
However, since the matter density vanishes at the horizon but the
tangential pressure remains finite, the dominant energy condition will
be violated close to it. As we discussed above, the near-horizon region
is very depleted so this violation should have little impact on the
dynamics, as the pressure and density can be made arbitrarily small
in this region.

Close to the central BH we find that the redshift factor eΥ ∼ 1 −
2M/a0, a property that is generic for other configurations [105, 107,
453].
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9.1.3 Redshift and Light Rings

The spacetime above can be used as a proxy to explore the phe-
nomenology of BHs and GWs from objects deep in the galactic poten-
tial. Let us start by doing the simplest thing one can do when faced
with a new spacetime geometry, which is to study geodesic motion.
The location of the LR can be computed as in Section 5.1 and is given
by the roots of r(rLR) = 3m(rLR). With this radius determined, we
can then compute the LR frequency ΩLR, the Lyapunov exponent λL

and the critical impact parameter bc for the capture of high-frequency
waves which were introduced previously in Chapter 5. Expanding
these quantities in power of M/a0 (which we recall needs to be small
for astrophysical setups), we find up to order O(1/a3

0)

rLR ≈ 3MBH

(
1 +

MMBH

a2
0

)
, (9.17)

MBHΩLR ≈ 1
3
√

3

(
1 − M

a0
+

M (M + 18MBH)

6a2
0

)
, (9.18)

MBHλL ≈ 1
3
√

3

(
1 − M

a0
+

M2

a2
0

)
, (9.19)

bc = 3
√

3MBH

(
1 +

M
a0

+
M(5M − 18MBH)

6a2
0

)
, (9.20)

The first order correction linear in M/a0 is simply signaling a red-
shift of the mass scale of the system M → M (1 + M/a0). The first
“non-linear" corrections in M/a0, that would indicate the presence of
new physics, appear at orders of magnitude which are too small to
be detectable by BH imaging experiments. We therefore conclude that
tests on the nature of BHs based on LR physics like the ones performed
by the Event Horizon Telescope and the GRAVITY collaboration [281,
454] are not going to be spoiled by the presence of a non-vacuum
environment. A priori, this is expected because the matter around the
LR region is very depleted but it is reassuring to see it be derived
from the formalism without the need to rely on Newtonian-like ap-
proximations. Results are similar for other orbits of interest, like the
ISCO.

9.2 axial sector

Having understood geodesic motion in our playground model for a
BH surrounded by a DM halo, we move on to the study of its dynamics
at a perturbative level, as introduced in Sec. 2.1.3. We start with the
more straightforward axial sector, where gravitational perturbations
completely decouple from matter ones. Consequently, it is governed
by the single master wave equation in Eq. (D.25).
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9.2.1 QNMs and Love Numbers
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Figure 9.1: Top panel: Real and imaginary part deviations of galactic ax-
ial QNMs ωℓn(M, a0), with M = 20MBH, from the vacuum
Scharzschild QNMs ωℓn(0, 0) for ℓ = 2 as a function of the com-
pactness M/a0. Different plot markers denote different overtones.
The dashed black line represents a fit to the relative difference
for powers of M/a0. Bottom panel: Same as the top panel with
M = 103MBH. The fit agrees with the LR corrections obtained in
Eq. (9.18).

Following the same steps as in Chapter 3, we can solve the axial
problem in the static limit and compute the Love numbers of this
configuration. We obtain a closed-form analytical expression in the
small M limit

kB
ℓ=2 =

Ma4
0(5 + 12 log (a0 + 2MBH))

3(M + MBH)5 . (9.21)

The scaling with M and a0 agrees with our results in Chapter 3 (cf.
Eq (3.108)).

We also computed the QNMs of the axial sector using standard direct
integration and spectral routines [188, 455, 456] 1. Our results are sum-
marized in Fig. 9.1 for the quadrupole. We have accurately computed
the fundamental mode and the first two overtones for various halo
masses. We find that QNMs depend solely on the compactness M/a0

and only change slightly when the halo mass M is increased by two
orders of magnitude. We fitted the relative differences to the QNMs

1 The computation of the axial QNM spectrum was conducted by Kyriakos Destounis
and Rodrigo Panosso Macedo
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with respect to vacuum to powers of M/a0. In the astrophysical limit
M ≫ MBH

ωℓn(M, a0)

ωℓn(0, 0)
∼ 1 − M

a0
+ 0.17

M2

a2
0
+O

(
M3

a3
0

)
. (9.22)

The first-order correction in M/a0 is again giving the redshift of the
dynamics. Remarkably, the second-order agrees with the correction
on the LR frequency as in Eq. (9.18). This behavior of the QNMs is
consistent with the interpretation discussed on Chapter 5 that they
correspond to high-frequency waves trapped at the LR that are slowly
escaping out.

9.2.2 Extreme-mass-ratio systems

ℓ m Ėt
∞ Ė f

∞ ĖBHPT
∞

2 1
8.1629e−7 8.1631e−7 8.1631e−7

6.9156e−7 6.9158e−7

2 2
1.7068e−4 1.7062e−4 1.7062e−4

1.6077e−4 1.6208e−4

3 2
2.5198e−7 2.5199e−7 2.5198e−7

2.1611e−7 2.1612e−7

3 3
2.5490e−5 2.5473e−5 2.5471e−5

2.3163e−5 2.3140e−5

4 3
5.7750e−8 5.7749e−8 5.7749e−8

5.0252e−8 5.0252e−8

4 4
4.7352e−6 4.7260e−6 4.7253e−6

4.0458e−6 4.0823e−6

Table 9.1: Energy flux (in units of m2
p/M2

BH) emitted in GWs to infinity in
different modes by a particle in a circular orbit at radius rp =
7.9456MBH around a BH surrounded by a Hernquist-type DM halo.
We show results for vacuum (first line of each mode) and for a halo
with (csr , cst) = (0.9, 0), M = 10MBH and a0 = 10M (second line
of each mode). Ėt

∞ is computed with the time-domain framework,
whereas Ė f

∞ are computed in the frequency domain and ĖBHPT
∞

corresponds to results available online from the BH perturbation
toolkit, available only in vacuum. ℓ = m modes correspond to
polar excitations whereas ℓ = m + 1 correspond to axial ones.

Finally, we can study the EMRI problem, where we put a point
particle orbiting the central BH (details for the source term are pre-
sented in Appendix D). We solved the problem numerically using
the time-domain framework introduced in Sec. 2.2, but also in the
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Figure 9.2: Top panel: Relative difference between the energy flux emitted by a
circular EMRI in the dominant axial mode ℓ = 2 , m = 1 as a func-
tion of the orbital frequency Ωp, for different halo configurations
(Ėm) and in vacuum (Ėv) (solid lines). Dashed lines represent the
same comparison but with the vacuum fluxes redshifted accord-
ing to Eq. (9.25) . The frequencies correspond to a secondary at
radius ranging from rp = 50MBH down to rp = 6MBH; Bottom
panel: Same as the top panel but for the dominant polar mode
ℓ = 2 , m = 2. In this case, the redshift correction correctly cap-
tures the variation of the flux with the orbital frequency.

frequency-domain following Ref. [457] 2. We have tested our proce-
dure and routines in the vacuum limit, i.e. using a geometry [176]
with a low value of the halo mass M = 10−6MBH, comparing the GW

fluxes with those available online from the Black Hole Perturbation
Toolkit [434]. Results are summarized in Table 9.1 (for now let us
focus the discussion on the axial modes with ℓ = m + 1), and compare
favorably both between different implementations and with the Black
Hole Perturbation Toolkit in vacuum.

