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Resumo

Nesta tese, são calculadas as constantes Newman-Penrose (NP) para um campo de spin-0 propagando

no espaço-tempo de Minkowski, com ênfase no comportamento próximo ao infinito espacial e ao infinito

nulo. Para alcançar isso, é utilizada a estrutura do i 0 cilindro de Friedrich. Sob a suposição de que os dados

iniciais atendem a determinadas condições de regularidade, permitindo a extensão analítica do campo para

conjuntos críticos, o estudo revela que as constantes NP no infinito nulo futuro I + e no infinito nulo passado

I − são independentes uma da outra. Noutras palavras, as constantes NP clássicas em I ± são determinadas

por partes diferentes dos dados iniciais, que são definidos em uma hipersuperfície de Cauchy. Por outro lado,

ao introduzir uma pequena generalização conhecida como constantes NP do i 0 cilindro, a necessidade da

condição de regularidade é eliminada. Estas constantes NP modificadas fornecem quantidades conservadas

em I ± que são exclusivamente determinadas por uma parte específica dos dados iniciais, que, por sua vez,

correspondem aos termos que governam a regularidade do campo. Esta característica mostra-se fascinante no

estudo de equações de evolução usando a estrutura do i 0 cilindro.

Palavras-chave: Constantes de Newman-Penrose, infinidade nula, Cilindro de Friedrich, campo de

spin-0.
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Abstract

This thesis explores the computation of the Newman-Penrose (NP) constants for a spin-0 field in Minkowski

spacetime, focusing on their behavior near spatial and null infinity. To achieve this, Friedrich’s i 0 cylinder

framework is used. Under the assumption that the initial data meets specific regularity conditions, allowing for

the analytical extension of the field to critical sets, the study finds that the NP constants at future null infinity

I + and past null infinity I − remain independent of each other. In other words, the classical NP constants at

I ± are determined by different sets of the initial data, which are defined on a Cauchy hypersurface. In con-

trast, by introducing a slight generalization known as the i 0 cylinder NP constants, the need for the regularity

condition is eliminated. These modified NP constants yield conserved quantities at I ± solely determined by

a specific part of the initial data, which, in turn, corresponds to the terms governing the regularity of the field

This characteristic proves to be fascinating in the study of evolution equations using the i 0 cylinder framework.

Keywords: Newman-Penrose constants, null infinity, Friedrich Cylinder, spin-0 field.
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Chapter 1

Introduction

1.1 Motivation

General relativity, developed by Albert Einstein, is a comprehensive theory of gravitation that fundamen-

tally alters our understanding of the force of gravity. It portrays gravity not as a Newtonian force, but rather

as a consequence of the curvature of spacetime caused by the presence of mass and energy. According to this

theory, objects move through spacetime along paths dictated by this curvature, giving rise to the illusion of

gravitational force.

One intriguing prediction of general relativity is the existence of black holes, celestial objects with such im-

mense gravitational pull that nothing, not even light, can escape their grasp. In the context of general relativity,

the presence of a black hole causes spacetime to contort and deform, leading to bizarre phenomena like time

dilation and the bending of light rays. To an observer located at a significant distance from a black hole, its

appearance is analogous to that of a classical particle. This resemblance allows us to characterize a black hole

by three primary quantities: its total mass, electrical charge, and spin. Remarkably, black holes that possess

identical properties are indistinguishable, as no measurements can be made to discern their uniqueness [1] —

a concept known as the "No Hair" theorem.

Understanding how different objects interact with black holes requires an exploration of the conservation laws

that govern their behavior. By observing the initial and final state of an object that falls into a black hole, we

can deduce a few of its properties through the lens of conservation. However, the reductionist nature of black

holes poses a challenge—the wealth of information carried by stars and planets of various shapes and sizes is

reduced to the previously mentioned three quantities. Consequently, a significant amount of information is

lost, leading to a perplexing conundrum known as the information paradox [1].

Expanding upon the topic, it is crucial to consider binary systems as significant sources of gravitational waves.

Gravitational waves are ripples in the fabric of spacetime that propagate outward, carrying energy away from

their source. Binary systems, composed of two massive objects orbiting around each other, emit gravitational

waves as a result of their orbital motion. These waves can be detected and studied, providing valuable insights

into the dynamics of spacetime and further confirming the predictions of general relativity.

In the study of dynamical spacetime, researchers investigate the behavior of spacetime itself when sub-
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jected to the presence of matter and energy. The dynamics of spacetime can be studied by employing mathe-

matical frameworks such as the theory of general relativity. By understanding the intricate interplay between

matter, energy, and spacetime curvature, scientists gain a deeper understanding of how the fabric of the uni-

verse evolves and changes in response to different physical phenomena [2].

In summary, general relativity revolutionizes our comprehension of gravity by describing it as a conse-

quence of spacetime curvature caused by mass and energy. Black holes, characterized by their immense grav-

itational pull, serve as fascinating objects that challenge our understanding of information conservation. The

information paradox arises from the reduction of complex objects to a mere three quantities, leading to the

potential loss of vast amounts of information. However, recent concepts like soft "hair" propose avenues for

exploring the consumption history of black holes and potentially resolving the information paradox. Addition-

ally, binary systems play a crucial role in generating gravitational waves, allowing us to probe the dynamics

of spacetime and deepen our understanding of the universe’s fundamental nature. In this thesis we will focus

on the calculation of NP constants on a framework where we will focus on two types of infinity: null infinity

denoted by I and spatial infinity denoted by the symbol i 0.

1.2 Global structure of spacetimes

Roger Penrose brought to the field of general relativity the notion of conformal transformation, which made

a significant impact in the geometric understanding of infinity. This was crucial for the development of theory

of asymptotics, which arises a question of whether a smooth conformal extension which attaches a boundary

(conformal boundary represents points at infinity) to the spacetime is shared by a larger class of spacetimes.

This question leads to the notion of asymptotic simplicity [3]. In the context of asymptotic simplicity, spa-

tial infinity (denoted as i 0) represents the region at an infinite distance from the central object or system under

consideration. It provides a framework to analyze the properties of spacetime far away from the gravitational

source. Similarly, null infinity (denoted as I ) represents the region in the future or past. It corresponds to the

points reached by light rays that have traveled an infinite distance from their source. That is, it is the limit of

a set of points that each have a timelike separation from every point that has a spacelike separation from the

given point. This simplicity allows for the application of mathematical techniques and tools to study the behav-

ior of physical fields, gravitational waves, and the conservation laws in these simplified regimes. Asymptotic

simplicity is a concept in general relativity that refers to the behavior of spacetime at infinity. It characterizes

the way spacetime and its geometry approach a simple and well-defined structure as we move to spatial infinity

or null infinity.

The geometric understanding of infinity also contributed to the development of gravitational radiation,

taking a step forward in the mathematical understanding of gravitational waves. Although, customary in nu-

merical approaches to general relativity, wave forms are computed at large radius, from first principles point

of view they should be computed at null infinity I . To do so, the Einstein field equations need to be expressed

in terms of suitably rescaled fields, so one can evaluate the fields at I . Technically this is done by a conformal

transformation. In general relativity, conformal transformations are used to describe the behavior of physi-

cal systems under changes in the scale of spacetime. These transformations preserve the local structure of
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spacetime and its overall shape (angles between vectors). The original metric, which we refer to as the physical

metric, is denoted by g̃ . We consider a transformation to an unphysical metric, g , which is given by

gab =Ξ2 g̃ab , (1.1)

Ξ is a smooth function that approaches zero as the distance from the source increases. This transformation,

given by (1.1), preserves angles, making it appropriate to describe it as conformal. H. Friedrich introduced the

conformal Einstein field equations (CEFE), a formulation designed that is in accordance with the approach of

R. Penrose.

The application of conformal field equations presents a robust strategy for analyzing and building asymp-

totically simple spacetimes. In a broader context, these equations help facilitate the conversion of problems

associated with unbounded regions in the physical spacetime (M̃ , g̃ ) into scenarios that are enclosed in finite

domains of the unphysical spacetime (M , g ). Whose definition can be regarded as the following:

Definition (asymptotically simple spacetimes): A spacetime (M̃ , g̃ ) is considered to be asymptoti-

cally simple if there exists a smooth, oriented, time-oriented, and causal spacetime (M , g ) along

with a smooth function Ξ defined on M in such a way that [4]:

(i) M is a manifold with boundary I ≡ ∂M ;

(ii) Ξ> 0 on M \I , and Ξ= 0, dΞ ̸= 0 on I ;

(iii) there exists an embedding φ : M̃ → M such that φ(M̃) = M \I and φ∗g =Ξ2g̃ ;

(iv) each null geodesic of (M̃ , g̃ ) acquires two distinct endpoints on I .

Definition A spacetime (M̃ , g̃ ) is termed weakly asymptotically simple if there exists an asymptot-

ically simple spacetime (M , g ) and a neighborhood U of I ≡ ∂M : φ−1(U )∩M is isometric to an

open subspace Ũ of M̃ [3].

In essence, a weakly asymptotically simple spacetime represents a spacetime that asymptotically approaches

a simpler form in such a way that these specified conditions are satisfied.

Asymptotically Simple Spacetimes and Weakly Asymptotically Simple Spacetimes are important concepts in

general relativity that play a crucial role in understanding the behavior of spacetime near infinity and its rele-

vance to black holes.

An asymptotically simple spacetime is defined by its properties as it extends towards infinity. It possesses

a well-defined conformal boundary at infinity, often represented as I , where past and future null infinities

intersect. In such spacetimes, the metric approaches that of a flat Minkowski metric as you move towards in-

finity. Moreover, conserved quantities like energy, momentum, and angular momentum are well-defined and

conserved at infinity. These spacetimes are particularly important in understanding the radiative behavior of

isolated systems like binary star systems and collapsing stars. They provide a structured framework for study-

ing gravitational radiation and energy transport.
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Weakly asymptotically simple spacetimes encompass a wider range of behaviors as you approach infin-

ity. They also possess a conformal boundary at infinity, but the behavior of the metric and physical quanti-

ties is more general. Unlike asymptotically simple spacetimes, the metric does not necessarily converge to a

flat Minkowski metric at infinity, and the behavior of physical quantities might not be as well-defined. These

spacetimes are relevant for scenarios involving strong gravitational fields near black holes, where deviations

from idealized behaviors can occur due to intense gravitational interactions. Both asymptotically simple and

weakly asymptotically simple spacetimes are significant in the context of black holes.

In conclusion, these concepts collectively enhance our understanding of spacetime behavior near infinity and

its implications for black holes. Asymptotically simple spacetimes offer a more well-defined framework, while

weakly asymptotically simple spacetimes encompass a broader range of possibilities, including scenarios in-

volving intense gravitational fields near black holes.

A prototypical example is the conformal extension of the Minkowski spacetime which will be discussed in

the following. One starts with the Minkowski metric line-element,

d s̃2 =−d t̃ 2 +dr̃ 2 + r̃ 2dΩ2, (1.2)

where (t̃ , r̃ ) ∈ (−∞,+∞)× [0,+∞) and dΩ2 represents the standard metric on S2. To get a conformal extension

we need to do a coordinate transformation, corresponding to the advanced and retarded times, ũ = t̃ − r̃ &

ṽ = t̃ + r̃ , substituting equation (1.2).

d s̃2 =−dũd ṽ + (ũ − ṽ)2

4
dΩ2. (1.3)

For the compactification, we need to introduce the following: u = tanU & v = tanV , where U , V ∈ (−π/2,π/2).

Now, we are able to identify the conformal metric, d s. Using (1.2), we obtain

d s2 =−4dUdV + sin2(V −U )dΩ2

where

d s2 =Ξ2d s̃2

with Ξ= 2cosU cosV . Given the domain of U and V , we introduce the following, T =V +U & ψ=V −U . The

domain of (T,ψ) is (−π,π), with

d s2 =−dT 2 +dψ2 + sin2ψdΩ2, (1.4)

which is the metric of the Einstein static universe. The conformal boundary is given byΞ= cosT +cosψ, where

the cylinder R×S2 is the Einstein Cylinder. The purpose of this thesis is to study what happens at infinity, and

in order to do that we will focus on the region whereΞ= 0. This condition gives us the following regions, which

are presented in the following table
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Region Name Symbol

r̃ →∞ with t̃<∞ Spatial Infinity i 0

r̃ →<∞ with t̃ →±∞ Future/Past Timelike Infinity i±

r̃ →∞, t̃ →∞ with |ũ|<∞ Future Null-infinity I +

r̃ →∞, t̃ →−∞ with |ṽ |<∞ Past Null-infinity I −

The visual representation of this is a Penrose Diagram, depicted in Fig.1

i +

i -

i 0

r = const

t = const

Figure 1.1: Penrose Diagram - Representation of the standard compactification of the Minkowski spacetime
alongside the curves of constant time, solid black lines, and the curves of constant r, dotted black lines.

In this representation we can see that the spatial infinity, i 0, is mapped to the origin (T = 0 and ψ= π) and

I ± and to the future/past null cone through the origin.

Figure 1.2: Representation of spatial infinity, i 0, in the Penrose Diagram.Taken from [4].
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1.3 Newman-Penrose constants

The NP constants, originally introduced in [5], are quantities defined on null infinity that obey conservation

laws for asymptotically flat gravitational fields. For linear fields propagating in flat spacetime, there exists an

infinite number of conservation laws. For example, in ordinary Electromagnetic (EM) theory with a spin-1

field, the total charge is conserved. In the linearized gravitational theory, which involves a spin-2 field, the total

mass, linear momentum, and angular momentum are also conserved. In our case, we are interested in studying

spin-0 fields, which correspond to solutions of the wave equation.

The NP constants form an infinite hierarchy of conserved quantities for linear equations, including the

spin-1, spin-2, and spin-0 fields. Newman and Penrose demonstrated that these constants can be expressed as

the product of the square of the dipole moment and the difference between the monopole and the quadrupole

moments, as shown in [2]. However, in the full non-linear gravitational theory, the conservation of mass and

momentum no longer holds.

Turning our attention to the interpretation of these charges, the NP constants are considered a set of con-

served charges at null infinity [5]. These charges are computed as 2-surface integrals at cuts C ≈ S2 of null

infinity I . In the linear theory, an infinite hierarchy of these conserved quantities exists, while in the non-

linear theory of General Relativity, only ten quantities remain conserved [5].

A conservation law arises when the value of an integral remains constant regardless of the specific "time" at

which a 2-surface is selected. In the context of our current investigation, we can determine whether outgoing

waves carry away or preserve the quantity of interest by computing the integral at future null infinity with a

constant retarded time u = u0, and then comparing it with the integral at a later retarded time u = u1. The dif-

ference between the two integrals will capture the contribution from the outgoing waves that escape between

the two hypersurfaces defined by u = constant. If this difference always vanishes, then we have a conserved

quantity. On the other hand, if the difference does not vanish, then the quantity is not conserved.