It is clear from Table 9.1 that, for a fixed BH mass, the fluxes are
smaller in the presence of a halo. One could then wonder that when

2 The frequency-domain computations were led by Prof. Andrea Maselli. As in the time-
domain, this code uses a smoothed distribution to approximate the point particle,√

2πσδ(r − rp) = exp
(
−(r − rp)2/(2σ2)

)
where the width σ is varied to ensure

numerical convergence.



9.3 polar sector 135

accumulated over many orbits, this would significantly change the
inspiral. Typically, relative differences of ∼ 1% in the energy fluxes
may result in observable differences in the waveform of an EMRI. How-
ever, we know that the EMRI is evolving in a nontrivial gravitational
potential of the DM halo, so a decreasing flux might just signal some
kind of redshift effect. Let us focus on realistic astrophysical systems,
for which there is the scale hierarchy a0 ≫ M ≫ MBH. To linear order
in M/a0,

dr
dr∗

≈
(

1 − M
a0

)
dr

drvac∗
, (9.23)

where rvac
∗ is the tortoise coordinate in a Schwarzschild geometry (2.16).

For compact EMRIs (rp ∼ 10MBH), Sax ≈ (1 − 3M/a0) Sax
vac. Combining

these, expanding Eq. (D.25) to linear order in M/a0 we find (in the
frequency domain)

d2Ψ ax

d(r vac∗ )2 +

(
ω2

γ2 − V ax
Schw

)
Ψ ax = γSax

Schw , (9.24)

where γ = 1 − M/a0 is a redshift factor. Thus, to linear order in γ the
axial signal from the EMRI immersed in the Hernquist halo is identical
to that from a Schwarzschild BH, with redshifted frequency and mass;
in other words, the two setups are equivalent with the identification(

Ω vac
p , ω vac, m vac

p

)
→
(

Ωp

γ
,

ω

γ
, γmp

)
. (9.25)

In the top panel of Fig. 9.2, we present numerical results that con-
firm this. We show fluxes as a function of the frequency of the GWs
being measured by a distant stationary observer. A priori, this direct
comparison gives differences between a vacuum and a non-vacuum
environment that are seemingly large. However, when we apply the
redshift correction above, the fluxes in the presence of the halo are
indeed well described by redshifted fluxes in vacuum. The agreement
is better for larger halo mass M, and smaller compactness M/a0. For
realistic galactic configurations, it leads to relative differences that are
extremely small and not expected to be observable. Note that for small
scales, a0ω ≲ 1, the radiation wavelength is larger than the halo itself,
and redshift is suppressed.

9.3 polar sector

We now to move the polar sector, which dominates GW emission.

9.3.1 Boundary conditions and sound speed

One of the major technical problems associated with the evolution of
polar perturbations in non-vacuum backgrounds is that gravitational
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Figure 9.3: Evolution of δρ in a Schwarzschild background with csr = 0.9,
cst = 0.0 when different boundary conditions are imposed. tarrival
is the time of arrival of the first direct signal coming from the
initial data prescribed. When no boundary conditions are imposed
(No BCs), and δρ is left free at the BH horizon, an oscillatory tail
of the form δρ ∝ t−5/6 sin (µeff csr ) sets in at late times, with
µeff =

(
1 − c2

sr

)
/8c2

sr MBH. This is analogous to having a scalar
field of mass µeff csr . On the other hand, when Dirichlet boundary
conditions (BCs), δρ = 0, are imposed at a cutoff radius rcut (here
rcut = 3MBH), we find a universal power-law decay independent
of rcut and csr , consistent with δρ ∝ t−3.

perturbations are coupled to the matter sector. However, in our setup,
at far away distances and very close to the BH horizon, the matter
density ρ vanishes, and the field equations reduce to the case of a
vacuum BH. When this happens, the gravitational sector decouples
from matter (and vice-versa).

Considering first the case where the sound speeds introduced in
Eq. (9.10) are constant and taking the following ansatz for the density
perturbation

δρ = rα (r − 2MBH)
β Ψρ , (9.26)

we obtain that Ψρ obeys to

Lcsr
Ψρ = VρΨρ , (9.27)

α =
1
4

(
−5 +

1 + 4c2
st

c2
sr

)
, (9.28)

β = −3
4
− 1

4c2
sr

, (9.29)

Vρ ≈ O
(
r−2) , r → ∞ (9.30)

Vρ ≈
(

1 − c2
sr

8c2
sr

MBH

)
, r → 2MBH . (9.31)
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These properties are similar to the ones of a massive scalar field

with effective mass µeff =
1−c2

sr
8c2

sr MBH
. Based on previous results for this

system [458–460], the scattering of a Gaussian pulse should lead to
an oscillatory power-law with Ψρ ∝ t−5/6 sin (µeffcsr), due to wave
backscattering near the horizon.

To confirm this, we evolved the homogeneous version of the evolu-
tion equation for ρ (D.37) in a Schwarzschild background with initial
data

δρ
∣∣∣
t=0

= 0 ,

∂tδρ
∣∣∣
t=0

= exp
[
− (r∗ − 100MBH)

2 /2
]

. (9.32)

The results presented in Fig. 9.3 for the ℓ = 2 mode (in gray) agree
with the expected behavior, and this was verified for different initial
data and csr .

However, since the matter profile vanishes at the horizon and spatial
infinity, physical configurations should have asymptotically vanishing
sound speed at these boundaries. If we impose a power-law decay
at the boundary for csr , then δρ has to satisfy Dirichlet boundary
conditions δρ = 0 in order to be regular at the boundaries. We repeated
the same numerical experiment as above, but now keeping csr constant
and imposing Dirichlet boundary conditions at a cutoff radius rcut

close to the BH horizon. In this case (cst = 0), the late-time behavior
should be δρ = t−3 for all multipoles, but now due to backscattering
at far-away distances [458]. This decay is independent of ℓ because
the homogeneous part of the evolution equation for δρ in Eq. (D.37) is
independent of ℓ for cst = 0. Once again, we verified this numerically
(in black in Fig. 9.3), independently of the cutoff radius rcut and the
sound speed csr .

9.3.2 QNM spectral stability

Taking into account the results of the previous section, from now on
we impose vanishing sound speed csr at an interior cutoff radius close
to the BH horizon. Since in the polar sector, matter perturbations are
coupled to gravitational ones we expect two families of modes, one
traveling at the speed of light and determined by gravity, and the
other traveling at the speed of sound csr and controlled by the matter
distribution.

We repeated the scattering experiment of the previous section, with
the same initial data given by Eq. (9.32) but for the metric function
K, and for a very compact halo configuration with M = 10MBH and
a0/M = 10, to enhance the physical effects. We chose for the profile
of the radial speed of sound

csr =

(
2MBH + a0

r + a0

)4

, (9.33)
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Figure 9.4: Evolution of the metric and density perturbation K, δρ, with
M = 10MBH, a0 = 10M. We impose Dirichlet conditions at
rcut = 3MBH and csr = [(2MBH + a0) / (r + a0)]

4, so that the
radial speed of sound asymptotes to zero at large distances. At
early times, a standard BH ringdown is excited, as can be seen
in the inset for K; at late times, the signal is dominated by a
slowly-decaying, fluid-driven mode with period ∼ a0. There is
a mutual conversion between gravitational and matter density
waves, which is a manifestation of the spectral instability of BH

QNMs. The qualitative conclusions are independent of the initial
data given and the profile chosen for csr .

but our qualitative conclusions are similar for other choices. In the
polar sector, we do not use the hyperboloidal layers introduced in
Section 2.2.3, because matter waves do not travel at the speed of light
and therefore do not reach null infinity.

Our results are shown in Fig. 9.4 for the quadrupole ℓ = 2 mode.
Initially, we observe a standard BH ringdown, as highlighted in the
inset, with a frequency close to the fundamental Schwarzschild QNM

with ωSchw
ℓ=2 = 0.374 − 0.089i. At late times, the signal is dominated by

a long-lived fluid mode, whose period is of the order of the typical
length scale of the halo a0. We also observe the conversion between
GWs and matter waves, and vice-versa. In practice, this is a fluid
mode and corresponds to a concrete manifestation of the QNM spectral
instability discussed in Chapter 6 for an astrophysically motivated
system.

9.3.3 Extreme-mass-ratio systems

We now revisit the EMRI problem. Again, there is good agreement
between the results from different codes and the ones from the Black
Perturbation Toolkit in vacuum, as shown in Table 9.1 (polar modes
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are the ones with ℓ = m). Since polar fluctuations couple to the fluid,
it is harder to do the redshift analysis presented above for the axial
sector. Nonetheless, we can directly apply the redshift corrections in
Eq. (9.25) to the energy fluxes carried by GWs and compare. This is
illustrated in the bottom panel of Fig. 9.2, where it is clear that polar
perturbations are less prone to redshift effects, even in regions of the
parameter space corresponding to large, near-galactic scales.

Our results indicate the tantalizing possibility of using GW astron-
omy to strongly constrain smaller scale distributions around BHs. At
ωMBH = 0.02, the relative flux difference between a vacuum and
a BH immersed in a halo with M = 0.1MBH and a0 = 102M, 103M
is ∼ 10%, 1% respectively. These numbers are well within reach of
next-generation detectors [414].

9.4 discussion

This chapter served mainly as a proof-of-concept for the ability of
our framework to study environmental effects in GW physics at a full
relativistic level. A natural next step is to apply it to other environ-
ments, for example by taking input from recent General Relativistic
Magnetohydrodynamical simulations of accretion [86, 87], or to add
rotation to the central BH.

Our example shows that environments can easily destabilize the BH

spectra, as had recently been suggested with toy models [80, 173, 350,
351, 353] and discussed in Chapter 5. It is unknown at this point if
environmental resonances can be excited by supermassive BHs, long-
before merger. Also, we did not explore the effect of the environment
in the late-time polynomial tails that follow the ringdown, nor in
GW memory [461, 462]. Formally, these are zero frequency signals
that should be sensitive to the full gravitational potential, possibly
being more prone to changes due to the presence of a non-vacuum
environment.

The relative differences in the energy flux carried by GWs appears
to be more significant for lower frequencies. This behavior is particu-
larly relevant in light of the recent announcement by the International
Pulsar Timing Array of a stochastic GW background produced by
BH binaries with billions of solar masses [34–37, 463–466]. In fact,
preliminary studies suggest that the inclusion of environmental ef-
fects describes better the observed spectrum in the lower-frequency
end [464, 465].

Our works [176, 177] spurred a series of further explorations apply-
ing the Einstein Cluster construction to other DM profiles [467–474].
One worth highlighting is the exhaustive survey of the phase space of
geodesics in Ref. [468], including orbits with precession. Interestingly,
there is a competition between the halo and GR effects in the direc-
tion of precession, which can transition from prograde to retrograde
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for sufficiently compact configurations. The departure from vacuum
typically results in non-integrable geodesics, which exhibit chaotic
phenomena and resonant islands in the orbital phase space [475–477].

The complicated intrinsic properties of the anisotropic halo consti-
tuting the DM halo and the lack of a physical model for the sound
speeds prevented us from studying matter fluxes, which should con-
tain the information about accretion and dynamical friction on the
EMRI. On our final discussion in the next chapter we present a strategy
on how to overcome these drawbacks and our future steps in the study
of environmental effects in GW astronomy.
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C O N C L U D I N G R E M A R K S

The formalism developed in the previous chapter has the potential to
become a benchmarking tool for the systematic analysis of environ-
mental effects in GW astronomy. This can ultimately be fed into the
analysis pipelines used by various GW collaborations. For this reason,
the codes we used are already publicly available [478]. Nonetheless,
as we discussed at the end of the previous chapter, there are still
challenges to overcome. In the system we studied, we did not consider
matter fluxes, so we could not retrieve information about accretion and
dynamical friction. Moreover, at this stage we do not know how to cor-
rectly evaluate the backreaction on the orbit and evolve the inspiral. In
a vacuum binary we can consider an adiabatic approximation where
the smaller body “flows through a sequence of geodesics" [31] of
the background spacetime, determined by their respective conserved
quantites: energy, angular momentum, and Carter constant (which is
0 in Schwarzschild). However, in non-vacuum, the fluxes will contain
contributions from the gravitational binding energy of the binary but
also from the environment, which need to be disentagled.

1 . improve modeling

The first step of our plan is therefore to understand better the mod-
eling aspects just described. To do that, we will apply our formalism
to simpler environments, starting with EMRIs surrounded by scalar
fields [107, 108, 282, 479–481], for which we already have preliminary
results.

In the long run, we would like to study EMRIs in thin accretion
disks describing AGNs. In this case, our techniques can be combined
with state-of-the-art General Relativistic Magnetohydrodynamic sim-
ulations, which are currently only using Newtonian physics [86, 87,
124]. This could also be relevant for computing the electromagnetic
counterpart of binary coalescences in AGNs.

Moreover, accretion disks exhibit turbulence due to various phe-
nomena, such as magnetorotational instability [482]. The GW signature
associated with these turbulent flows has yet to be studied. Even
though the typical matter densities are too low to expect individual
events, they could contribute to a putative non-negligible stochastic
GW background.
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Finally, it will also be important to understand the most effective
way to include rotation, which could be done either in terms of a small
spin expansion or working in the tetrad formalism.

2 . waveform implementation

After the modeling stage is completed, we can start implementing
them in state-of-art waveform models, like the FastEMRIWaveform
package [83]. This is a modular code designed to facilitate custom
changes. For example, one can simply add to the fluxes of energy
and angular momentum the correction coming from a particular envi-
ronment and a have a ready-to-use code which generates waveforms
for the new system in seconds. This strategy has been used for gas
torques in thin accretion disks [84] and dynamical friction. Moreover,
even though we have been focusing the discussion on EMRIs, BH per-
turbation theory agrees remarkably well with Numerical Relativity
simulations up to mass-ratios of O(10) [33]. Consequently, it can also
be useful to try to implement our results in Effective-One-Body [483,
484] and Inspiral-Merger-Ringdown [485, 486] models.