Figure 1.3: Visual representation of the behavior of the Newman-Penrose constants at null infinity.
Taken from [5].
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The newly (in 1968) discovered conservation laws are distinct and not connected to any previously known

laws. While a comprehensive physical interpretation of these new quantities is not yet evident, a preliminary

understanding of their significance can be proposed. This interpretation is largely based on their meaning in

the linear theories, where their conservation is relatively straightforward, as well as their interpretation in the

context of static fields. To gain deeper insights, we will conduct a detailed analysis of the linear gravitational

and Maxwell theories. Through this investigation, we hope to shed light on the nature and implications of these

novel conservation laws.

In the context of flat spacetime, we will introduce a set of null polar coordinates, where the usual spherical

polar angles, θ andφ, are retained. However, we will introduce new coordinates, r and u, such that r /
p

2 repre-

sents the radial distance, and (2u − r )/
p

2 serves as the time parameter in the standard system. Consequently,
p

2u corresponds to the conventional retarded time parameter, while
p

2(u + r ) represents the corresponding

advanced time. The hypersurfaces defined by u = constant are the outgoing null cones with their vertices at

r = 0. The metric is given by:

d s2 = 2du2 +2dudr − 1

2
r 2(dθ2 + sin2θdφ2) = gµνd xµd xν. (1.5)

with

x0 = u, x1 = r, x2 = θ, x3 =φ. (1.6)

At any point in spacetime, a complex tetrad can be selected as follows: The vector lµ represents the outward

null direction tangent to the cone defined by u = const., while nµ points inward and is the null vector directed

toward r = 0. Additionally, mµ and mµ are complex vectors tangent to the two-dimensional sphere formed by

constant r and u. In the given null coordinate system, these vectors are chosen to have the form

lµ = δµ1 , nµ = δµ0 −δµ1 ,

mµ = 1

r

(
δ
µ
2 + i

sinθ
δ
µ
3

)
, mµ = 1

r

(
δ
µ
2 − i

sinθ
δ
µ
3

)
. (1.7)

To describe the electromagnetic (EM) field, we make use of three complex tetrad components of the Maxwell

field tensor denoted as Fµν. These components are defined as follows:

Φ0 = Fµνlµmν,

Φ1 = 1

2
Fµν(lµnν+mµmν),

Φ2 = Fµνmµnν. (1.8)

Using (1.7), we can express the Maxwell field tensor in terms of the tetrad components as follows:

Φ0 = 2
−1
2 (E + i B ) ·m,

Φ1 = 1

2
(E + i B ) ·c ,

Φ2 =−2
−1
2 (E + i B ) ·m. (1.9)
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From (1.8) we can see thatΦ0,Φ1 andΦ2 have spin weights of 1, 0 and -1, respectively.

Let S be a S2 sphere of radius r with the following line element,

d s2 =−r 2(dθ2 + sin2θdφ2) =−2m(amb)d xad xb . (1.10)

Note that can be the following gauge freedom,

m → m̂ = e iψm, m → m̂ = e−iψm, (1.11)

where ψ is a real function. This represents a spin through ψ. Let ηa...by...z be a tensor in S, where there are p

indices in the first index set and q indices in the second. Let

η= ma ...mbmy ...mzηa...by...z . (1.12)

Under spins (1.11) η transforms as follows,

η→ η̂= e i sψη, (1.13)

where s = p −q is the spin weight of η.

Thus, we can write the Maxwell equations in terms of Φ, the null polar coordinates and the operator ð in the

following way,

(
∂

∂r
+ 2

r

)
Φ1 + 1

r
ðΦ0 = 0, (1.14)(

∂

∂r
+ 1

r

)
Φ2 + 1

r
ðΦ1 = 0, (1.15)(

∂

∂u
− ∂

∂r
− 1

r

)
Φ0 + 1

r
ðΦ1 = 0, (1.16)(

∂

∂u
− ∂

∂r
− 2

r

)
Φ1 + 1

r
ðΦ2 = 0. (1.17)

Where ð is given by

ðη=−(sinθ)s
(
∂

∂θ
+ i

sinθ

∂

∂φ

)
{(sinθ)−sη},

where s represents the spin weight.

Using this notation, it becomes easy to establish a set of orthogonal functions that achieve completeness on

the sphere and also function as eigenfunctions of the operator ðð. The conventional spherical harmonics are

denoted as Yℓm(θ,φ). The spin-weighted spherical harmonics can be defined in the following manner [4]:

0Yl m(θ,φ) = Ylm(θ,φ), (1.18)

s Ylm(θ,φ) =


(−1)s

[
2s (l−s)!

(l+s)!

]1/2
ðs Ylm(θ,φ) 0 ≤ s ≤ l[

2−s (l+s)!
(l−s)!

]1/2
ð
−s

Ylm(θ,φ) 0 ≥ s ≥−l

0 otherwise.

(1.19)
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Our focus lies on solutions that fulfill a suitable asymptotic boundary condition. This condition allows for

all sufficiently smooth retarded fields and includes fields with incoming waves that decay appropriately. We

employ the integer N to gauge the degree of smoothness needed, and our requirement is as follows:

φ0 =
N∑

n=0

φn
0 (u,θ,φ)

r 3+n +o(r−3−N ), (1.20)

we must assume that the derivatives r , θ, φ and u of (1.20) hold. Then, (1.20) also controls the behavior of Φ1

andΦ2.

Once equations (1.12) and (1.13) are integrated, they yield

Φ1 =
Φ0

1

r 2 +
N∑

n=0

ðφn
0

(n +1)r 3+n +o(r−3−N ), (1.21)

Φ2 =
Φ0

2

r
+ 1

r 2 ðΦ0
1 +

N∑
n=0

ð
2
φn

0

(n +1)(n +2)r 3+n +o(r−3−N ). (1.22)

Substituting into equations (1.14) and (1.15), we obtain the following

Φ̇0
1 =−ðΦ0

2, Φ̇0
0 =−ðΦ0

1, (1.23)

where the over dot represents the derivative with respect to u.

Using ððη−ððη= 2sη, we can write

(n +1)Φ̇n+1
0 =−{ððΦn

0 + (n +3)nΦn
0 } (N > n ≥ 0). (1.24)

Before proceeding to derive the new conservation laws, it is essential to first exhibit the law of conservation of

charge within this formalism. To achieve this, we multiply the first equation of (1.23) by 0Y0,0 and subsequently

integrate over the sphere, yielding:

d

du

∫
0Y0,0Φ

0
1dω=−

∫
0Y0,0ðΦ0

2dω= 0 (1.25)

with
∫

s Yl ,mðl−s+1ξdω= 0 [5]. Therefore,
∫

0Y0,0Φ
0
1dω is constant and proportional to the total electric charge.

Using the same approach, we can obtain the new conserved quantities multiplying (1.24) by 1Y n−k+1,m and

integrating over the sphere
∫

s Y l ,mððηdω=−(l − s)(l + s +1)
∫

s Y l ,mηdω:

(n +1)
d

du

∫
1Yn−k+1,mΦ

n+1
0 dω=−

∫
1Y n−k+1,m(ððΦn

0 + (n +3)nΦn
0 )dω=−k(2n −k +3)

∫
1Y n−k+1,mΦ

n
0 dω.

(1.26)

Consequently,

F n,k
m =

∫
1Y n−k+1,mΦ

n+1
0 dω, (1.27)

where m, n and k satisfy n ≥ k ≥ 0, |m| ≤ n −k +1, and therefore

Ḟ n,k
m = −k(2n −k +3)

(n +1)
F n−1,k−1

m ; Ḟ n,0
m = 0. (1.28)
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As a result, we obtain a series of conserved quantities denoted as F n,0
m (when N ≥ n +1). Nevertheless, in the

non-linear Einstein-Maxwell theory, only certain quantities for n = 0 and m =−1,0,1 remain conserved. Hence,

our main focus will be on these three quantities, and we will use the shorthand notation Fm = F 0,0
m .

From the following ansatz

Φn
0 =

∞∑
l=n+1

αn
l ,m 1Yl ,m , (1.29)

for all outgoing multipole solutions (with sufficient smoothness), the coefficients F n,k
m are zero in the absence

of incoming waves. These coefficients, F n,k
m , provide a measure of the asymptotic properties of the time profile

of the incoming waves for large values of the advanced time coordinate v = u + r . In this analysis, we will

particularly focus on the case of an incoming dipole field with the dipole axis along the z-direction.

The field of the advanced dipole described with retarded coordinates is as follows:

φ0 =−sinθ
∂2

∂r 2

(α
r

)
,

φ1 =−2cosθ
∂

∂r

( α
r 2

)
,

φ2 =+2sinθ
α

r 3 , (1.30)

in the above expression,α=α(u+r ) is an arbitrary complex function of the advanced time u+r and represents

the electric dipole moment plus i times the magnetic dipole moment. To verify the validity of this solution, we

can perform a direct substitution of the given expression in the Maxwell equations (1.12)-(1.15). To satisfy the

condition (1.20), we must assume (taking N = 1):

α=β(u + r )−1 +o((u + r )−1)

Plugging into (1.30) and making use of the following identity (u + r )−1 = r−1 −ur−2 +u2r−3, we obtain:

Φ0 =−6βr−4 sinθ+o(r−4), (1.31)

and with (1.20),Φ1
0 =−6βsinθ and (1.27),

F0 =−8(3π)−
1
2β, F−1 = F1 = 0.

Hence, the Fm values are determined solely by the coefficient of the (u+r )−1 term in the asymptotic expansion

of the incoming dipole field. Consequently, in flat spacetime, they may not carry significant fundamental sig-

nificance. A similar observation applies to the other F n,k
m quantities.

Furthermore, these conclusions and results obtained in the context of Maxwell theory can be straightforwardly
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extended to the case of linearized gravitational theory. The five complex functions:

Ψ0 =−Cµνρσlµmνlρmσ,

Ψ1 =−Cµνρσlµnνlρmσ,

Ψ2 =−Cµνρσmµnνlρmσ,

Ψ3 =−Cµνρσmµnνlσnσ,

Ψ4 =−Cµνρσmµnνmρnσ (1.32)

In the context of linearized gravitational theory, we introduce the five complex functions denoted by Ψ, where

Cµνρσ represents the linearized Weyl tensor. These functions play an analogous role to the Φ’s in the Maxwell

theory. Their dynamics are governed by the linearized Bianchi identities. Much like the correspondence be-

tween Fµν and the electromagnetic fields (E ,B ), the linearized Weyl tensor corresponds to two trace-free sym-

metric, 3-dimensional tensors denoted as Ckm and Ekm , with Ckm given by Cακβµ(lα+nα)(lβ+nβ) and Ekm

given by C∗
ακβµ

(lα+nα)(lβ+nβ). Writting

Zk, j =
1

2
Ck, j +

i

2
Ek, j ,

we get

Ψ0 =−Zk, j mk m j , Ψ1 = 2
1
2 Zk, j ck m j , Ψ2 = Zk, j mk m j , Ψ3 =−2

1
2 Zk, j ck m j , Ψ4 =−Zk, j mk m j .

Similar to the Maxwell theory, our focus lies on solutions that satisfy a boundary condition at infinity, allow-

ing for sufficiently smooth retarded fields and properly tailing off incoming fields. Specifically, we demand

behavior of the form:

Ψ0 =
N∑

n=0

Ψn
0

r 5+n +o(r−5−N ), (1.33)

under these conditions, the ’Bianchi identities’ can be integrated to yield:

Ψ1 =
Ψ0

1

r 4 +o(r−4),

Ψ2 =
Ψ0

2

r 3 +o(r−3),

Ψ3 =
Ψ0

3

r 2 +o(r−2),

Ψ4 =
Ψ0

4

r
+o(r−1). (1.34)

After employing equations (1.33), (1.34), and ð, the time-development equations (the second set of the

Bianchi identities) take the following form:

Ψ̇0
0 =−ðΨ0

1, Ψ̇0
1 =−ðΨ0

2, Ψ̇0
2 =−ðΨ0

3, Ψ̇0
3 =−ðΨ0

4. (1.35)
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(n +1)Ψ̇n+1
0 =−{ðð+ (n +5)n}Ψn

0 (N > n ≥ 0). (1.36)

The conservation of mass can be derived using equation (1.35) in a manner analogous to how the conser-

vation of charge was obtained from equation (1.23)

d

du

∫
0Y0,0Ψ

0
2dω=−

∫
0Y0,0ðΨ0

3dω= 0. (1.37)

The total mass is proportional to the function
∫

0Y0,0Ψ
0
2dω. Demonstrating the conservation laws for linear

and angular momentum requires a more involved approach, as their proofs rely on the existence of the lin-

earized metric tensor and the Weyl tensor. The crucial significance of the existence of the linearized metric

lies in implying that the dipole parts of Ψ0
3 and Ψ0

2 are purely ’magnetic’ and ’electric’, respectively. The linear

momentum vector is given by ∫
0Y1,mRe(Ψ0

2)dω=
∫

0Y1,mΨ
0
2dω (1.38)

and the angular momentum vector

∫
0Y1,m Im(ðΨ0

1)dω (m =−1,0,1). (1.39)

In the linear theory, the new conservation laws can be derived from equation (1.36) by multiplying both

sides by 2Y n−k+2,m and integrating over the sphere:

(n +1)
d

du

∫
2Y n−k+2,mΨ

n+1
0 dω=−

∫
2Y n−k+2,m{ððΨn

0 + (n +5)nΨn
0 }dω=−

∫
2Y n−k+2,mk(2n −k +5)Ψn

0 dω,

(1.40)

hence

Ġn,k
m = −k(2n −k +5)

(n +1)
Gn−1,k−1

m ; Ġn,0
m = 0. (1.41)

where m, n and k satisfy n ≥ k ≥ 0, |m| ≤ n −k +2, with

Gn,k
m =

∫
1Y n−k+2,mΦ

n+1
0 dω. (1.42)

The interpretation of these charges is still a subject of debate [[6], [2], [7]]. However, their conservation

holds in general asymptotically flat spacetimes, even when the dynamics involve complex phenomena like

black hole collisions [2]. Recent interest in asymptotic quantities, particularly the Bondi-Metzner-Sachs (BMS)

charges, has emerged due to their connection with the concept of black hole soft hair [[1], [8], [9]]. Under-

standing the relationship between conserved quantities at past and future null infinity is a crucial aspect of

these discussions.

However, the resolution of the singular nature of spatial infinity poses challenges in matching the conserved

quantities. Therefore, the study of the NP constants and their conservation offers valuable insights into the

dynamics of gravitational fields, particularly in black hole collisions and asymptotically flat spacetimes. These

constants provide information about the residual radiation and behavior of the system at later times, shedding

light on the intricate nature of spacetime and the conservation laws that govern it.
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1.4 Peeling Theorem

The peeling theorem, one of the most emblematic results in the classical theory of asymptotics in general

relativity, has played a very important role in the development of the modern notion of gravitational radiation.

It is usually formulated within the context of asymptotically simple spacetimes, as defined in Section 10.2 of

[3]. An inspection of the proof of the peeling theorem reveals that, in fact, it is only necessary to assume that the

conformal extension is C4. In view of this, the question of the existence and genericity of spacetimes satisfying

the peeling behavior can be rephrased in terms of the construction of asymptotically flat spacetimes with,

at least, this minimum of differentiability [10]. Penrose’s compactification procedure, when applied to the

Minkowski spacetime, yields a fully smooth conformal extension. However, for spacetimes with nonvanishing

mass, such as the Schwarzschild spacetime, the conformal structure degenerates at spatial infinity. This degen-

eration occurs because spatial infinity can be viewed as the final point of the generators of null infinity, either

in the past or future direction. As a result, it is natural to expect that the behavior of the gravitational fields near

spatial infinity will somehow reflect the peeling properties of the spacetime [11].