3 . detectability/measurability forecasts

Once implemented, we can use the updated models to perform an
exhaustive survey of their impact on the detectability and measurabil-
ity of GW events. Following previous works [30, 84, 124], we want to
answer the following questions:

• Considering mismodeling, statistical and instrumental system-
atic errors (which are currently unstudied), what is the expected
level of accuracy of future waveforms and how strong environ-
mental effects have to be to become distinguishable?

• If the strength of the environmental effects surpasses this thresh-
old, with what precision can we infer the properties of the
environment?

• What bias will we incur in parameter estimation if environmental
effects are ignored and how will that hinder tests of GR?

• What is the degeneracy between corrections introduced by the
environment and those of modified gravity [487]?

• What is the impact of relativistic modeling of environmental in
EMRI population rates detectable by LISA?

This is certainly an ambitious plan which will require years of
collaborative effort. Nonetheless, it is one that can bring precious
dividends for a research topic that has been gaining widespread
interest in recent years. This is exhibited by the increasing number of
papers appearing every week on this topic, and by the organization
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of conferences/workshops entirely dedicated to it. LISA and third-
generation ground-based detectors will be operating by the end of
next decade and therefore there is no better time to do the necessary
theoretical work for them than now. I would like to end with a word of
appreciation for all the generations of physicists who have dedicated
their careers to GW astronomy. Their work has offered a once-in-a-
lifetime opportunity for young scientists like me to be in the right
place, at the right time, doing the right science, and be part of what
most likely will be a period marked by incredible discoveries in gravity
and astrophysics.
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A
P E RT U R B AT I O N T H E O RY I N Q UA N T U M
M E C H A N I C S

In this appendix we explain how the problem studied in Chapter 4 can
be treated analytically using standard perturbation theory in Quantum
Mechanics.

In the non-relativistic limit, the scalar cloud obeys an equation which
is formally equivalent to Schrödinger’s equation with a Coulomb
potential governed by a single parameter

α = Mµ . (A.1)

This can be seen by making the standard ansatz for the dynamical
evolution of Φ [135, 236, 488]

Φ
(

t, rj
)
=

1√
2µ

(
ψ
(

t, rj
)

e−iµt + ψ∗
(

t, rj
)

eiµt
)

, (A.2)

where ψ is a complex field which varies on timescales much larger
than 1/µ. Then, one can expand the Klein-Gordon equation to first
order in α and arrive at

i∂tψ =

(
− 1

2µ
∇2 − α

r

)
ψ , (A.3)

where we also kept only terms of order O
(
r−1).

The normalized eigenstates of the system are hydrogenic-like, with
an adapted “fine structure constant” α and “reduced Bohr radius”
a0 [103, 270],

ψnℓm = e−i(ωnℓm−µ)t Rnℓ (r)Yℓm (θ, φ) , (A.4)

Rnℓ (r) = C
(

2r
na0

)ℓ

L2ℓ+1
n−ℓ−1

(
2r

na0

)
e−

r
na0 ,

a0 =
1

µα
, C =

√(
2

na0

)3 (n − ℓ− 1)!
2n (n + ℓ)!

, (A.5)

where L2ℓ+1
n−ℓ−1 is the generalized Laguerre polynomial [182]. We are

adopting the convention for the quantum numbers used in Refs. [135,
268], where states are labeled by n = ℓ+ 1, ℓ+ 2, ... . The eigenvalue
is, up to terms of order α5 [489]

ωnℓm = µ

(
1 − α2

2n2 − α4

8n4 +
(2ℓ− 3n + 1) α4

n4 (ℓ+ 1/2)

)
+O

(
α5) . (A.6)
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We can estimate the size of the scalar cloud by computing the expecta-
tion value of the radius on a given state

⟨r⟩ =
∫ ∞

0
dr r3R2

nℓ (r) =
a0

2
(
3n2 − ℓ(ℓ+ 1)

)
. (A.7)

When the binary companion is included, the tidal perturbation
can be treated in the framework of perturbation theory in Quantum
Mechanics. The tidal potential δV entering in Schrödinger’s equation
due to δds2

tidal (4.2) is represented by a step function

δV = −Θ (t − t0)
Mc µ

R

2

∑
m=−2

4π

5

( r
R

)2
Y∗
ℓm (θc, φc)Yℓm (θ, φ) ,

(A.8)

where t0 is the instant when we turn it on and Θ (t) is the Heaviside
function. Though there is an implicit time dependence, if one lets the
system evolve for sufficient time, it will end in a final stationary state
(ignoring the loss of energy at the BH horizon). To describe the final
picture, time-independent perturbation theory is enough.

Let us recall its standard procedure. We are solving Schrödinger’s
equation

H |ψi⟩ = ωi |ψi⟩ , (A.9)

H = H0 + λ δV , (A.10)

where H0 is the Hamiltonian of the unperturbed problem, δV is the
potential corresponding to the perturbation, and λ is a dimensionless
expansion parameter varying between 0 (no perturbation) and 1 (full
perturbation). Since we are now referring to a generic problem, we
have dropped the triple indices of the “hydrogenic" spectrum and
instead label different eigenstates |ψi⟩ of the Hamiltonian (and the
respective eigenvalue frequencies ωi) by a single index 1.

When the system is non-degenerate, the eigenstates
∣∣∣ψ(0)

k

〉
of the

unperturbed problem - which are assumed to be known and in our
case are given by Eq. (A.5) - are in one-to-one correspondence with
the eingenvalues, ω

(0)
k ,

H0

∣∣∣ψ(0)
i

〉
= ω

(0)
i

∣∣∣ψ(0)
i

〉
, (A.11)

and {ψ
(0)
n } form a complete orthonormal basis〈

ψ
(0)
m |ψ(0)

n

〉
= δmn . (A.12)

Now, we expand the eigenstates of the perturbed system, ψi, in
terms of the basis {ψ

(0)
k }

|ψi⟩ = ∑
k

cki

∣∣∣ψ(0)
k

〉
, (A.13)

1 In Quantum Mechanics literature, it is common to use E for the (energy) eigenvalues,
but since we are working in natural units, h̄ = 1, there is no distinction between them
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and plugging this ansatz in (A.9), the coefficients cki and the eigen-
values ωi can be obtained as a power series in λ. If the perturbation
is small enough, we expect the first-order expansions to be a good
approximation [490]

ωi = ω
(0)
i + λ ω

(1)
i , (A.14)

cki = c(0)ki + λ c(1)ki , (A.15)

ω
(1)
i =

〈
ψ
(0)
i

∣∣∣ δV
∣∣∣ψ(0)

i

〉
, (A.16)

c(1)ki =

〈
ψ
(0)
k

∣∣∣ δV
∣∣∣ψ(0)

i

〉
ω

(0)
i − ω

(0)
k

, k ̸= i , (A.17)

where we omitted terms of order O
(
λ2). In the end, we set λ = 1,

which is the same as reabsorbing it in δV.
The timescales for the transitions between two modes can be esti-

mated using time-dependent perturbation theory. This involves intro-
ducing the interaction picture and performing a Dyson series on the
time-evolution operator. Since the eigenstates remain the same as in
the time-independent unperturbed case, we will skip details on this
procedure and directly import the result for the first-order correction
on the coefficients cki for a step-function perturbation [491]

c(1)ki =
⟨ψk| δV |ψi⟩

ωi − ωk

(
1 − e−i(ωi−ωk)t

)
. (A.18)