In the context of the physical Ricci tensor vanishing near infinity, the physical Weyl tensor Cabcd contains

all essential information about the curvature in the region. Being conformally invariant, it is related to the

unphysical Weyl tensor C̃abcd as Cabcd = C̃abcd . The critical point to note is that C̃abcd must vanish at I + [12].

Now, consider any null geodesicγwithin spacetime M from a point p in the physical region to another point

q on I +. Let λ be the physical affine parameter along γ, where q corresponds to the limit as λ tends to infinity.

The tangent vector ka to γ in this parameterization plays a vital role. While the unphysical Weyl curvature on γ

may not have any specific characteristics, it is guaranteed to vanish at q . However, during the transformation

from unphysical to physical spacetime, an infinite amount of "stretching" occurs along the direction of ka . This

results in the peeling property of the physical Weyl tensor, which can be expressed as follows: As λ approaches

infinity, we observe that:

Cabcd =
C (1)

abcd

λ
+

C (2)
abcd

λ2 +
C (3)

abcd

λ3 +
C (4)

abcd

λ4 +O
( 1

λ5

)
, (1.43)

in the context of an asymptotically Minkowski spacetime basis, each component of the physical Weyl tensor,

denoted as Cµ

abcd , exhibits bounded behavior [12].

The peeling theorem, documented in [[13], [14], [15]], represents a significant outcome in the study of

asymptotic behavior in general relativity. It characterizes the decay of the Weyl tensor in the asymptotic re-

gion of the spacetime, signifying the gradual "peeling" of gravitational radiation. This theorem deepens our

understanding of the intricate nature of gravitational radiation and its properties in the far reaching regions of

the spacetime.

Hence, the peeling theorem and the NP constants are interconnected concepts that deepen our under-

standing of the gravitational radiation and its properties in asymptotically flat spacetimes.

1.5 The Newman-Penrose gauge

The Peeling theorem underscores the advantages of adopting a gauge that is well-suited to the structure

of null infinity. By utilizing the NP gauge, we gain even deeper insights into the properties of asymptotically
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simple spacetimes. This gauge choice allows for a more comprehensive understanding of the behavior and

characteristics of these spacetimes at infinity [3].

Let us consider a conformal extension (M , g ,Ξ) of an asymptotically simple spacetime (M̃ , g̃ ), where g̃ sat-

isfies the vacuum Einstein field equations with a cosmological constant of zero. In the theory of asymptotics,

it is known that for vacuum spacetimes with zero cosmological constant, the conformal boundary I is com-

posed of two distinct null hypersurfaces: I + and I −. Both hypersurfaces have the topological structure of

R×S2.

In the forthcoming exposition, we shall use the symbol {l ′,n′,m′,m′} to denote a frame defined in a local

region U around I +. This frame will be referred to as "adapted to I + " provided it satisfies the following

conditions:

(i) The vector l ′ is tangential to I + and remains parallelly propagated along this null hypersurface, which

can be expressed as follows:

∇l ′ l
′ = 0 on I +.

(ii) Within U , we can find a smooth function u that acts as an affine parameter along the null generators of

I +, denoted by l ′(u) ≃ 1. We then define the vector n′ as n′ = g (du, ·), which makes it tangential to the

null generators of the hypersurfaces transverse to I defined by:

Nu◦ ≡ {p ∈U | u(p) = u◦},

with constant u◦.

(iii) The tetrad {l ′,n′,m′,m′} is aligned with the tangent vectors of the cuts Cu◦ ≡ Nu◦ ∩I + ≈ S2, and it is

parallelly propagated along Nu◦ , meaning that it fulfills the condition:

∇n′ {l ′,n′,m′,m′} = 0 on Nu◦ .
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Chapter 2

Cylinder at i 0

In Penrose’s conformal approach [16], the investigation of the gravitational field’s decay and the asymptotic

structure of spacetime is conducted not with respect to the physical spacetime (M̃ , g̃ ) that satisfies the Einstein

field equations R̃ab = 0. Instead, it is examined in terms of conformally related spacetime (M , g ), referred to as

the unphysical spacetime, where g =Ω2g̃ . The conformal factor Ω plays a crucial role as a boundary defining

function. Specifically, it defines the set of points I in the unphysical manifold whereΩ= 0 while ensuring that

dΩ ̸= 0.

Within the conformal structure of asymptotically flat spacetimes, a distinguished point is spatial infinity i 0,

characterized by Ω= 0 and dΩ= 0. Extensive discussions on the conformal approach and the conformal Ein-

stein field equations can be found in [[3], [17], [18]]. This comprehensive exploration delves into the nuances

of the conformal methodology and its implications for understanding the asymptotic behavior and structure

of spacetime.

2.1 The i 0 cylinder representation in Minkowski spacetime

Consider the spherical polar coordinates denoted by (t̃ , ρ̃,ϑA) with A = 1,2, where ϑA represents a set of

coordinates on S2. In this coordinate system, the metric of physical Minkowski spacetime is given by η̃

η̃=−dt̃ ⊗dt̃ +dρ̃⊗dρ̃+ ρ̃2σ. (2.1)

In the specific range, t̃ ∈ (−∞,∞), ρ̃ ∈ [0,∞), where σ denotes the standard metric on S2, we introduce un-

physical spherical polar coordinates (t ,ρ,ϑA) as an intermediate step towards obtaining the desired conformal

representation

t = t̃

ρ̃2 − t̃ 2 , ρ = ρ̃

ρ̃2 − t̃ 2 . (2.2)

By expressing the physical Minkowski metric η̃ in terms of the unphysical spherical polar coordinates (t ,ρ,ϑA),

one can easily recognize the inversion conformal representation of the Minkowski spacetime (R4,η), where:

η=Ξ2η̃. (2.3)
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Substituting t and ρ into Ξ yields,

Ξ= ρ2 − t 2 =
(

ρ̃

ρ̃2 − t̃ 2

)2

−
(

t̃

ρ̃2 − t̃ 2

)2

= ρ̃2 − t̃ 2

(ρ̃2 − t̃ 2)2 = 1

ρ̃2 − t̃ 2 , (2.4)

substituting Ξ into (2.3) yields:

η=
(

1

ρ̃2 − t̃ 2

)2

(−dt̃ ⊗dt̃ +dρ̃⊗dρ̃+ ρ̃2σ) = 1

(ρ̃2 − t̃ 2)2 (−dt̃ ⊗dt̃ +dρ̃⊗dρ̃+ ρ̃2σ) (2.5)

with

η=−dt ⊗dt +dρ⊗dρ+ρ2σ, (2.6)

plugging (2.6) into (2.5) yields:

η=−d
(

t̃

ρ̃2 − t̃ 2

)
⊗d

(
t̃

ρ̃2 − t̃ 2

)
+d

(
ρ̃

ρ̃2 − t̃ 2

)
⊗d

(
ρ̃

ρ̃2 − t̃ 2

)
+

(
ρ̃

ρ̃2 − t̃ 2

)2

σ

=− dt̃ ⊗dt̃

(ρ̃2 − t̃ 2)2 + dρ̃⊗dρ̃

(ρ̃2 − t̃ 2)2 + ρ̃2

(ρ̃2 − t̃ 2)2σ

=− 1

ρ̃2 − t̃ 2 (dt̃ ⊗dt̃ −dρ̃⊗dρ̃+ ρ̃2σ). (2.7)

By comparing the result with the expression (2.3), we see that they are equal:

η=− 1

ρ̃2 − t̃ 2 (dt̃ ⊗dt̃ −dρ̃⊗dρ̃+ ρ̃2σ). (2.8)

Hence, the equation (2.3) is equivalent to the given expression for η with the provided expressions for t and ρ.

In this conformal representation, where t ∈ (−∞,∞), ρ ∈ [0,∞), the spatial infinity and the origin undergo an

interchange. This implies that i 0 is represented by the point (t = 0,ρ = 0) in (R4,η). Introducing the coordinates

(τ,ρ,ϑA), where t = ρτ, and considering the conformal metric g = ρ−2η, we obtain:

g = ρ−2η= ρ−2(−dt ⊗dt +dρ⊗dρ+ρ2σ) = ρ−2(−d(ρτ)⊗d(ρτ)+dρ⊗dρ+ρ2σ) =

= ρ−2(−(ρdτ+τdρ)⊗ (ρdτ+τdρ)+dρ⊗dρ+ρ2σ) =

= ρ−2(−ρ2dτ⊗dτ−τ2dρ⊗dρ−ρτdρ⊗dτ−τρdτ⊗dρ+ρ2σ) =

=−dτ⊗dτ+
(
1−τ2

)
ρ2 dρ⊗dρ− τ

ρ
dρ⊗dτ− τ

ρ
dτ⊗dρ+σ≡

g =−dτ⊗dτ+ 1−τ2

ρ2 dρ⊗dρ− τ

ρ

(
dρ⊗dτ+dρ⊗dτ

)+σ. (2.9)

In this context the unphyical metric g is related to the physical metric through the following relationship:

g =Θ2η̃, where Θ := Ξ

ρ
= ρ (

1−τ2) . (2.10)

The unphysical metric g , also known as the i 0 - cylinder metric, is associated with the coordinates (τ,ρ,ϑA),

which are commonly referred to as the F - coordinates system, where F stands for Friedrich. The F-coordinate
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system can be related to the physical polar coordinates through the following relation:

τ= t̃

ρ̃
, ρ = ρ̃

ρ̃2 − t̃ 2 , (2.11)

the inverse transformation is given by

t̃ = τ

ρ(1−τ2)
, ρ̃ = 1

ρ(1−τ2)
. (2.12)

Upon unwrapping the definitions, the conformal factorΘ in F -coordinate system and physical coordinates can

be expressed as follows:

Θ= ρ(1−τ2) = 1

ρ̃
(2.13)

The inverse transformation in (2.12) can be written as

t̃ = τ

Θ
, ρ̃ = 1

Θ
. (2.14)

Furthermore, it is worth noting that the physical retarded and advanced times, denoted as ũ := t̃ − ρ̃ and

ṽ := t̃ + ρ̃, respectively, can be related to the unphysical advanced and retarded times as follows:

v := t −ρ =−ρ(1−τ) = ṽ−1, u := t +ρ = ρ(1+τ) =−ũ−1. (2.15)

In this conformal representation of the Minkowski spacetime, future and past null infinity can be identified at

the following locations:

I + ≡ {p ∈M | τ(p) = 1}, I − ≡ {p ∈M | τ(p) =−1}. (2.16)

The term i 0 - cylinder derives from the observation that spatial infinity is mapped to an extended set I ≈R×S2.

I ≡ {p ∈M | |τ(p)| < 1, ρ(p) = 0}, I 0 ≡ {p ∈M | τ(p) = 0, ρ(p) = 0},

where the regions spatial and null infinity meet were already defined in section 1.2.

-1.0

-0.5

0.5

1.0I+

I-

I0

Figure 2.1: Representation of the Friedrich Cylinder. Past null infinity is represented by I −, Future null infinity
I +, spatial infinity as i 0 and the critical sets as I+ and I−.
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To facilitate the upcoming discussion, we introduce the following adapted g - null frame:

e = (1+τ)∂τ−ρ∂ρ , e = (1−τ)∂τ+ρ∂ρ , e A with A = {↑,↓}, (2.17)

here, the e A repesents a complex null frame onS2, accompanied by the associated coframeωA , enabling us to

express the standard metric on S2 as follows:

σ= 2(ω↑⊗ω↓+ω↓⊗ω↑). (2.18)

Remark 1. To ensure clarity and avoid confusion, we designate the NP - frames hinged at I ± as indicated by

the symbols ±. Consequently, the elements of the frame on S2 are labelled with the symbols ↑↓.

To differentiate it from other frames, we refer to the tetrad {e,e,e A} as the F - frame. Notably, in terms of the

F - frame, the unphysical metric g can be represented as follows:

gab = e(aeb) −ω↑
(aω

↓
b) (2.19)

the tetrad normalization condition can be expressed as eaea =−ω↑
aea

↓ =−2, ensuring that all other contractions

vanish. Similarly, the η̃ - null frame, denoted as {L, L, ẽ A}, is defined as follows:

L = ∂t̃ +∂ρ̃ , L = ∂t̃ −∂ρ̃ , ẽ A = ρ̃−1e A (2.20)

the physical null - frame, consisting of vectors L, L, will be denoted as the physical null - frame. It is important

to note that all quantities associated with the physical spacetime will be marked with a tilde over the symbol.

For instance, quantities like φ̃ represent physical fields, whileφ corresponds to unphysical fields that have been

conformally rescaled.

The NP-frame, another unphysical frame, holds significance in defining the NP constants. The relationship

between the F-frame and the NP-frame in Minkowski spacetime was derived and discussed in [19], with further

insights available in [20]. By leveraging the findings in [19] along with the expressions presented in this section,

we can establish the following proposition, which elucidates the connection between these three frames:

Proposition 1. The NP-frame, which is hinged at I ±, the F-frame, and the standard physical frame for the

Minkowski spacetime are interconnected through the following relationship:

NP hinged at I + : e+ = 4(Λ+)2e =Θ−2L, e+ = 1
4 (Λ+)−2e = L, e+

A = e A =Θ−1ẽ A

NP hinged at I − : e− = 1
4 (Λ−)−2e = L, e− = 4(Λ−)2e =Θ−2L, e−

A = e A =Θ−1ẽ A .

The conformal factor Θ and boost parameter κ can be expressed in F-coordinates and physical coordinates as

follows:

Θ := ρ(1−τ2) = 1

ρ̃
, κ := 1+τ

1−τ =− ṽ

ũ
. (2.21)
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The Lorentz transformation that connects the NP and F-frames can be expressed in terms of the following quan-

tities:

(Λ+)2 :=Θ−1κ−1 = ρ−1(1+τ)−2, (Λ−)2 :=Θ−1κ = ρ−1(1−τ)−2. (2.22)

Remark 2. It should be noted that the NP-frame is not a null tetrad for the physical metric η̃, but rather with

respect to a conformally related metric g ′ = ϑ2η̃, where ϑ represents a conformal factor. In the case of the

Minkowski spacetime, it turns out that this conformally related metric g ′ coincides with the i 0-cylinder rep-

resentation g . Specifically, in general, we have g ′ = κ2g , where κ = 1 for the specific case of the Minkowski

spacetime. Formal asymptotic expansions for the conformal transformation κ and the Lorentz transformation

that relates the NP and F-frames have been computed for time-symmetric initial data in asymptotically flat

spacetimes, as described in [21].

2.2 Linear model equations

Though the CEFEs have made significant strides in the mathematical study of spacetimes and numerical

evolutions, their use in solving physical issues has been surprisingly sparse. This is clear from the fact that there

is currently no literature on the use of linear perturbation theory to study the CEFEs (and perhaps as a result of

this). To characterize gravitational radiation using conventional (linear) metrics, such an analysis is required.

The Bianchi identities, which offer a collection of evolution and constraint equations for the Weyl curva-

ture, form the basis of the CEFEs. The spin-2 equation in a fixed backdrop spacetime, which is analogous to

linearizing the Weyl sector of the CEFEs in spinorial form, is one approach to the linearized issue. The lin-

earized metric formulations of the Einstein field equations seem considerably different from the elegant spin-2

solution ∇A′ AφABC D = 0, which is also highly distinct. The CEFEs’ non-linear wave-like formulation was first

developed for the vacuum situation in [22], and it has since been expanded to include the case of trace-free

matter in [23], [24].

H. Friedrich’s conformal Einstein field equations are fundamentally based on equations for the Weyl ten-

sor derived from the Bianchi identities. These formulations represent a distinct departure from purely metric

formulations and generalized harmonic gauge formulations. According to Penrose’s perspective on linearized

gravity, specifically in the context of vacuum and around flat spacetime, the gravitational field is represented

by a spin-2 field that satisfies the following equations:

∇̃A A′
φ̃ABC D = 0, (2.23)

in this context, φ̃ABC D denotes a totally symmetric spinor field, which serves as the linear counterpart of the

Weyl spinor. This equation provides an excellent linear model for the Bianchi sector of the conformal Einstein

field equations. A similar observation applies to Maxwell’s equations in flat spacetime, which can be described

in terms of the spin-1 equation

∇̃A A′
φ̃AB = 0, (2.24)
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in this equation, φ̃AB represents a symmetric spinor known as the Maxwell spinor, which encodes the electro-

magnetic field [25].

In [5], the NP constants were originally defined within the linear framework for spin-1 and spin-2 fields, as

well as within the nonlinear setting for the Einstein field equations formulated in the NP formalism. While the

spin-2 field is often employed in curvature-oriented formulations, wave equations are better suited for metric

formulations. In the case of linearized gravity, for instance, the standard formulation, as described in [[26],

[12]], typically follows an approach that resembles the hyperbolic reduction of the Einstein field equations in

harmonic gauge. In this formulation, the final expression takes the form of a wave equation for the metric

components.

Scalar fields that satisfy these wave equations can be referred to as spin-0 fields. In this section, we will

express the physical wave equation in flat spacetime as a wave equation for an unphysical field propagating in

the i 0 cylinder background. A method to solve the resulting equation, following a similar approach to that used

for spin-1 and spin-2 fields in [27], [19], has been outlined in [28], [25].

2.3 Spin-0 fields close to i 0 and I

Recall that for two conformally related manifolds - which do not necessarily have to be the i 0 cylinder and

Minkowski spacetime - (M̃ , g̃ ) and (M , g ), the D’Alembertian operator transforms under conformal transfor-

mations as follows [29]:

□φ− 1

6
φR =Ω−3

(
□̃φ̃− 1

6
φ̃R̃

)
, (2.25)

where □̃= g̃ ab∇̃a∇̃b and □= g ab∇a∇b with ∇ and ∇̃, R and R̃, denoting the Levi-Civita connections and Ricci

scalars of g and g̃ , respectively. Let φ̃ be a scalar propagating in flat spacetime (R4, η̃) according to:

□̃φ̃= 0. (2.26)

By applying the conformal transformation formula for the wave equation, given in equation (2.25), to the wave

equation in (2.26) on the physical Minkowski spacetime (M̃ , η̃) and selecting the target conformal extension

- the unphysical spacetime - (M , g ) to be Friedrich’s cylinder at spatial infinity, we can obtain the following

equation:

□φ= 0. (2.27)

Thus, (2.27) is just the wave equation for the unphysical field propagating on the i 0 cylinder background.

Remark 3. In the i 0-cylinder representation of Minkowski spacetime expressed in physical coordinates, the

conformal factor is given by Θ = ρ̃−1. As a result, the unphysical (conformal) field φ = Θ−1φ̃ can be directly

identified as the radiation field ρ̃φ̃ due to the factor of ρ̃ present.

In F -coordinates, equation (2.26) can be explicitly written as:

(
τ2 −1

)
∂2
τφ−2ρτ∂τ∂ρφ+ρ2∂2

ρφ+2τ∂τφ+∆S2φ= 0, (2.28)

here, ∆S2 represents the Laplace operator on S2. Following the methodology employed in the analysis of spin-

20



1, spin-2, and spin-0 fields in [[20], [28]], respectively, we adopt the following Ansatz:

φ=
∞∑

p=0

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

p !
ap;ℓ,m(τ)ρp Yℓm . (2.29)

In terms of initial data, this entails examining analytic initial data in the vicinity of i 0, which can be expressed

in the following form:

φ|S =
∞∑

p=0

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

p !
ap;ℓ,m(0)Yℓmρ

p , φ̇|S =
∞∑

p=0

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

p !
ȧp;ℓ,m(0)Yℓmρ

p , (2.30)

here, the over-dot represents a derivative with respect to ∂τ.

Proposition 2. A calculation, as detailed in [28], reveals that solving the wave equation (2.28) simplifies to solv-

ing the following ordinary differential equation (ODE) for every p, ℓ, and m:

(1−τ2)äp;ℓ,m +2τ(p −1)ȧp,ℓ,m + (ℓ+p)(ℓ−p +1)ap;ℓ,m = 0. (2.31)

In order to obtain (2.31), one needs to apply the operator ∂n
ρ to (2.28):

∂n
ρ

((
τ2 −1

)
∂2
τφ−2ρτ∂τ∂ρφ+ρ2∂2

ρφ+2τ∂τφ+∆S2φ
)
= 0. (2.32)

After expanding, ∂n
ρ is going to act on each term thus giving the following expressions:

∂n
ρ

[(
τ2 −1

)
∂2
τφ

]= (
τ2 −1

)
∂2
τ

(
∂n
ρφ

)
, (2.33)

∂n
ρ

(
2τ∂τφ

)= 2τ∂τ
(
∂n
ρφ

)
, (2.34)

∂n
ρ (∆φ) =−ℓ(ℓ+1)∂n

ρφ. (2.35)

Proposition 3. The following expressions will be inductively proved by using (1).

∂n
ρ

(
2ρτ∂τ∂ρφ

)= 2ρτ∂τ∂
n+1
ρ φ+2nτ∂τ∂

n
ρφ, (2.36)

∂n
ρ

(
ρ2∂2

ρφ
)
= ρ2∂n+2

ρ φ+2nρ∂n+1
ρ φ+n(n −1)∂n

ρφ. (2.37)

The term ∂n
ρφ can be written as,

∂n
ρφ= ∂n

p

[ ∞∑
p=0

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

p !
ap;ℓ,m(τ)Yℓmρ

p

]
=

∞∑
p=0

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

p !
ap;ℓ,m(τ)∂n

p

(
ρp Yℓm

)=
=

∞∑
p=n

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

p !
ap;ℓ,m(τ)

p !

(p −n)!
pp−nYℓm =

∞∑
p=n

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

(p −n)!
ap;ℓ,m(τ)pp−nYℓm . (2.38)

Therefore, the terms ∂n+1
p φ and ∂n+2

p φ have the following expressions, respectively:

∂n+1
ρ φ=

∞∑
p=n+1

p∑
ℓ=0

m=ℓ∑
m=−ℓl

1

(p +n +1)!
ap;ℓ,m(τ)ρp+n+1Yℓm , ∂n+2

ρ φ=
∞∑

p=n+2

p∑
ℓ=0

m=ℓ∑
m=−ℓl

1

(p +n +2)!
ap;ℓ,m(τ)ρp+n+2Yℓm .

(2.39)
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Taking eqs (2.33) to (2.39) and substituting into (2.28) one gets,

(
τ2 −1

)
∂2
τ

[ ∞∑
p=n

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

(p −n)!
ap;ℓ,m(τ)ρp−nYℓm

]
−2ρτ∂τ

[ ∞∑
p=n+1

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

(p +n +1)!
ap;ℓ,m(τ)ρp+n+1Yℓm

]
−

−2nτ∂τ

[ ∞∑
p=n

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

(p −n)!
ap;ℓ,m(τ)ρp−nYℓm

]
+ρ2

[ ∞∑
p=n+2

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

(p +n +2)!
ap;ℓ,m(τ)ρp+n+2Yℓm

]
+

+2nρ

[ ∞∑
p=n+1

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

(p +n +1)!
ap;ℓ,m(τ)ρp+n+1Yℓm

]
+n(n −1)

[ ∞∑
p=n

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

(p −n)!
ap;ℓ,m(τ)ρp−nYℓm

]
+

+2τ∂τ

[ ∞∑
p=n

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

(p −n)!
ap;ℓ,m(τ)ρp−nYℓm

]
−ℓ(ℓ+1)

[ ∞∑
p=n

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

(p −n)!
ap;ℓ,m(τ)ρp−nYℓm

]
= 0.

(2.40)

Taking p = n in (2.28) gives,

∞∑
p=n

p∑
ℓ=0

m=ℓ∑
m=−ℓ

ρ0Yℓm
[(
τ2 −1

)
äp;ℓ,m(τ)−2pτȧp;ℓ,m(τ)+p(p −1)ap;ℓ,m(τ)+2τȧp;ℓ,m(τ)−ℓ(ℓ+1)ap;ℓ,m(τ)

]+
+

∞∑
p=n+1

p∑
ℓ=0

m=ℓ∑
m=−ℓ

1

(2p +1)!
ρ2p+1Yℓm

[−2ρτȧp;ℓ,m(τ)+2pρap;ℓ,m(τ)
]+ ∞∑

p=n+2

p∑
ℓ=0

m=ℓ∑
m=−ℓ

ρ2ap;ℓ,m(τ)

(2p +2)!
ρ2p+2Yℓm = 0.

(2.41)

Taking ρ = 0 gets,

∞∑
p=n

p∑
ℓ=0

m=ℓ∑
m=−ℓ

Yℓm
[(
τ2 −1

)
äp;ℓ,m(τ)−2pτȧp;ℓ,m(τ)+p(p −1)ap;ℓ,m(τ)+2τȧp;ℓ,m(τ)−ℓ(ℓ+1)ap;ℓ,m(τ)

]= 0 ⇔

⇔ (
τ2 −1

)
äp;ℓ,m(τ)−2pτȧp;ℓ,m(τ)+p(p −1)ap;ℓ,m(τ)+2τȧp;ℓ,m(τ)−ℓ(ℓ+1)ap;ℓ,m(τ) = 0

⇔ (
1−τ2) äp;ℓ,m(τ)+2τ(p −1)ȧp;ℓ,m(τ)+ (l +p)(l −p +1)ap;ℓ,m(τ) = 0. (2.42)

Proof. To prove (3), we proceed inductively as follows. We first verify that equation (2.36) when substituting

n = 1 and n = 2, taking A = τ∂τ∂ρφ, gives the following:

∂1
ρ(ρA) = ρ∂ρA+ A. (2.43)

∂2
ρ(ρA) = ρ∂2

ρA+∂ρA+∂ρA = ρ∂2
ρA+2∂ρA. (2.44)

This is the basis of induction.

Lemma 1. Assuming equation (2.36) is valid for n = N (induction hypothesis),

∂N
ρ (ρA) = ρ∂N

ρ A+N∂N−1
ρ A. (2.45)

we will show that it is also valid for n = N +1 (induction step). We have:

∂N+1
ρ (ρA) = ∂ρ(∂N

ρ (ρA)) = ∂ρ(ρ∂N
ρ A+N∂N−1

ρ A) = ∂2
ρ(ρ∂N−1

ρ A)+N∂N−1
ρ A+∂ρ(ρ∂N−1

ρ A) =

= ρ∂N+1
ρ A+2∂N

ρ A+N∂N−1
ρ A. (2.46)
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For equation (2.37), we proceed in a similar manner. Taking B = ρC , gives the following:

∂n
ρ

(
ρ2C

)= ρ∂n
ρ (ρC )+n∂n−1

ρ (ρC ) = ρ
(
ρ∂n

ρC +n∂n−1
ρ C

)
+n

(
ρ∂n−1

ρ C +n −1∂n−2
ρ C

)
≡

∂n
ρ

(
ρ2C

)= ρ2∂n
ρC +2nρ∂n−1

ρ C +n(n −1)∂n−2
ρ C (2.47)

Take B = ∂ρφ and C = ∂2
ρφ,

∂n
ρ

(
ρ∂ρφ

)= ρ∂n
ρ

(
∂ρφ

)+n∂n−1
ρ ∂ρφ= ρ∂n+1

ρ φ+n∂n
ρφ (2.48)

∂ρ

(
ρ2∂2

ρφ
)
= ρ2∂n

ρ

(
∂2
ρφ

)
+2nρ∂n−1

ρ

(
∂2
ρφ

)
+n(n −1)∂n−2

ρ

(
∂2
ρφ

)
(2.49)

The solution to the ODE (2.42) can be expressed as follows

Lemma 2. (wave equation in the i 0-cylinder background [28]). The solution to equation (2.31) is given by:

1. For p ≥ 1 and 0 ≤ ℓ≤ p −1

a(τ)p;ℓ,m = Ap,ℓ,m

(1−τ
2

)p
P (p,−p)
ℓ

(τ)+Bp,ℓ,m

(1+τ
2

)p
P (−p,p)
ℓ

(τ) (2.50)

2. For p ≥ 0 and ℓ= p:

ap;p,m(τ) =
(1−τ

2

)p(1+τ
2

)p
(
Cp,p,m +Dp,p,m

∫ τ

0

d s

(1− s2)p+1

)
(2.51)

where Ap,ℓ,m , Bp,ℓ,m , Cp,p,m and Dp,p,m are constants that can be written in terms of ap;ℓ,m(0) and ȧp;ℓ,m(0)

and Pα,β
γ (τ) are the Jacobi polynomials.