Both the states |ψi⟩ and frequencies ωi should be understood as the
ones for the unperturbed system, but we ommit subscripts to avoid
cluttering. Then, the probability of the transition |i⟩ → |k⟩ is∣∣∣c(1)ki

∣∣∣2 = 4
∣∣∣∣ ⟨ψk| δV |ψi⟩

ωi − ωk

∣∣∣∣2 sin2
(
(ωk − ωi)t

2

)
. (A.19)

Although we do not have a continuum spectrum, for large timescales
we can take this limit. Then, at fixed t, we can treat the probabilities∣∣∣c(1)ki

∣∣∣2 as functions of

∆ωki = |ωk − ωi| . (A.20)

Plotting it for different instants of time, one can verify this function
becomes increasingly peaked around ∆ωki = 0 as t increases (check
Fig. 5.8 of Ref. [491]). This central peak scales with t2 and has a typical
width of 1/t. If we wait enough time ∆t since the perturbation is
introduced, the only transitions with appreciable probability are those
satisfying

∆t = 2π/∆ωki . (A.21)

The final conclusion is that the typical timescale ∆t for the transition
|i⟩ → |k⟩ to happen is

∆ωki ∆t ∼ 1 , (A.22)



150 perturbation theory in quantum mechanics

which, if we momentarily insert factors of h̄, can be seen as a manifes-
tation of the energy-time uncertainty principle [491]

∆E∆t ∼ h̄ . (A.23)

Returning to our problem, the initial data presented in Eq. (4.6) cor-
responds to the stationary state (reintroducing the triple “hydrogenic""
indices)

|i⟩ ∝
(∣∣∣ψ(0)

211

〉
−
∣∣∣ψ(0)

21−1

〉)
, (A.24)

up to a proportionality constant reflecting the renormalization done for
numerical purposes. The final state should correspond to a stationary
state | f ⟩ which we can compute using the machinery developed before.
There is still a caveat, which is the degeneracy between states with the
same quantum number m (A.5). Though a rotating BH will lift this
degeneracy, the energy shifts due to the perturbations considered are
orders of magnitude higher than the energy scale associated with the
rotation. Thus, for non-degenerate perturbation theory to be controlled,
we would have to perform it at higher orders then what we presented.

In the degenerate scenario, the equations presented are invalid
(for example (A.17) diverges when ω

(0)
k = ω

(0)
i ). Instead, we use the

freedom in making a linear combination of unperturbed degenerate
eigenstates, so that in every degenerate subspace, we pick a basis of the
Hilbert space that diagonalizes the full Hamiltonian H (A.10). After
this step, we can apply non-degenerate perturbation theory, namely
Eqs. (A.16) and (A.17), using the new “good” basis.

Finally, the numerical data we present in the main text corresponds
to multipole expansions of the field Φ and not to the coefficients cki
(A.13) describing the mix of the unperturbed states. To obtain these
multipoles we have to select them from the space representation of the
final state. The amplitude coefficients of the mode |ψnℓm⟩ are obtained
via

cnℓm ∝
⟨ψnℓm |δV| i⟩
ω

(0)
21 − ω

(0)
nℓ

, (A.25)

ϕnℓm (r) ∝ cnℓmRnℓ (r) . (A.26)

In the end, we are interested in the ratio between amplitudes so
the constant of proportionality is irrelevant. The matrix elements
appearing here are explicitly presented in Eqs.(3.7)− (3.9) of Ref. [135].
Notice that the relative amplitude between modes with the same
quantum numbers n and ℓ is completely determined by the angular
integrals, and since these are (quasi)degenerate, they will also follow
similar time evolutions. As a consequence, their relative amplitude
is independent of time and the value of α, even at higher orders in
perturbation theory. This is illustrated in Fig. 4.4 for ϕn33/ϕn31.

A summary of the time-independent perturbation theory for transi-
tions between overtones is shown in Table 4.1 for Mµ = 0.1, ϵ = 10−8.
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The relative amplitudes cnℓm/c211 indicate that the perturbation is not
that small. This is even more obvious if we compute the first order
corrections to the frequency eigenvalues, which for this configuration
are of O

(
10−3) for overtones n > 3, as illustrated in Table A.1. For

this reason, when computing the timescales of the transitions (A.22),
we used the first order corrected ωnℓm.

Table A.1: First order corrected frequencies ωnℓm predicted by time-
independent theory, for a non-rotating BH and a companion with
the configuration Mµ = 0.1, ϵ = 10−8. A spinning BH would break
the degeneracy between states with the same ℓ but different m
quantum number. However, these corrections enter the frequency
spectrum (A.6) only at order α5. For the above configuration, these
would yield ωn33 − ωn31 ∼ 10−6a/M n3.

(n ℓ) ωnℓm × 102

2 1 9.9754

3 1 9.9224

4 1 9.7570

5 1 9.3980

4 3 9.9001





B
A N I S O T R O P I C A L LY- E M I T T I N G S TA R

In this appendix, we provide some details on the calculation of the
emission of isotropic stars in a Schwarzschild background spacetime.
For that we need to describe the physics as seen by a freely-falling
observer. The following builds on Refs. [1, 492, 493].

Consider two different observers: a static observer, i.e. characterized
by a wordline with r = θ = φ = const; and a free-falling observer,
who starts from rest at spatial infinity and has a purely radial motion.

Let us start with the observer at rest at some radius re, which we
take to be on the equatorial axis. Its proper reference frame has basis
components

ω t̂ =

√
1 − 2M

r
dt , ωr̂ =

1√
1 − 2M

r

dr , ω φ̂ = rdφ . (B.1)

If we consider a photon emitted by a source at rest at infinity and
received by the observer, its geodesic motion is fully determined by its
energy E and its impact parameter b. The components of the photon’s
four momentum pµ = dxµ/dλ read

pt = −
(

1 − 2M
r

)
dt
dλ

= −E ,

pr =
1√

1 − 2M
r

dr
dλ

=
E

1 − 2M
r

√
1 −

(
1 − 2M

r

)
b2

r2 ,

pφ = r2 dφ

dλ
= L = b E , (B.2)

where we used the EOM in Eqs. (5.5).
We must now compute the pt̂ component of the momentum in the

observer’s reference frame

pt̂ = (ω t̂)µ pµ =
−1√

1 − 2M
r

pt , pr̂ = (ωr̂)µ pµ =

√
1 − 2M

r
pr . (B.3)

The ratio of observed to emitted energy is then

pt̂

E
=

1√
1 − 2M

r

, (B.4)
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signaling a typical blueshift.
Moreover, the observer sees the photons come in at an angle α

relative to its radial direction given by

cos α = − pr̂

pt̂
= −

√
1 −

(
1 − 2M

r

)
b2

r2 . (B.5)

Consider now free-falling observers. The basis one-forms of their
proper reference frame are

ω t̂ = dt +
√

2M/re

1 − 2M/re
dr , ωr̂ =

√
2M
re

dt +
1

1 − 2M/re
dr , (B.6)