One fascinating aspect of exploring evolution equations within the i 0 cylinder framework is the appearance

of logarithmic terms at null infinity in the solutions. This observation becomes apparent when analyzing the

hypergeometric function presented in Equation (2.51) for different values of p. Let’s consider the cases of p = 0

and p = 1, which yield the following expressions:

a0;0,0(τ) =C000 + 1
2 D000(log(1+τ)− log(1−τ)) (2.52)

a1;1,m(τ) = 1
4 (1−τ)(1+τ)(C11m + 1

4 D11m(log(1+τ)− log(1−τ)+2τ(1−τ2))) (2.53)

These logarithmic terms have implications for the linear version of the associated peeling property, as dis-

cussed in [27, 28]. In the full non-linear case, additional obstacles to the smoothness of null infinity arise, as

explored in [30]. In the gravitational scenario, conditions can be imposed on the initial data to prevent the

emergence of these logarithmic terms in the evolution, as described in [31]. For the spin-0 case, the corre-

sponding condition can be expressed as follows:

Remark 4. (Regularity condition [28]). Lemma 2 implies that expanding the integral in (2.51) results in loga-

rithmic terms, hence Dp,p,m = 0 is called the regularity condition. The solutions for a(τ) are polynomic in τ,

except for ℓ= p where one needs to impose the regularity condition to only have polynomic solutions [28].
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We can see how peeling is violated for the spin-0 field by expanding φ̃ in terms of the F -frame. Making use

of eqs (2.34), (2.35) and Lemma 2, we truncate (2.29) up tp p = 1 and get the following expression:

φ= a0;0,0(τ)Y00 + 1

1!
a1;0,0(τ)ρY00 + 1

1!
a1;1,1(τ)ρY11 + 1

1!
a1;1,0(τ)ρY10 + 1

1!
a1;1,−1(τ)ρY1−1, (2.54)

where Y00,Y11,Y10 and Y1−1 are the spherical harmonics. Taking (2.50) we can compute a1;0,0(τ) as follows:

a1;0,0(τ) = A100

(
1−τ

2

)
P (1,−1)

1 (τ)+B100

(
1+τ

2

)
P (−1,1)

1 (τ) =

= A100

(
1−τ

2

)
(1+τ)+B100

(
1+τ

2

)
(τ−1), (2.55)

where P (1,−1)
1 and P (−1,1)

1 are the Jacobi Polynomials. Substituting in (2.54) we get:

φ=
(
C100 + 1

2
D100(log(1+τ)− log(1−τ))

)
Y00 +

[(
1−τ

2

)
(1+τ)A100 +B100

(
1+τ

2

)
(τ−1)

]
ρY00+

+ 1

4
(1−τ)(1+τ)

(
C110 + 1

4
D110

(
log(1+τ)− log(1−τ)+2τ

(
1−τ2)))ρY10+

+ 1

4
(1−τ)(1+τ)

(
C111 + 1

4
D111

(
log(1+τ)− log(1−τ)+2τ

(
1−τ2)))ρY11+

+ 1

4
(1−τ)(1+τ)

(
C11−1 + 1

4
D11−1

(
log(1+τ)− log(1−τ)+2τ

(
1−τ2)))ρY1−1 ⇔

⇔φ=C000 + 1

2
D000 log

(
1+τ
1−τ

)
+ ρ

2

[
A100(1+τ)(1−τ)Y00 +B100(τ−1)(1+τ)Y00

]
+

+ 1

4

(
1−τ2) (C110Y10 +C111Y11 +C11−1Y1−1)+ 1

16

(
1−τ2)D110 + log

(
1+τ
1−τ

)
Y10+

+ 1

16

(
1−τ2)D111 log

(
1+τ
1−τ

)
Y11 + 1

16

(
1−τ2)D11−1 log

(
1+τ
1−τ

)
Y1−1 ⇔

⇔φ=C000 + 1

2
D000 log

(
1+τ
1−τ

)
+ ρ

2

[
A100 +B100

]
(1+τ)(1−τ)Y00 + ρ

4

(
1−τ2) (C11−1Y1−1 +C110Y10 +C111Y11)+

+ ρ

16

(
1−τ2)(D11−1 log

(
1+τ
1−τ

)
Y1−1 +D110 log

(
1+τ
1−τ

)
Y10 +D111 log

(
1+τ
1−τ

)
Y11

)
. (2.56)

Using the transformation (2.11) one gets,

φ=
C000 + 1

2
D000 log

(
1+ t̃/ρ̃

1− t̃/ρ̃

)
+

ρ̃

ρ̃2−t̃ 2

2
(A100 +B100)

(
1+ t̃

ρ̃

)(
1− t̃

ρ̃

)Y00+

+
ρ̃

ρ̃2−t̃ 2

4

[
1−

(
t̃

ρ̃

)2
]

(C11−1Y1−1 +C110Y10 +C111Y11)+
ρ̃

ρ̃2−t̃ 2

16

[
1−

(
t̃

ρ̃

)2
]

(
D11−1 log

(
1+ t̃/ρ̃

1− t̃/ρ̃

)
Y1−1 +D110 log

(
1+ t̃/ρ̃

1− t̃/ρ̃

)
Y10D111 log

(
1+ t̃/ρ̃

1− t̃/ρ̃

)
Y11

)
⇔

⇔φ=
[

C000 + 1

2
D000 log

(
ρ̃+ t̃

ρ̃− t̃

)
+ 1

2ρ̃
(A100 +B100)

]
Y00+

+ 1

4ρ̃
(C11−1Y1−1 +C110Y10 +C111Y11)+ 1

16ρ̃[
D11−1 log

(
ρ̃+ t̃

ρ̃− t̃

)
Y1−1 +D110 log

(
ρ̃+ t̃

ρ̃− t̃

)
Y10 +D111 log

(
ρ̃+ t̃

ρ̃− t̃

)
Y11

]
. (2.57)
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Therefore the physical field φ̃ is given by,

φ̃=Θφ⇔ φ̃= 1

ρ̃
φ⇔ φ̃= C000

ρ̃
+ 1

2ρ̃
D000 log

(
ρ̃+ t̃

ρ̃− t̃

)
Y00 + 1

16ρ̃2[
D11−1 log

(
ρ̃+ t̃

ρ̃− t̃

)
Y1−1 +D110 log

(
ρ̃+ t̃

ρ̃− t̃

)
Y10 +D111 log

(
ρ̃+ t̃

ρ̃− t̃

)
Y11

]
+

+ 1

2ρ̃2 (A100 +B100)Y00 + 1

4ρ̃2 (C11−1Y1−1 +C110Y10 +C111Y11) . (2.58)

The expantion of the physical field φ̃ helps to understand the concept of peeling in the spin-0 case. In the spin-

0 case, the peeling property is violated by the logarithmic terms that appear in the expansion of φ̃, as shown in

(2.58).
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Chapter 3

The NP-constants for the spin-0 fields

close to i 0 & I

The NP constants, introduced by Newman and Penrose [5], are computed by evaluating 2-surface integrals

at null infinity of certain derivatives of the field. These constants, as the name suggests, are conserved quanti-

ties, meaning that their values remain constant regardless of the choice of the cut of null infinity on which they

are computed. In their original work [5], it was demonstrated that for the spin-1 field (Maxwell field) and spin-2

field (linearized Weyl tensor) in Minkowski spacetime, there exists an infinite hierarchy of conserved quanti-

ties. However, in the full non-linear theory involving the Weyl tensor, only 10 quantities remain conserved. In

both the linear (spin-1 and spin-2) and non-linear (gravitational) cases, the NP constants emerge from a set of

asymptotic conservation laws. For the spin-0 field in flat spacetime, refer to [32]. One has

L(ρ̃−2ℓL(e+)ℓ+1φℓm) = 0, L(ρ̃−2ℓL(e−)ℓ+1φℓm) = 0 (3.1)

here,φℓm = ∫
S2 φYℓmdσ represents the integral ofφmultiplied by the spherical harmonics Yℓm over the surface

S2, where dσ denotes the area element on S2. A derivation of a slightly more generalized version of these

identities can be shown in the following section.

3.1 Conservation Laws

The conservation laws (3.1) have been generalized to a Schwarzschild background in [32], and thus the

flat space version follows immediately from these results. However, for the sake of clarity and self-contained

discussion, we will derive the conservation laws in flat space here.

Proposition 4. Let φ̃ be a solution to □̃φ̃= 0. Let φ= ρ̃φ̃ then φ satisfies

LL(e+)nφ=−2n

ρ̃
L(e+)nφ+ 1

ρ̃2 (n(n +1)+∆S2 )(e+)nφ. (3.2)
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Proof. This identity can be proven through an induction process. In terms of L, L, and φ, the equation □̃φ̃= 0

can be expressed as follows:

LLφ= 1

ρ̃2 (∆S2φ) (3.3)

Equation (3.3) corresponds to the case n = 0 of expression (3.2) and serves as the basis for the induction. As-

suming that expression (3.2) holds true for n = N , let’s proceed with the induction step by calculating LL(e+)n+1φ

as follows:

LL
(
e+

)N+1
φ= LL

{(
e+

)[(
e+

)N
φ

]}
= L

[
L

[(
ρ2L

)(
e+

)N
φ

]]
=

= L
[

L
(
ρ2L

(
e+

)N
φ

)]
= L

[
ρ̃2LL

(
e+

)N
φ−2ρ̃L

(
e+

)N
φ

]
=

= L
[
−2N ρ̃L

(
e+

)N
φ+ (N (N +1)+∆)

(
e+

)N
φ−2ρ̃L

(
e+

)N
φ

]
=

=−2N ρ̃LL
(
e+

)N
φ−2N L

(
e+

)N
φ+L

[
(N (N +1))

(
e+

)N
φ

]
+L

(
∆

(
e+

)N
φ

)
−2ρ̃LL

(
e+

)N
φ−2L

(
e+

)N
φ=

=−2N ρ̃LL
(
e+

)N
φ−2N L

(
e+

)N
φ+ (N (N +1))L

(
e+

)N
φ+

+ (
e+

)N
φL(N (N +1))+∆L

(
e+

)N
φ−2ρ̃LL

(
e+

)N
φ−2L

(
e+

)N
φ=

=−2N ρ̃LL
(
e+

)N
φ−2N L

(
e+

)N
φ+N 2L

(
e+

)N
φ+N L

(
e+

)N
φ+∆L

(
e+

)N
φ−2ρ̃LL

(
e+

)N
φ−2L

(
e+

)N
φ=

=−2N ρ̃LL
(
e+

)N
φ−N L

(
e+

)N
φ+N 2L

(
e+

)N
φ+∆L

(
e+

)N
φ−2ρ̃LL

(
e+

)N
φ−2L

(
e+

)N
φ. (3.4)

The RHS of (3.2) with n = N +1 can be broken down into individual components and computed individually,

−2(N +1)

ρ̃
L

(
e+

)N+1
φ=−2N ρ̃LL

(
e+

)N
φ−4N L

(
e+

)N
φ−2ρ̃LL

(
e+

)N
φ−4L

(
e+

)N
φ (3.5)

1

ρ̃2 ((N +1)(N +2)+∆S2 )(e+)N+1φ= N 2L
(
e+

)N
φ+3N L

(
e+

)N
φ+2L

(
e+

)N
φ+∆L

(
e+

)N
φ (3.6)

Adding (3.5) and (3.6) together, we obtain

−2N ρ̃LL
(
e+

)N
φ+N 2L

(
e+

)N
φ−N L

(
e+

)N
φ−2L

(
e+

)N
φ−2ρ̃LL

(
e+

)N
φ+∆L

(
e+

)N
φ (3.7)

Noticing that (3.7) is the same as expression (3.2) with n = N +1 finishes the proof.

Furthermore, it is important to note that since this calculation is performed in flat spacetime, we have made

trivial commutations involving L, L, and∆S2 . Using Proposition 4 for ℓ= n and rearranging gives the following:

Corollary 1. Let φ̃ be a solution to □̃φ̃= 0 and let φ= ρ̃φ̃. Then

L(ρ̃−2ℓL(e+)ℓφℓm) = 0 (3.8)

where φℓm = ∫
S2 φ Yℓm dσ with dσ denoting the area element in S2.
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Proof. Using (3.2) with n = N and substituting φ=∑
ℓ,mφℓM (τ,ρ)Yℓm into the same expression leads to,

LL
(
e+

)N

(∑
ℓ,m

φℓnYℓm

)
=−2N

ρ̃
L

(
e+

)N

(∑
ℓ,m

φℓmYℓm

)
+ 1

ρ̃2 (N (N +1)+∆)
(
e+

)N

(∑
ℓ,M

φℓnYℓm

)
(3.9)

Applying the Liebniz rule when the L operator acts on φℓm and Yℓm , gives the following:

L
(
φℓmYℓm

)
:=φℓmLYℓm +YℓmLφℓm (3.10)

The operator L acting on Yℓm gives 0 since Yℓm = Yℓm(θ,ϕ) depends only on angular coordinates. Therefore,

(3.10) becomes

L
(
φℓmYℓm

)= YℓmL(φℓm) (3.11)

Using (3.11) and N = ℓ we can rewrite (3.9) as,

∑
ℓ,m

Yℓm

[
LL

(
e+

)ℓ
φℓm + 2ℓ

ρ̃
L

(
e+

)ℓ
φℓm

]
= 1

ρ̃2

[
(ℓ(ℓ+1))

(
e+

)ℓ (∑
ℓ,m

φℓmYℓm

)
+

( ∑
ℓ1m

φℓm∆Yℓm

)(
e+

)ℓ] (3.12)

Using the fac that
∑
ℓ1m∆φℓmYℓm = 0 and

∑
ℓ,mφℓmYℓm =−ℓ(ℓ+1)

∑
ℓ,mφℓm (3.12) becomes,

∑
ℓ,m

Yℓm

(
LL

(
e+

)ℓ
φℓm + 2ℓ

ρ̃
L

(
e+

)ℓ
φℓm

)
= 0 ⇔

⇔ LL
(
e+

)ℓ
φℓm + 2ℓ

ρ̃
L

(
e+

)ℓ
φℓm = 0 ⇔

⇔ L
(
ρ̃−2ℓL

(
e+

)ℓ
φℓm

)
= 0 (3.13)

We can see that (3.13) is the same as (3.8), which completes the proof.

Then, with the necessary adjustments, the time-reversed versions of 4 and 1 can be expressed as:

Proposition 5. Let φ̃ be a solution to □̃φ̃= 0. Let φ= ρ̃φ̃ then φ satisfies

LL(e−)nφ=−2n

ρ̃
L(e−)nφ+ 1

ρ̃2 (n(n +1)+∆S2 )(e−)nφ. (3.14)

Corollary 2. Let φ̃ be a solution to □̃φ̃= 0 and let φ= ρ̃φ̃. Then

L(ρ̃−2ℓL(e−)ℓφℓm) = 0 (3.15)

where φℓm = ∫
S2 φ Yℓm dσ with dσ denoting the area element in S2.
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3.2 Definition of NP constants

Equations (3.1) provide an infinite hierarchy of exact conservation laws. Additionally, one can introduce

the f (ρ̃)-modified NP constants, as described in [33], in the following manner:

f N +
ℓ,m := f (ρ̃)L(e+)ℓφℓm

∣∣∣
C+ , (3.16)

f N −
ℓ,m := f (ρ̃)L(e−)ℓφℓm

∣∣∣
C− , (3.17)

here, C± ≈ S2 represents a cut of I ±. In the specific case of f (ρ̃) = ρ̃2, these quantities are referred to as the

"classical NP-constants" and are denoted as N ±
ℓ,m . They can be succinctly expressed as follows:

N +
ℓ,m := (e+)ℓ+1φℓm

∣∣∣
C+ , (3.18)

N −
ℓ,m := (e−)ℓ+1φℓm

∣∣∣
C− . (3.19)

In the notation for f N +
ℓ,m presented below, it will be implicitly assumed that m takes values from −ℓ to ℓ.

3.3 The classical NP constants at I +

In this section, we focus on computing the classical NP constants, which are determined by the initial data

expressed through the constant parameters discussed in Lemma 2. To aid our comprehension, we begin by

calculating a few initial NP constants before proceeding to the general case. Specifically, we will focus into

computing the classical NP constants at I + for ℓ= 0 and ℓ= 1. This analysis is facilitated by expression (2.29),

which yields the following insights:

φℓm =
∞∑

p=ℓ

1

p !
ap;ℓ,m(τ)ρp . (3.20)

Therefore, when considering ℓ = 0, the computation of e+(φ00) is sufficient. By utilizing Proposition 1 and

equation (2.17), we obtain the following:

e+(φℓm) = 4(Λ+)2
∞∑

p=0

1

p !
e(ap;ℓ,m(τ)ρp ) =Λ2

+
∞∑

p=0

[
(1+τ)∂τ−ρ∂ρ

](
ap;ℓ,m(τ)ρp)=

=Λ2
+

∞∑
p=0

[
(1+τ)ȧp;ℓ,mρ

p −ρap;ℓ,m ·pρp−1]= 4ρ−1(1+τ)−2
∞∑

p=0

1

p !
ρp ((1+τ)ȧp;ℓ,m −pap;ℓ,m). (3.21)

With

Q0
p;ℓ,m(τ) := (1+τ)ȧp;ℓ,m −pap;ℓ,m , (3.22)

With this definition in place, we can express e+(φℓm) as follows:

e+(φℓm) = 4(Λ+)2
∞∑

p=0

1

p !
ρpQ0

p,ℓ,m(τ). (3.23)
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To compute the ℓ = 0 NP constant at I +, it is necessary to evaluate e+(φ00) at a specific cut C+ of I +. By

utilizing equation (3.23) and referring to Lemma 2, we obtain the following expression:

N +
0,0 = lim

ρ→ρ⋆
τ→1

e+(φ00) =
∞∑

p=0

1

p !
ρ

p−1
⋆ Q0

p,0,0|I + . (3.24)

here, ρ⋆ represents a constant that parametrizes the cut C+, and Q0
p,ℓ,m |I + denotes the value of Q0

p,ℓ,m at I +,

specifically at τ = 1. Notably, when ρ⋆ = 0, it corresponds to selecting C+ as I+. A direct calculation using

Lemma 2 shows the following:

Q0
p;ℓ,m(τ) = (1+τ)ȧp;ℓ,m(τ)−pap;ℓ,m(τ) ⇒Q0

0;0,0(τ) = 2ȧ0;0,0(τ)−0 ·a0;0,0 = 2ȧ0;0,0(τ) = D000

1−τ , (3.25)

Q0
1;0,0(τ) = 2ȧ1;0,0(τ)−1 ·a1;0,0(τ) =−A100. (3.26)

Therefore, it is important to note that if the regularity condition of Remark 4 is not satisfied, the classical NP

constants will not be well-defined, regardless of the chosen cut for evaluation. Thus, in order to compute the

classical ℓ= 0 NP constant, the regularity condition must be imposed. However, once the regularity condition

is satisfied, the value of the classical ℓ = 0 NP constant becomes independent of the specific cut chosen for

evaluation. This can be seen through the following analysis:

Remark 5. A direct calculation using Lemma 2 gives

Q0
0;0,0 = D000(1−τ)−1, (3.27a)

Q0
p;0,0 =−21−p p Ap,0,m(1−τ)p−1 for p ̸= 0. (3.27b)

Thus, based on the insights provided by Remark 5 and assuming the regularity condition is fulfilled, we can

conclude that:

N +
0,0 =

∞∑
p=0

1

p !
ρ

p−1
⋆ Q0

p;0,0|I + = lim
ρ→ρ⋆
τ→1

∞∑
p=0

1

p !
(1+τ)−2ρ

p−1
⋆ Q0

p;0,0(τ) = lim
ρ→ρ⋆
τ→1

∞∑
p=0

1

p !
2−2ρ

p−1
⋆ Q0

p;0,0(τ) =

= lim
ρ→0
τ→1

[
2−2

0!
ρ−1D0;0,0 + 2−2

ρ!
ρ0 A1;0,0 +

∞∑
p=2

2−2

p !
ρp−1 Ap;0,0(1−τ)p−1

]
=−A100. (3.28)

It is expected that the regularity condition must be imposed to ensure well-defined classical NP constants,

as a similar observation holds for the spin-1 and spin-2 cases in [34] (see also [35, 36]). Additionally, Remark

5 demonstrates that only the term with p = 1 contributes to the calculation. This aligns with the "constancy"

of the NP constants, indicating that their value does not depend on the chosen cut [5]. In other words, if

we assume that the NP constants are well-defined, the specific form of the expressions in Remark 5 is not

necessary to determine the contribution of the initial data parameters from Lemma 2 to N +
0,0. As long as only

the parameter Ap;ℓ,m (and not Bp;ℓ,m) appears in Equation 3.27b, the value of N +
0,0 can be determined.

To calculate the ℓ= 1 NP constants, we must evaluate (e+)2(φ1m). By utilizing Proposition 1 and building upon
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the previous calculation, we obtain:

(e+)2(φℓm) = 42(Λ+)2e
(
(Λ+)2

∞∑
p=ℓ

1

p !
ρpQ0

p,ℓ,m(τ)
)
. (3.29)

Performing an explicit calculation with equations (2.17) and (2.22), we find:

e
(
Λ2
+
)= [(1+τ)∂τ−ρ∂ρ]

[
ρ−1(1+τ)−2]= [

(1+τ)ρ−1(−2)(1+τ)−3 −ρ(1+τ)−2(−1)ρ−2]
=−2ρ−1(1+τ)−2 +ρ−1(1+τ)−2 =−ρ−1(1+τ)−2 =−Λ2

+

(3.30)

Utilizing the aforementioned equations yields:

(e+)2(φℓm) = 42(Λ+)4
∞∑

p=ℓ

1

p !

(
e+

(
ρpQ0

p;ℓ,m

)
−Q0

p;ℓ,mρ
p)=

= 42(Λ+)4
∞∑

p=ℓ

1

p !

[
(1+τ)ρpQ0

p;ℓ,m −ρpQ0
p;ℓ,m pρp−1

]
−ρpQ0

p;ℓ,m =

= 42(Λ+)4
∞∑

p=ℓ

1

p !
ρp(

(1+τ)Q̇0
p;ℓ,m(τ)− (p +1)Q0

p;ℓ,m(τ)
)
. (3.31)

Where Q1
p,ℓ,m(τ) := (

(1+τ)Q̇0
p,ℓ,m(τ)− (p +1)Q0

p,ℓ,m(τ)
)

and (3.22) gives

Q1
p;ℓ,m(τ) = (1+τ)Q̇0

p;ℓ,m − (p +1)Q0
p;ℓm = (1+τ)

d

dτ

[
(1+τ)ȧp;ℓ,m −pap;ℓ,m

]− (p +1)
[
(1+τ)ȧp;ℓ,m −pap;ℓ,m

]=
= (1+τ)2äp;ℓ,m −2p(1+τ)ȧp;ℓ,m +p(p +1)ap;ℓ,m .

(3.32)

Therefore, one can compute N +
1,m as

N +
1,m = lim

ρ→ρ⋆
τ→1

(e+)2(φ1m) =
∞∑

p=1

1

p !
ρ

p−2
⋆ Q1

p,1,m |I + = (1+τ)−4
∞∑

p=1

1

p !
Q1

pℓ,m(τ)ρp =

= (1+τ)−4

(
1∑

p=1

1

p !
ρp−2Q1

p;1,m(τ)+
2∑

p=2

1

p !
ρ0Q1

p,1,m(τ)+
∞∑

p=3

1

p !
ρp−2 A1

p,1,m · (τ)

)
=

= lim
ρ→0
τ→1

2−4{0+ρ−1Q1
1,1,m(τ)

}+ lim
ρ→0
τ→1

2−4 1

2!
Q1

2,1,m(τ). (3.33)

Similar to the previous case, we have the following:

Remark 6. By directly applying Lemma 2, we can calculate:

Q1
1;1,m =−2−1D11m(1−τ)−1, (3.34)

Q1
p;1,m = 22−p (p −1)p(p +1)A2,p,m(1−τ)p−2 for p ̸= 1. (3.35)

By observing Remark 6, it becomes apparent that only the term with p = 2 in equation (3.33) contributes to

the overall sum.
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Direct evaluation leads to:

N +
1,m = lim

ρ→0
τ→1

2−4 1

2!
Q1

2,1,m(τ) = lim
ρ→0
τ→1

2−4 (
22−2(2−1)2(2+1)A2,1,m(1−τ)2−2)= 3A21m . (3.36)

3.4 The classical NP constants at I −

In this section, we focus on computing the classical NP constants using a similar approach to the one used

in (3.3). Specifically, we delve into computing the classical NP constants at I − for ℓ= 0 and ℓ= 1. This analysis

is facilitated by expression (2.29), which yields the following insights:

φℓm =
∞∑

p=ℓ

1

p !
ap;ℓ,m(τ)ρp . (3.37)

Therefore, when considering ℓ = 0, the computation of e−(φ00) is sufficient. By utilizing Proposition 1 and

equation (2.17), we obtain the following:

e−(φℓm) = 4(Λ−)2
∞∑

p=0

1

p !
e(ap;ℓ,m(τ)ρp ) =Λ2

−
∞∑

p=0

[
(1−τ)∂τ+ρ∂ρ

](
ap;ℓ,m(τ)ρp)=

=Λ2
−

∞∑
p=0

[
(1−τ)ȧp;ℓ,mρ

p +ρap;ℓ,m ·pρp−1]= 4ρ−1(1−τ)−2
∞∑

p=0

1

p !
ρp ((1−τ)ȧp;ℓ,m +pap;ℓ,m). (3.38)

With

Q0
p;ℓ,m

(τ) := (1−τ)ȧp;ℓ,m +pap;ℓ,m , (3.39)

With this definition in place, we can express e−(φℓm) as follows:

e−(φℓm) = 4(Λ−)2
∞∑

p=ℓ

1

p !
ρpQ0

p,ℓ,m
(τ). (3.40)

To compute the ℓ = 0 NP constant at I −, it is necessary to evaluate e−(φ00) at a specific cut C− of I −. By

utilizing equation (3.23) and referring to Lemma 2, we obtain the following expression:

N −
0,0 = lim

ρ→ρ⋆
τ→−1

e−(φ00) =
∞∑

p=ℓ

1

p !
ρ

p−1
⋆ Q0

p,0,0
(τ)|I − . (3.41)

here, ρ⋆ represents a constant that parametrizes the cut C−, and Q0
p,ℓ,m

|I − denotes the value of Q0
p,ℓ,m

at I −,

specifically at τ = −1. Notably, when ρ⋆ = 0, it corresponds to selecting C− as I−. A direct calculation using

Lemma 2 shows the following:

Q0
p;ℓ,m

(τ) = (1−τ)ȧp;ℓ,m(τ)+pap;ℓ,m(τ) ⇒Q0
0;0,0

(τ) = 2ȧ0;0,0(τ)+0 ·a0;0,0 = 2ȧ0;0,0(τ) =−D000

1−τ , (3.42)

Q0
1;0,0

(τ) = 2ȧ1;0,0(τ)+a1;0,0(τ) = B100. (3.43)

Therefore, it is important to note that if the regularity condition of Remark 4 is not satisfied, the classical NP

constants will not be well-defined, regardless of the chosen cut for evaluation. Thus, in order to compute the
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classical ℓ= 0 NP constant, the regularity condition must be imposed. However, once the regularity condition

is satisfied, the value of the classical ℓ = 0 NP constant becomes independent of the specific cut chosen for

evaluation. This can be seen through the following analysis:

Remark 7. A direct calculation using Lemma 2 gives

Q0
0;0,0

=−D000(1−τ)−1, (3.44a)

Q0
p;0,0

=−21−p pBp,0,m(1−τ)p−1 for p ̸= 0. (3.44b)

Thus, based on the insights provided by Remark 7 and assuming the regularity condition is fulfilled, we can

conclude that:

N −
0,0 =

∞∑
p=0

1

p !
ρ

p−1
⋆ Q0

p;0,0
(τ)|I − = lim

ρ→ρ⋆
τ→−1

∞∑
p=0

1

p !
(1−τ)−2ρ

p−1
⋆ Q0

p;0,0
(τ) = lim

ρ→ρ⋆
τ→−1

∞∑
p=0

1

p !
2−2ρ

p−1
⋆ Q0

p;0,0
(τ) =

= lim
ρ→0
τ→−1

[
2−2

ρ!
ρ0B1;0,0 +

∞∑
p=2

2−2

p !
ρp−1Bp;0,0(1−τ)p−1

]
= B100. (3.45)

It is expected that the regularity condition must be imposed to ensure well-defined classical NP constants,

as a similar observation holds for the spin-1 and spin-2 cases in [34] (see also [35, 36]). Additionally, Remark

7 demonstrates that only the term with p = 1 contributes to the calculation. This aligns with the "constancy"

of the NP constants, indicating that their value does not depend on the chosen cut [5]. In other words, if

we assume that the NP constants are well-defined, the specific form of the expressions in Remark 7 is not

necessary to determine the contribution of the initial data parameters from Lemma 2 to N −
0,0. As long as only

the parameter Bp;ℓ,m (and not Ap;ℓ,m) appears in Equation 3.44b, the value of N −
0,0 can be determined.

To calculate the ℓ = 1 NP constants, we must evaluate e−2(φ1m). By utilizing Proposition 1 and building

upon the previous calculation, we obtain:

(e−)2(φℓm) = 42(Λ−)2e−
(
(Λ−)2

∞∑
p=ℓ

1

p !
ρpQ0

p,ℓ,m
(τ)

)
. (3.46)

Performing an explicit calculation with equations (2.17) and (2.22), we find:

e− (
Λ2
−
)= [(1−τ)∂τ+ρ∂ρ]

[
ρ−1(1−τ)−2]= [

(1−τ)ρ−1(+2)(1−τ)−3 +ρ(1−τ)−2(−1)ρ−2]
= 2ρ−1(1−τ)−2 −ρ−1(1−τ)−2 = ρ−1(1−τ)−2 =Λ2

−

(3.47)
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Utilizing the aforementioned equations yields:

(e−)2(φℓm) = 42(Λ−)4
∞∑

p=ℓ

1

p !

(
e−

(
ρpQ0

p;ℓ,m
(τ)

)
+Q0

p;ℓ,m
(τ)ρp)=

= 42(Λ−)4
∞∑

p=ℓ

1

p !

[
(1−τ)ρpQ0

p;ℓ,m
(τ)+ρpQ0

p;ℓ,m
(τ)pρp−1

]
+ρpQ0

p;ℓ,m
(τ) =

= 42(Λ−)4
∞∑

p=ℓ

1

p !
ρp(

(1−τ)Q̇
0

p;ℓ,m
(τ)+ (p +1)Q0

p;ℓ,m
(τ)

)
. (3.48)

Where Q1
p,ℓ,m

(τ) := (
(1−τ)Q̇

0

p,ℓ,m
(τ)+ (p +1)Q0

p,ℓ,m
(τ)

)
and (3.39) gives

Q1
p;ℓ,m

(τ) = (1−τ)Q̇
0

p;ℓ,m
+ (p +1)Q0

p;ℓm
= (1−τ)

d

dτ

[
(1−τ)ȧp;ℓ,m +pap;ℓ,m

]+ (p +1)
[
(1−τ)ȧp;ℓ,m +pap;ℓ,m

]=
= (1−τ)2äp;ℓ,m +2p(1−τ)ȧp;ℓ,m +p(p +1)ap;ℓ,m .