When a photon with energy at infinity E and impact parameter
b reaches the observer at r = re and θ = π/2, its four momentum
is given by (B.2). On the other hand, infalling observers will see the
photon with an energy pt̂ = ω t̂ · p and an angle α = cos−1(−pr̂/pt̂)

to the radial direction. Repeating the same steps as before we recover
the results of Ref. [492]

P =
pr

pt

(
1 − x2

e
)

, xe =

√
2M
re

(B.7)

cos α = −
(

pr̂

pt̂

)
= − xe + P

1 + Pxe
, (B.8)

pt̂

E
= −1 + Pxe

x2
e − 1

=
1

1 + xe cos α
, (B.9)

b
re

=
sin α

1 + xe cos α
. (B.10)



C
U N S TA B L E C I R C U L A R G E O D E S I C S

In this Appendix, we present results similar to the ones discussed in
Section 7.3.2 but considering the point particle is on circular geodesics,
i.e. with a = 0M in Eqs. (7.13)-(7.16). Our results are summarized in
Fig. C.1 (next page). We put the particle at a radius that yields the
same frequency as those presented in Fig. 7.2. Apart from a change
in the absolute values for the flux, the relaxation timescales are in
complete agreement with the ones obtained before, indicating the
artificial motion we considered is irrelevant to the excitation of the
constant-density star’s QNMs.
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Figure C.1: Same analysis as in Fig. 7.2 but considering circular geodesics
around Schwarzschild, i.e. a = 0M in Eq. (7.13)-(7.16). We do not
show an analogous plot for the Mω = 0.192 since the particle
would have to be put at the light-ring (rp = 3.0M) and we are
only considering timelike motion.



D
P E RT U R B AT I O N E Q UAT I O N S I N N O N - VA C U U M
E N V I R O N M E N T S

In this appendix, we derive the full set of master wave-like partial dif-
ferential equations that govern dynamical perturbations to spherically-
symmetric but otherwise generic spacetimes given by the line element
in Eq. (2.16). In Sec. 2.1.3 we already introduced the stepping stones
of the formalism and now complement it with the perturbations to
the matter sector. Recall that we are working in the Regge-Wheeler
gauge (cf. Eq. (2.38)). Since we will not be discussing matter fluxes, we
focus our discussion on ℓ ≥ 2 modes, which represent the radiative
degrees of freedom of the gravitational field.

Matter perturbations are encoded through the fluid perturbations
in the density and pressure perturbations

p(1)r =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

δpr,ℓm(t, r)Yℓm(θ, φ) , (D.1)

p(1)t =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

δpt,ℓm(t, r)Yℓm(θ, φ) , (D.2)

ρ(1) =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

δρℓm(t, r)Yℓm(θ, φ) , (D.3)

In addition, we also need to perturb the fluid’s 4-velocity. These are
described by three functions {Uℓm(t, r), Vℓm(t, r), Wℓm(t, r)} and the
timelike condition uµuµ = −1 (up to first order), which yields

ut
(1) =

1
2A1/2

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

Hℓm
0 Yℓm , (D.4)

ur
(1) =

A1/2

B
1

4π (pr + ρ)

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

WℓmYℓm , (D.5)

uθ
(1) =

A1/2

4π (pt + ρ) r2

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

[
Vℓm∂θ −

Uℓm

sin θ
∂φ

]
Yℓm , (D.6)

uφ

(1) =
A1/2

4π (pt + ρ) r2 sin2 θ

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

[
Vℓm∂φ +

Uℓm

sin θ
∂θ

]
Yℓm .

(D.7)
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where we are now suppressing all coordinate dependences and the
superscript (0) to improve readability. The perturbed unit spacelike
vector kµ orthogonal to uµ (kµkµ = 1 and kµuµ = 0) is then

k(1)t = − A
B3/2

1
4π (pr + ρ)

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

WℓmYℓm , (D.8)

k(1)r =
1

2
√

B

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

Hℓm
2 Yℓm , (D.9)

k(1)θ = k(1)φ = 0 , (D.10)

from which we can then build the perturbed projection operator
Π(1) = g(1)µν + u(0)

µ u(1)
ν + u(1)

µ u(0)
ν − k(0)µ k(1)ν − k(1)µ k(0)ν

Π(1)
tθ =

A
4π (pt + ρ)

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

[
csc θ Uℓm∂φ + Vℓm∂θ

]
Yℓm , (D.11)

Π(1)
tφ = − A

4π (pt + ρ)

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

[
sin θ Uℓm∂θ + Vℓm∂φ

]
Yℓm ,(D.12)

Π(1)
θθ = r2

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

KℓmYℓm , (D.13)

Π(1)
φφ = sin2 θ Π(1)

θθ . (D.14)

Finally, we also need to assume a (barotropic) equation of state that
relates the density and pressure perturbations

δpr,ℓm = c2
sr

δρℓm , (D.15)

δpt,ℓm = c2
st

δρℓm , (D.16)

where csr = csr(r) and cst = cst(r) are the sound speed along the radial
and tangential directions. We can finally plug these in the energy-
momentum tensor (9.1) and arrive at the components

Tenv(1)
tt = A

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

(δρℓm − H0
ℓmρ)Yℓm ,

Tenv(1)
tr = −

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

[
A

4πB2 Wℓm + H1
ℓmρ

]
Yℓm ,

Tenv(1)
tθ =

A
4π

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

[
csc θUℓm∂φ − Vℓm∂θ

]
Yℓm ,

Tenv(1)
tφ =

−A
4π

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

[
Vℓm∂φ + Uℓm sin θ∂θ

]
Yℓm ,

Tenv(1)
rr =

1
B

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

(
pr H2

ℓm + δpr,ℓm
)

Yℓm ,

Tenv(1)
θθ = r2

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

(ptKℓm + δpt,ℓm)Yℓm ,

Tenv(1)
φφ = Thalo(1)

θθ sin2 θ . (D.17)
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d.1 energy-momentum tensor of the secondary for cir-
cular orbits

We are interested in studying EMRIs, so the source of our perturbations
is a point particle orbiting the background spacetime, with energy-
momentum tensor given by Eq. (2.10). We will focus on circular orbits
at some fixed radius rp and spherical symmetry allows us to consider
motion only on the equatorial plane, i.e. θp = π/2. The 4-velocity of
the source is [328]

up =

(
Ep

Ap
, 0, 0,

Lp

r2
p

)
, (D.18)

where Ap = A(rp) and Ep and Lp are the energy and angular momen-
tum per unit rest mass of the orbiting body [328]

Ep =
Ap√

Ap − r2
pΩ2

p

, Lp =
Ωpr2

p√
Ap − r2

pΩ2
p

. (D.19)

with the angular orbital frequency φp(t) = Ωp t given by

Ωp =

√
A′

p

2rp
, (D.20)

where recall that a prime denotes a derivative with respect to r.
For this orbital configuration, the tensor harmonics expansion (2.34)

for the energy-momentum tensor of the secondary greatly simplifies.
We have Aℓm = A1

ℓm = Bℓm = Qℓm = 0, while the non-vanishing
coefficients can be expressed in terms of the orbital parameters as
follows