(3.49)

Therefore, one can compute N −
1,m as

N −
1,m = lim

ρ→ρ⋆
τ→−1

(e−)2(φ1m) =
∞∑

p=1

1

p !
ρ

p−2
⋆ Q1

p,1,m
(τ)|I − = lim

ρ→0
τ→−1

(1−τ)−4
∞∑

p=1

1

p !
Q1

pℓ,m
(τ)ρp =

= lim
ρ→0
τ→−1

(1−τ)−4

(
1∑

p=1

1

p !
ρp−2Q1

p;1,m
(τ)+

2∑
p=2

1

p !
ρ0Q1

p,1,m
(τ)+

∞∑
p=3

1

p !
ρp−2Q1

p,1,m
(τ)

)
=

= lim
ρ→0
τ→−1

2−4{0+ρ−1Q1
1,1,m

(τ)
}+ lim

ρ→0
τ→−1

2−4 1

2!
Q1

2,1,m
(τ). (3.50)

Similar to the previous case, we have the following:

Remark 8. By directly applying Lemma 2, we can calculate:

Q1
1;1,m

(τ) =−2−1D11m(1−τ)−1, (3.51)

Q1
p;1,m

(τ) =−22−p (p −1)p(p +1)B2,p,m(1−τ)p−2 for p ̸= 1. (3.52)

By observing Remark 8, it becomes apparent that only the term with p = 2 in equation (3.50) contributes to

the overall sum.

Direct evaluation leads to:

N −
1,m = lim

ρ→0
τ→−1

2−4 1

2!
Q1

2,1,m
(τ) = lim

ρ→0
τ→−1

2−4 (−22−2(2−1)2(2+1)B2,1,m(1−τ)2−2)=−3B21m . (3.53)

3.5 The i 0 cylinder logarithmic NP constants at I +

In sections 3.3 and 3.4, it was demonstrated that if the regularity condition stated in Remark 4 is not satis-

fied, the classical NP constants are not well-defined. However, it has been found that analogous constants arise

for polyhomogeneous formal expansions of the gravitational field (Weyl scalars) using the NP formalism [35],

[36]. This leads to the natural question of whether there exists a choice of f (ρ̃) that allows the calculation of
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the associated modified NP constants (for the spin-0 field) without imposing the regularity condition. In this

section, it will be shown that the constants Dp;ℓ,m that define the regularity condition precisely correspond to

the f (ρ̃) = ρ̃-modified NP constants.

In this section, we will compute the ℓ = 0 and ℓ = 1 modified NP constants f N +
ℓ,m for the spin-0 field with

f (ρ̃) = ρ̃. By employing Proposition 1 to express the derivatives in terms of the F -coordinates, we obtain:

ρ̃L(φℓm) =κ−1e(φℓm) = (1−τ)

(1+τ)

∞∑
p=0

[(1+τ)∂τ−ρ∂ρ](ap;ℓ,m(τ)ρp ) = (1−τ)

(1+τ)

∞∑
p=0

Q0
p;ℓ,m(τ)ρp . (3.54)

Therefore, for ℓ= 0, we have:

ρ̃N +
0,0 = lim

ρ→ρ⋆
τ→1

κ−1e(φ00) =
∞∑

p=0
ρ

p
⋆

[ (1−τ)

(1+τ)
Q0

p;0,0(τ)
]
|I + . (3.55)

Using Remark 5 and evaluating at the critical set I+, we obtain:

ρ̃N +
0,0 = lim

ρ→ρ⋆
τ→1

κ−1e(φ00) =
∞∑

p=0
ρ

p
⋆

[ (1−τ)

(1+τ)
Q0

p;0,0(τ)
]
=

= (1−τ)

(1+τ)

{
D000(1−τ)−1 + (1+τ)ρB100 − 1

2
A100(1−τ)ρ− 1

2
B100(1+τ)ρ

}
+O(ρ2) =

= (1−τ)

(1+τ)

{
D000(1−τ)−1 −ρA100

}
= 1

2
D000. (3.56)

Similarly, for ℓ= 1, the relevant quantity to evaluate is:

ρ̃L(e+)φ1m =κ−1e(e+)φ1m = 4−1 (1−τ)

(1+τ)
ρ−1(1+τ)−2(e+)2φ1m = 4κ−1(Λ+)2

∞∑
p=1

1

p !
ρpQ1

p;ℓ,m(τ), (3.57)

in the last equality, we have used equations (3.31) and (3.32). Therefore, for ℓ= 1, we have:

ρ̃N +
1,m = lim

ρ→ρ⋆
τ→1

κ−1e(e+)φ1m =
∞∑

p=1

1

p !
ρ

p−1
⋆ (κ−1Q1

p;1,m(τ))|I + . (3.58)

Using Remark 6 and evaluating at the critical set I+, we obtain:

ρ̃N +
1,m = lim

ρ→ρ⋆
τ→1

κ−1e(e+)φ1m =

= lim
ρ→0
τ→1

κ−1
{

ä1;1,m(τ)+ 1

2
ρä2;1,m(τ)− (1+τ)−1ȧ1;1,m(τ)+ (1+τ)−1ρȧ2;1,m(τ)−

− 1

2
ρ(1+τ)−1ȧ2;1,m(τ)− (1+τ)−2ρa2;1,m(τ)

}
+O(ρ3) =

= lim
ρ→0
τ→1

(1−τ)

(1+τ)

{ 1

16
(τ−1)−1(1+τ)−2[16D11m +7A21mρ−B21mρ+16D11mτ−16A21mρτ−8B21mρτ−

−6A21mρτ
2 −6B21mρτ

2 +8A21mρτ
3 +8B21mρτ

3 +7A21mρτ
4 +7B21mρτ

4 −32C11m(τ2 −1)−

−8D11m(τ2 −1)ln

(
1+τ
1−τ

)]}+O(ρ3) =−1

4
D11m . (3.59)
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3.6 The i 0 cylinder logarithmic NP constants at I −

In this section, we will compute the ℓ= 0 and ℓ= 1 modified NP constants f N −
ℓ,m for the spin-0 field with

f (ρ̃) = ρ̃. By employing Proposition 1 to express the derivatives in terms of the F -coordinates, we obtain:

ρ̃L(φℓm) =κ(e−)(φℓm) = (1+τ)

(1−τ)

∞∑
p=0

[(1−τ)∂τ+ρ∂ρ](ap;ℓ,m(τ)ρp ) = (1+τ)

(1−τ)

∞∑
p=0

Q0
p;ℓ,m

(τ)ρp . (3.60)

Therefore, for ℓ= 0, we have:

ρ̃N −
0,0 = lim

ρ→ρ⋆
τ→−1

κ(e−)(φ00) =
∞∑

p=0
ρ

p
⋆

[ (1+τ)

(1−τ)
Q0

p;0,0
(τ)

]
|I − . (3.61)

Using Remark 7 and evaluating at the critical set I−, we obtain:

ρ̃N −
0,0 = lim

ρ→ρ⋆
τ→−1

κ(e−)(φ00) = lim
ρ→ρ⋆
τ→−1

∞∑
p=0

ρ
p
⋆

[ (1+τ)

(1−τ)
Q0

p;0,0
(τ)

]
=

= lim
ρ→ρ⋆
τ→−1

(1+τ)

(1−τ)

{
D000(1+τ)−1 +ρB100

}
+O(ρ2) =

= 1

2
D000. (3.62)

Similarly, for ℓ= 1, the relevant quantity to evaluate is:

ρ̃L(e−)φ1m =κe(e−)φ1m = 4−1 (1+τ)

(1−τ)
ρ−1(1−τ)−2(e−)2φ1m = 4κ(Λ−)2

∞∑
p=1

1

p !
ρpQ1

p;ℓ,m
(τ), (3.63)

in the last equality, we have used equations (3.48) and (3.49). Therefore, for ℓ= 1, we have:

ρ̃N −
1,m = lim

ρ→ρ⋆
τ→−1

κe(e−)φ1m =
∞∑

p=1

1

p !
ρ

p−1
⋆ (κQ1

p;1,m
(τ))|I − . (3.64)

Using Remark 8 and evaluating at the critical set I−, we obtain:

ρ̃N −
1,m = lim

ρ→ρ⋆
τ→−1

κ(e)(e−)φ1m =

= lim
ρ→ρ⋆
τ→−1

κ
{

ä1;1,m(τ)+ 1

2
ρä2;1,m(τ)+ (1−τ)−1ȧ1;1,m(τ)+ (1−τ)−1ρȧ2;1,m(τ)+

+ 1

2
ρ(1−τ)−1ȧ2;1,m(τ)+ (1−τ)−2ρa2;1,m(τ)

}
+O(ρ3) =

= lim
ρ→ρ⋆
τ→−1

−16D11m +ρ(1+τ)

8(τ−1)3

[
A21m(5−3τ−3τ2 +τ3)+B21m(13−3τ−3τ2 +τ3)

]
+O(ρ3) = 1

4
D11m . (3.65)

3.7 The general case: Induction proof

In this section, we derive the ℓ-NP constants using an inductive approach. We’ll focus on the detailed deriva-

tion for the I + case, as the I − case follows in a similar manner.
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Proposition 6.

(e+)nφℓm = (Λ+)2n
∞∑

p=ℓ

1

p !
Qn−1

p;ℓ,m(τ)ρp (3.66)

with

Qn−1
p;ℓ,m(τ) =

n∑
q=0

(−1)q p [q]

(
n

q

)
(1+τ)n−q a(n−q)

p;ℓ,m (τ) (3.67)

here, a(n)
p;ℓ,m(τ) denotes the n-th derivative of ap;ℓ,m(τ) with respect to τ, and p [q] represents the rising factorial

defined as (p +q −1)!/(p −1)!.

Proof. To prove Proposition 6, we proceed inductively as follows. We first verify that equations (3.22), (3.21),

(3.31), and (3.29) are recovered when substituting ℓ = 0 and ℓ = 1 in expressions (3.66) and (3.67). This serves

as the basis for the induction. Assuming that equations (3.66) and (3.67) are valid (induction hypothesis), we

can apply e+ to equation (3.66), which yields the following expression:

(e+)n+1φℓm = e+((e+)nφℓm) = e+
(
(Λ+)2n

∞∑
p=ℓ

1

p !
Qn−1

p;ℓ,m(τ)ρp
)
= (Λ+)2e

(
(Λ+)2n

∞∑
p=ℓ

ρpQn−1
p;ℓ,m(τ)

)
. (3.68)

By using equations (2.17) and (2.22), we can perform a direct calculation to obtain the following expression:

e(Λ+)2n = [(1+τ)∂τ−ρ∂ρ]
[
ρ−n(1+τ)−2n]= [

(1+τ)ρ−n(−2n)(1+τ)−2n−1 −ρ−n+1(1+τ)−2n(−n)ρ−n−1]=
=−2ρ−n(1+τ)−2n +ρ−n(1+τ)−2n =−ρ−n(1+τ)−2n =−n(Λ+)2n . (3.69)

Expanding expression (3.68) and using equation (3.69), we can derive the following result:

(e+)n+1φℓm = (Λ+)2

{
(Λ+)2n

∞∑
p=ℓ

e+
(
ρpQn−1

p;ℓ,m(τ)
)
+

∞∑
p=ℓ

ρpQn−1
p;ℓ,m(τ)e+((Λ+)2n)

}
=

= (Λ+)2

{
(Λ+)2n

∞∑
p=ℓ

e+
(
ρpQn−1

p;ℓ,m(τ)
)
−n

∞∑
p=ℓ

ρpQn−1
p;ℓ,m(τ)

}
= (Λ+)2(n+1)

∞∑
p=ℓ

[
e+

(
ppQn−1

p;ℓ,m(τ)
)
−nρpQn−1

p;ℓ,m(τ)
]
=

= (Λ+)2(n+1)
∞∑

p=ℓ

[
(1+τ)ρpQ̇n−1

p;ℓ,m(τ)−ρpρp−1Qn−1
p;ℓ,m(τ)−nρpQn−1

p;ℓ,m(τ)
]
=

= (Λ+)2(n+1)
∞∑

p=ℓ

[
(1+τ)ρpQ̇n−1

p;ℓ,m(τ)−pρpQn−1
p;ℓ,m(τ)−nρpQn−1

p;ℓ,m(τ)
]
=

= (Λ+)2(n+1)
∞∑

p=ℓ
ρp

[
(1+τ)Q̇n−1

p;ℓ,m − (p +n)Qn−1
p;ℓ,m

]
. (3.70)

Thus we have shown that:

(e+)n+1φℓm = (Λ+)2(n+1)
∞∑

p=ℓ
ρp Rn

p;ℓ,m (3.71)

where

Rn
p;ℓ,m = (1+τ)Q̇n−1

p;ℓ,m − (p +n)Qn−1
p;ℓ,m . (3.72)
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Using the induction hypothesis (3.67), we can compute all the pieces to construct Rn
p;ℓ,m :

Q̇n−1
p;ℓ,m = d

dτ

[
n∑

q=0
(−1)q p [q]

(
n

q

)
(1+τ)n−q a(n−q)

p;ℓ,m (τ)

]
=

=
n∑

q=0
(−1)q p [q]

(
n

q

)[
(1+τ)n−q a(n−q+1)

p;ℓ,m + (n −q)(1+τ)n−q−1a(n−q)
p;ℓ,m

]
. (3.73)

By substituting equation (3.67) (induction hypothesis) and rearranging, we obtain the following:

Rn
p;ℓ,m =

n∑
q=0

(−1)q p [q]

(
n

q

){
(1+τ)n−q+1a(n−q+1) + [n −q − (p +n)](1+τ)n−q a(n−q)}=

=
n∑

q=0
(−1)n p [q]

(
n

q

){
(1+τ)n−q+1a(n−q+1) − (p +q)(1+τ)n−q a(n−q)} . (3.74)

In the last expression, we have shortened the notation by denoting a(n)
p;ℓ,m(τ) simply as a(n).

Expanding the first term in the first sum of (3.74) renders,

Rn
p;ℓ,m = (−1)0p [0]

(
n

0

)
(1+τ)n+1a(n+1) +

n∑
q=1

(−1)q (−1)q p [q]

(
n

q

)
(1+τ)n−q+1a(n−q+1)−

−
n∑

q=0
(−1)q (−1)q p [q]

(
n

q

)
(p +q)(1+τ)n−q a(n−a). (3.75)

Separating the last term in the secod sum and rearranging gives

Rn
p;ℓ,m = p [0](1+τ)n+1a(n+1) +

n∑
q=1

(−1)q p [q]

(
n

q

)
(1+τ)n−q+1a(n−q+1)−

−
{

n−1∑
q=0

[
(−1)q p [q]

(
n

q

)
(p +q)(1+τ)n−q a(n−q)

]
+ (−1)n p [n]

(
n

n

)
(p +n)

}
. (3.76)

It follows from the definition of the rising factorial that p [q+1] = (p+q)p [q], in particular p [n+1] = (p+n+1)p [n].