A0
ℓm =

mp
√

ABEp

r2 Y⋆
ℓm δrp ,

B0
ℓm =

mpi
√

ABLp

r3
√
(n + 1)

δrp ∂ϕY⋆
ℓm ,

Q0
ℓm = − mp

√
ABLp

r3
√
(n + 1)

δrp ∂θY⋆
ℓm ,

Gℓm =
mpL2

p
√

AB

r4
√

2Ep
δrp Y⋆

ℓm ,

Dℓm =
mpiL2

p
√

AB

Epr4
√

2n(n + 1)
δrp ∂θϕY⋆

ℓm ,

Fℓm =
mpL2

p
√

AB

r42Ep
√

2n(n + 1)
δrp (∂ϕϕ − ∂θθ)Y⋆

ℓm ,

(D.21)

where n = ℓ(ℓ+ 1)/2 − 1, Y⋆
ℓm = Y⋆

ℓm(π/2, Ωpt) and δrp = δ(r − rp).
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d.2 master equations

We now have all the ingredients necessary to derive a set of partial
differential equations for the axial and polar sectors. For the sake of
clarity, hereafter, we will drop the sum over the multipolar indices.

d.2.1 Axial Sector

We start off with the simpler axial sector where gravitational perturba-
tions decouple from the matter sector. We need to find a solution for
hℓm

0 , hℓm
1 and Uℓm. Start by rewriting ∂hℓm

0 /∂t using the combination
of Eθθ − Eϕϕ/ sin2 θ, where

Eµν = G(1)
µν − 8π(Tenv(1)

µν + Tp
µν) , (D.22)

and G(1)
µν is the perturbed Einstein tensor. We arrive at

∂h0

∂t
= AB

dh1

dr
+

A(1 − B + rB′)
2r

h1 − i
4
√

2πr2A√
n(1 + n)

D , (D.23)

where from now on we omit the angular indexes to avoid cluttering
If we define the variable

Ψax =

√
AB
r

h1 , (D.24)

the Erθ component provides a second-order non-homogeneous differ-
ential equation for Ψax. In terms of the generalized tortoise coordinate
dr∗/dr = (A B)−1/2, the master equation for the axial metric perturba-
tions can be written as[

− ∂2

∂t2 +
∂2

∂r2∗
− Vax

]
Ψax = Sax , (D.25)

where the potential reads

Vax =
A
r2

[
ℓ(ℓ+ 1)− 6m(r)

r
+ m′(r)

]
, (D.26)

with m(r) = r(1 − B(r))/2 and the source term is

Sax = i
2
√

2πr2√
n(n + 1)

(
A′

A
D +

∂D
∂r

)
. (D.27)

In the vacuum limit, i.e. M → 0, or alternatively r → ∞, the equa-
tion above reduces to the Regge-Wheeler master equation (2.39) which
governs axial perturbations in Schwarzschild. Notice that both at the
BH horizon and at infinity the effective potential goes to zero. There-
fore, the master function behaves as wave, with physical solutions
corresponding to ingoing waves at the horizon and outgoing at large
distances.
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d.2.2 Polar Sector

We now move to the polar sector, which is more involved because
matter perturbations couple to gravitational ones. First, we redefine
the perturbations

H0 = K +
r
A

S , (D.28)

H1 =
r
A

H̃1 . (D.29)

This choice is inspired in studies of perturbations around relativistic
stars [447] and the factoring of r and A captures the asymptotic
behavior at, respectively, large distances and near the BH horizon.

• Eθθ − Eφφ/ sin2 θ gives an algebraic relation for H2

H2 = K +
r
A

S − 16πr2√
2n(n + 1)

F . (D.30)

• Erθ gives a relation between H̃1 and the other perturbations
which we use to substitute ∂H̃1/∂t and ∂2H̃1/ (∂t∂r∗) when nec-
essary

∂H̃1

∂t
=

√
A
B

∂S
∂r∗

+
A
r

S +
A2

r2B
(
1 − B + 8πr2 pr

)
K

− 8π√
2n(n + 1)

A2

B
(
1 + B + 8πr2 pr

)
F . (D.31)

• Ett = 8πTtt yields a constraint between K, S and δρ

∂2K
∂r2∗

=

√
B
A

∂S
∂r∗

− 1
2r

√
A
B
(
1 + 3B − 8πr2ρ

) ∂K
∂r∗

+ A
(
ℓ(ℓ+ 1)

r2 − 8πρ

)
K

+

(
ℓ(ℓ+ 1) + 4B

2r
− 8πr (ρ + pr)

)
S

− 8πA δρ − 8πA0 − 16πABr√
2n(n + 1)

∂F
∂r

+
8π A√

2n(n + 1)

(
16πr2ρ − 4B − 2 − ℓ (ℓ+ 1)

)
F .

(D.32)
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• Ett − ABErr gives the first second-order “wavelike” equation for
K

− ∂2K
∂2t

+
∂2K
∂2r∗

+
2
√

AB
r

∂K
∂r∗

+
A
r2

[
8πr2 (ρ + pr) + 2 − 2B − ℓ(ℓ+ 1)

]
K

= −8πA
(
1 − c2

sr

)
δρ +

2
r
(

B − 4πr2 (ρ + pr)
)

S

− 8π A√
2n(n + 1)

(
2 + 2B + ℓ (ℓ+ 1)− 16πr2ρ

)
F

− 16πABr√
2n(n + 1)

∂F
∂r

− 8πA0 .

(D.33)

• Eθθ + Eφφ/ sin2 θ gives another second-order “wavelike” equa-
tion for S, where we used the previous equations to substitute
the necessary derivatives

− ∂2S
∂2t

+
∂2S
∂2r∗

+
A
r2

(
4πr2 (ρ + 3pr) + B − 1 − ℓ(ℓ+ 1)

)
S

= − A2

r3B

[
7B2 +

(
1 + 8πr2 pr

)2

− 8B
(
1 + 4πr2 pr − 2π (pt + ρ)

) ]
K

− 16π
a2

r
(
c2

sr
− c2

st

)
δρ + 8π

√
2

A2

r
Gℓm

− 8π√
2n(n + 1)

A2

rB

[
5B2 + B

(
ℓ (ℓ+ 1)− 4 − 32πr2 pr

)
−
(
1 + 8πr2 pr

)2
]
F

− 16π A√
2n(n + 1)

(
A
2
(
1 + B + 8πr2 pr

) ∂Fℓm

∂r
+ r

∂2F
∂t2

)
.

(D.34)

• The final “wavelike” equation for δρ is obtained from the con-
servation of the perturbed energy-momentum tensor of the sur-
rounding fluid. ∇µTµθ

env(1) = 0 gives

∂V
∂t

= (ρ + pr)
(

K +
r
A

S
)
− 4πc2

st
δρ

+
32π2 r2√
2n(n + 1)

(pt − pr)F .

(D.35)
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• whereas ∇µTµr
env(1) = 0

∂W
∂t

= −4πr
B2

A2 (pr + ρ)
∂H̃1

∂t
− 4πBc2

sr

√
B
A

∂δρ

∂r∗

− 2πr
B
A

√
B
A
(pr + ρ)

∂S
∂r∗

+ 2πB

√
B
A
(2pt − pr + ρ)

∂K
∂r∗

+ 2π
B
A
(
1 − 2B + 8πr2 pr

)
(pr + ρ) S

+ 4π
B
r
(

B − 1 + 8πr2 pr
)
(pr + ρ)K

+
2πB

r

[ (
1 + c2

sr

) (
1 + 8πr2 pr

)
− B

(
1 + 5c2

sr
− 4c2

st
+ 4rcsr c

′
sr

) ]
δρ

− 64π2rB√
2n(n + 1)

(
1 − B + 8πr2 pr

)
(pr + ρ)F . (D.36)

• Doing ∇µTµr
env(1) = 0 and using the previous relations we finally

arrive at

− ∂2δρ

∂t2 + c2
sr

∂2δρ

∂r2∗

+
1
2r

√
A
B

[ (
c2

sr
− 1
) (

1 + 8πr2 pr
)

+ B
(
1 + 7c2

sr
− 4c2

st
+ 8rcsr c

′
sr

) ]∂δρ

∂r∗

− A
2r2B

[ (
1 + c2

sr

) (
1 + 8πr2 pr

)2

+ 2B
[
c2

st

(
4 + ℓ+ ℓ2 + 16πr2 (pr − ρ)

)
− 1 + c2

sr

(
8πr2 (ρ − 3pr)

)
− 5 + rcsr c

′
sr

(
8πr2 (ρ − 2pr)− 3

) ]
+ B2

(
1 + 5c2

sr
− 4c2

st
− 4r2 (c′sr

)2
+ 8rcst c

′
st
− 2rcsr

(
5c′sr

+ 2rc′′sr

)) ]
δρ

= Sρ , (D.37)
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with the source term

Sρ = − r
A
(pr + ρ)

∂2S
∂r2∗

− 1
4r

√
A
B

[
72πr2 p2

r + 4(3B − 2)pt + ρ

+ pr
(
9 − 13B + 8πr2 (ρ − 8pt)

)
− B

(
ρ + 2r(2p′t + ρ′)

) ] ∂K
∂r∗

− 1
4A

√
AB

[
− 2rB (pr + ρ) A′ − A

[
24πr2 p2

r + ρ + 2rρ
(
8πrρ + B′)

+ pr
(
1 − 13B + 2r

(
20πrρ + B′))− B

(
4pt + 17ρ + 6rρ′

) ]] ∂S
∂r∗

− A
2r2B

[
64π2r4 p3

r + ρ + 8πr2 p2
r
(
2 − 5B + 8πr2ρ

)
+ B

[
ρ
(

B − 2 + 24πr2ρ
)
− 2pt

(
ℓ2 + ℓ− 2 + 2B − 32πr2ρ

)
+ 4r (B − 1) ρ′

]
+ pr

[
1 + 5B2 + 16πr2ρ2

+ 2B(ℓ2 + ℓ− 3 + 8πr2(6pt + ρ + 2rρ′))
]]

K

− 1
4rB

[
64π2r4 p3

r + ρ + 8πr2 p2
r
(
2 − 7B + 8πr2ρ

)
+ B

[
4pt
(
1 − ℓ− ℓ2 − 2B

)
+ ρ

(
10B − 3 − 32πr2ρ

)
+ 2r (4B − 1) ρ′

]
+ pr

[
1 + 2B2 + 16πr2ρ + B((1 + 2ℓ)2

− 8πr2(4pt + 15ρ + 2rρ′))
]]

S

− 4π (ρ − pr + 2pt)A0 − 4π
√

2A (pr + ρ) G

− 4πAr√
2(2n + 1)

[
40πr2 p2

r − 4pt − 5 (B − 1) ρ

+ pr
(
5 − B + 40πr2ρ

) ]∂F
∂r

+
8π√

2n(n + 1)
A
B

[
64πr4 p3

r + ρ + 16πr2 p2
r
(
1 + 4πr2ρ
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[
ρ
(
3 − 4B + 24πr2ρ
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− 3 (B − 3) ρ′
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4B + ℓ2 + ℓ− 2 − 32πr2ρ
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1 + 4B2 + 16πr2ρ + B(2ℓ(1 + ℓ)

− 1 + 8πr2(12pt + 7ρ + 3rρ′))
]]

F . (D.38)
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There are many points worth highlighting. First, if we set the mass
of the halo to zero, M = 0, the evolution equation for δρ decouples
from the gravitational perturbations and becomes sourceless. This
means if no initial data is given to δρ, it remains 0 for the whole
evolution, as it should for an EMRI in vacuum. Moreover, one can
check explicitly by direct substitution that the vacuum Eqs. (D.33)
and (D.34), together with the constraint in Eq. (D.32), are completely
equivalent to the Zerilli equation in Eq. (2.39). Asymptotic flatness
then guarantees this equivalence as r → ∞.

We already discussed the asymptotic behavior of δρ in the main text,
in Section 9.3.1. It is clear that S also behaves as wave propagating at
the speed of light both at infinity and at the BH horizon, similarly to the
master Zerilli function. From the homogeneous part of the evolution
equation for K, one could naively assume that it would decay as 1/r
at large distances. However, note that K is also being sourced by S.
If as r → ∞, S is represented by an outgoing wave, S ∼ S∞

0 e−iω(t−r∗),
then writing K ∼ (K∞

0 + K∞
1 /r) e−iω(t−r∗) and expanding Eq. (D.33) in

powers of r for large distances we find

K∞
0 = − i

ω
S∞

0 , (D.39)

so K also behaves as a wave asymptotically. In fact, at far-away dis-
tances the relation between K and the Zerilli master function is [188]

K =
r→∞

dΨZ

dr∗
. (D.40)

Moreover, for monochromatic waves and at large distances dΨZ/dr∗ =
iωΨZ = −dΨZ/dt. Thus, for circular orbits we can use the absolute
value of K to evaluate the flux of energy carried by GWs to infinity as
determined by Eq. (2.45).

We have also mentioned that the ℓ = 0 and ℓ = 1 modes are “non-
physical” in GR and can be removed in a region of spacetime by a
gauge transformation. In fact, for ℓ ≤ 1 the Regge-Wheeler gauge
is not completely fixed because there are less independent spherical
harmonics (recall the discussion below Eq. (2.45)). In fact, Eq. (D.30)
is actually identically 0 for ℓ ≤ 1 (i.e. it becomes 0 = 0).

However, what is the actual meaning of gravitational perturbations
for the lower multipoles, since they do not contribute to radiative
degrees of freedom? The answer to this question is explained in detail
in Appendix G of Ref. [187] (see also Refs. [184, 494]) . The ℓ = 0
axial mode is identically 0, while the respective ℓ = 1 case gives a
perturbation to the angular momentum of the configuration. In the
case of an orbiting particle, it would correspond to its conserved
angular momentum. In a similar fashion, the ℓ = 0 polar mode leads
to a correction in the mass of the system, e.g. by adding the mass of the
particle to the mass of the central object. Finally, for the Regge-Wheeler
gauge in which we adopt coordinates centered at the unperturbed
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spacetime, the ℓ = 1 polar mode yields the transformation to the
center-of-momentum of the total system. In a Newtonian analysis, this
would correspond to the appearance of a fictitious force because the
reference frame of the central BH is not inertial.
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