Using this fact and relabeling according to i = q −1 → q = i +1 and i (q = 1) = 0 & i (q = n +1) = n, we have:

Rn
p;ℓ,m = p [0](1+τ)n+1a(n+1) +

n−1∑
i=0

(−1)i+1p [i+1]

(
n

i +1

)
(1+τ)n−i an−i+

+
n−1∑
q=0

(−1)q+1p [q+1]

(
n

q

)
(1+τ)n−q a(n−q) + (−1)n+1p [q+1]a. (3.77)

For the second sum we simply relabel the dumie index i = q and get,

Rn
p;ℓ,m = p [0](1+τ)n+1a(n+1) +

n−1∑
i=0

(−1)i+1p [i+1]
[(

n

i +1

)
+

(
n

i

)]
(1+τ)n−i an−i + (−1)n+1p [n+1]a. (3.78)

Using the recursive identity of the binomial coefficients,

(
i

j

)
=

(
i −1

j

)
+

(
i −1

j −1

)
,

(3.79)
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and (
n +1

i +1

)
=

(
n

i +1

)
+

(
n

i

)
, (3.80)

then one gets,

Rn
p;ℓ,m = p [0](1+τ)n+1a(n+1) +

n−1∑
i=0

[
(−1)i+1p [i+1]

(
n +1

i +1

)
(1+τ)n−i a(n−i )

]
+ (−1)n+1p [n+1]a =

= (−1)0p [0]

(
n +1

0

)
(1+τ)n+1a(n+1) +

n−1∑
i=0

(−1)i+1p [i+1]

(
n +1

i +1

)
(1+τ)n−i a(n−i ) + (−1)n+1p [n+1]

(
n +1

n +1

)
a. (3.81)

Observing that latter can be rewritten more compactly as

Rn
p;ℓ,m =

n+1∑
q=0

(−1)q p [q]

(
n +1

q

)
(1+τ)n−q+1a(n−q+1), (3.82)

and recalling equation (3.67) then one concludes that

Rn
p;ℓ,m =Qn

p;ℓ,m . (3.83)

Notice that Proposition 6 provides, via equations (3.83) and (3.72), a recursive way to compute Qn−1
p;ℓ,m . This

can be summarized as follows:

Corollary 3. Qn−1
p;ℓ,m(τ) satisfies

Qn
p;ℓ,m(τ) = (1+τ)Q̇n−1

p;ℓ,m(τ)− (p +n)Qn−1
p;ℓ,m(τ). (3.84)

Remark 9. The rising and falling factorials, denoted as x[n] and x[n] respectively, are defined as follows:

x[n] :=
n∏

i=1
(x + i −1), x[n] :=

n∏
i=1

(x − i +1) (3.85)

We also note here that:

d

dτ
P (−p+k,p+k)
ℓ−k = 1

2
(ℓ+k +1)P (−p+k+1,p+k+1)

ℓ−k−1 (3.86a)

d

dτ
P (p+k,−p+k)
ℓ−k = 1

2
(ℓ+k +1)P (p+k+1,−p+k+1)

ℓ−k−1 (3.86b)

In computing the NP constants, we are mainly interested in the case where n = ℓ. With equation (3.67)

and the solution ap;ℓ,m(τ) provided in Lemma 2, it is possible to explicitly determine Qn
p;ℓ,m(τ) for any given

parameters n, p,ℓ, and m. However, for our purposes, the focus lies on the n = ℓ scenario. In the following, we

explore the structure of Qℓ
p;ℓ,m in relation to the initial data constants Ap;ℓ,m , Bp;ℓ,m , Cp;ℓ,m , and Dp;ℓ,m .
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Proposition 7. For p ̸= ℓ

Qn
p;ℓ,m(τ) = (ℓ+1)[n+1]

(1+τ
2

)p+n+1
Bp;ℓ,mP (−p+n+1,p+n+1)

ℓ−n−1 (τ)+
n+1∑
k=0

Ap;ℓ,mhn
k (τ)P (p+k,−p+k)

ℓ−k (τ) (3.87)

where hn
k (τ) are polynomials in τ, and we can determine them recursively using the following expressions:

hn+1
k :=

(1+τ
2

)
(ℓ+k +1)hn

k−1 + (1+τ)ḣn
k − (p +n +1)hn

k , (3.88)

starting with

h0
0(τ) =−p

(1−τ
2

)p−1
, h0

1(τ) = (ℓ+1)
(1−τ

2

)p(1+τ
2

)
, hn

−1 = hn
n+2 = 0. (3.89)

Proof. We proceed inductively as follows. For the case p ̸= ℓ, a direct calculation using Lemma 2 gives:

Q0
p;ℓ,m(τ) = (1+τ)ȧp;ℓ,m = (ℓ+1)[1]

(1+τ
2

)p+1
Bp;ℓ,mP (−p+1,p+1)

ℓ−1 (τ)+
1∑

k=0
Ap;ℓ,mh0

k (τ)P (p+k,−p+k)
ℓ−k (τ) =

= Bp;ℓ,m(ℓ+1)
(1+τ

2

)p+1
P (−p+1,p+1)
ℓ−1 + Ap;ℓ,mh0

0(τ)P (p,−p)
ℓ

(τ)+ Ap;ℓ,mh0
1(τ)P (p+1,−p+1)

ℓ−1 (τ) =

= Bp;ℓ,m(ℓ+1)
(1+τ

2

)p+1
P (−p+1,p+1)
ℓ−1 − Ap;ℓ,m p

(1−τ
2

)p−1
P (p,−p)
ℓ

(τ)+ Ap;ℓ,m(ℓ+1)
(1−τ

2

)p(1+τ
2

)
P (p+1,−p+1)
ℓ−1 (τ).

(3.90)

This proves the case n = 0, with:

h0
0(τ) =−p

(1−τ
2

)p−1
, h0

1(τ) = (ℓ+1)
(1−τ

2

)p(1+τ
2

)
, (3.91)

Now, assuming equation (3.87) is valid as the induction hypothesis, we proceed with the induction step to

compute Qn
p;ℓ,m(τ). Using equation (3.84), we have:

Qn
p;ℓ,m(τ) =

n∑
k=0

Ap;ℓ,m

[
(1+τ)

(
hn−1

k Ṗ (p+k,−p+k)
ℓ−k +P (p+k,−p+k)

ℓ−k ḣn−1
k

)
− (p +n)hn−1

k P (p+k,−p+k)
ℓ−k

]
+

+2Bp;ℓ,m(ℓ+1)[n]
(1+τ

2

)p+n+1
Ṗ (−p+n,p+n)
ℓ−n−2 . (3.92)

Observe from the previous expression that in terms with the coefficient Bp;ℓ,m , only Ṗ appears, and the terms

of the form Bp,ℓ,mP cancel out.

Remark 10. In Corollary 4, we will observe that this cancellation is crucial as it ensures that the classical NP

constants at I + are solely determined by Ap;ℓ,m and not by any combination of Ap;ℓ,m and Bp;ℓ,m , as one

might expect in general.

By utilizing the identity 3.86 to compute the derivatives of the Jacobi polynomials and taking into account
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that (ℓ+n +1)(ℓ+1)[n] = (ℓ+1)[n+1], we obtain the following expression.

Qn
p;ℓ,m(τ) =

n∑
k=0

Ap;ℓ,m

[(1+τ
2

)
(ℓ+k +1)hn−1

k P (p+k+1,−p+k+1)
ℓ−k−1 +

(
(1+τ)ḣn−1

k − (p +n)hn−1
k

)
P (p+k,−p+k)
ℓ−k

]
+

+Bp;ℓ,m(ℓ+1)[n+1]
(1+τ

2

)p+n+1
P (−p+n+1,p+n+1)
ℓ−n−3 . (3.93)

Rearranging the sum, the latter expression can be rewritten as follows

Qn
p;ℓ,m(τ) = (ℓ+1)[n+1]

(1+τ
2

)p+n+1
Bp;ℓ,mP (−p+n+1,p+n+1)

ℓ−n−3 (τ)+
n+1∑
k=0

Ap;ℓ,mhn
k (τ)P (p+k,−p+k)

ℓ−k (τ) (3.94)

where

hn
k :=

(1+τ
2

)
(ℓ+k +1)hn−1

k−1 + (1+τ)ḣn−1
k − (p +n)hn−1

k (3.95)

The recursive computation of hn−1
k (τ) begins with h0

0 and h0
1 as given in equation (3.91), where hn−1

−1 = hn−1
n+1 =

0.

Corollary 4. For p ̸= l and n = l one has

Qn
p;n,m(τ) =

n+1∑
k=0

Ap;n,mhn
k (τ)P (p+k,−p+k)

n−k (τ). (3.96)

Proof. This follows from the observation that the Jacobi polynomial multiplying the term Bp,ℓ,m in equation

(3.87) vanishes if ℓ= n.

Proposition 8.

Qn
p;p;m(τ) = g n

p (τ)Dp,p,m + (−1)n+1p[n+1]

(1+τ
2

)p+n+1(1−τ
2

)p−n−1
(
Cp,p,m +Dp,p,m

∫ τ

0

d s

(1− s2)p+1

)
(3.97)

where g n
p (τ) is a polynomial in τ determined recursively by

g n+1
p = (1+τ)ġ n

p + (−1)n+12−2p p[n+1](1+τ)n+1(1−τ)−n−2 − (p +n +1)g n
p , (3.98)

g 0
p = 2−2p (1−τ)−1. (3.99)

Proof. To simplify the notation, let F (τ) = ∫ τ
0 (1− s2)−p−1d s, so that Ḟ = (1−τ)−p−1(1+τ)−p−1. Using this nota-

tion, a direct calculation for the case p = ℓ gives:

Q0
p;p,m = (1+τ)ȧp,p,m = 2−2p Dp,p,m(1−τ)−1 −p

(1+τ
2

)p+1(1−τ
2

)p−1
(Cp,p,m +Dp,p,mF ). (3.100)

This establishes the base case for n = 0 in equation (3.97) with g 0
p = 2−2p (1−τ)−1. To prove the general case,

we proceed with induction. Assume, as our induction hypothesis, that equation (3.97) holds. Now, to compute

Qn+1
p;p,m , we will use equation (3.84). To do this calculation step by step, let’s first observe that:

Q̇n
p,p,m = Dp,p,mGn

p + (−1)n+1p[n+1]2
−2p (Cp,p,m +Dp,p,mF )(1+τ)p+n(1−τ)p−n−22(n +1−pτ) (3.101)
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where Gn
p := ġ n

p + (−1)n+12−2p p[n+1](1+τ)n(1−τ)−n−2 assisted with equation (3.84) a calculation renders

Qn+1
p,p,m =

(
(1+τ)Gn

p − (p +n +1)g n
p

)
Dp,p,m+

+ (−1)n+1p[n+1]2
−2p (Cp,p,m +Dp,p,mF )(1+τ)p+n+2(1−τ)p−n−2(−p +n +1). (3.102)

Finally, by using the identity (−p +n +1)p[n+1] =−p[n+2], we arrive at the expression for Qn+1
p;p,m as follows:

Qn+1
p,p,m = g n+1

p Dp,p,m + (−1)n+2p[n+2]

(1+τ
2

)p+n+2(1−τ
2

)p−n−2
(
Cp,p,m +Dp,p,mF

)
(3.103)

with

g n+1
p = (1+τ)ġ n

p + (−1)n+12−2p p[n+1](1+τ)n+1(1−τ)−n−2 − (p +n +1)g n
p . (3.104)

Corollary 5. For p = l = n one has

Qn
n;n,m(τ) = g n

n (τ)Dn,n,m . (3.105)

Proof. This result can be deduced from equation (3.97) by observing that p[n+1] becomes zero when p = n.

This is due to the nature of the rising factorial, which involves multiplying consecutive integers up to a certain

number, and (n+1)! includes (n+1) in the multiplication. Consequently, when p = n, the term (1+τ)n(1−τ)−n−2

from the Jacobi polynomial will cancel the corresponding factor coming from p[n+1], simplifying the expression

for Qn+1
n;n,m to the form derived earlier.

Remark 11. Although computing explicit expressions for hn
k (τ) and g n

p (τ) using the recursive relations is chal-

lenging, it is not necessary for identifying the parameters in the initial data that determine the values of the

NP constants. Corollaries 4 and 5 provide sufficient information for this purpose. Additionally, by writing the

formulae in terms of special functions and recursive relations, one can still calculate Qn
p;n,m explicitly for large

values of n using computer algebra programs like Mathematica. Experimental results suggest that for general

(n = ℓ, p):

Qn
n;n,m(τ) =αnDn,n,m(1−τ)−1 (3.106a)

Qn
p;n,m(τ) =βn,p

2n∏
i=0

(p +n − i )An,p,m(1−τ)p−n−1 for p ̸= n (3.106b)

where αn and βn,p are some constants.

3.8 The NP constants in terms of initial data

This subsection aims to consolidate the outcomes of the induction arguments from subsection 3.7 and as-

certain the relationships between the NP constants at I ± and the initial data parameters Ap;ℓ,m , Bp;ℓ,m , Cp;ℓ,m ,
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and Dp;ℓ,m .

Proposition 9. Consider a spin-0 field φ̃ propagating in Minkowski spacetime, characterized by analytic initial

data close to i 0 as given by equation (2.30). Assuming that the regularity condition is satisfied, i.e., Dp;p,m = 0,

and that the classical NP constants at I + are well-defined, then we have the following relationship:

N +
ℓ,m = q+(ℓ) Aℓ+1,ℓ,m . (3.107)

Consequently, the I + classical NP constants are solely dependent on the initial data parameter Aℓ+1,ℓ,m , with

q+(ℓ) representing a numerical factor.

Proof. By using equations (3.18) and (3.66), we can express the I + classical NP constant for the spin-0 field as

follows:

N +
ℓ,m = (e+)ℓ+1φℓm |C+ = (2Λ+)2(ℓ+1)

∞∑
p=ℓ

1

p !
Qℓ

p;ℓ,m(τ)ρp |C+ =
∞∑

p=ℓ

1

p !
ρ

p−(ℓ+1)
⋆ Qℓ

p;ℓ,m |I + . (3.108)

Under the assumption that the regularity condition is satisfied and the NP constants are well-defined, evaluat-

ing the above expression at the critical set I+ yields:

N +
ℓ,m = 1

(ℓ+1)!
Qℓ
ℓ+1;ℓ,m |I + . (3.109)

Upon inspecting Qℓ
ℓ+1;ℓ,m |I + using Corollary 4, we obtain the final result:

N +
ℓ,m = q+(ℓ) Aℓ+1,ℓ,m , (3.110)

where q+(ℓ) is a numerical factor.

Proposition 10. Given a spin-0 field φ̃ propagating in Minkowski spacetime, with analytic initial data close to

i 0 as given in equation (2.30), we can define the f (ρ̃) = ρ̃ modified NP constants at I +. If these constants are

well-defined, then their expression is given by:

ρ̃N +
ℓ,m = q+(ℓ) Dℓ,ℓ,m (3.111)

where q+(ℓ) is a numerical factor. In summary, the modified NP constants at I + are directly related to the initial

data parameter Dℓ,ℓ,m for the given spin-0 field propagating in Minkowski spacetime with analytic initial data

close to i 0.

Proof. By employing equations (3.16) and (3.66), we obtain the following expression:

ρ̃N +
ℓ,m = ρ̃L(e+)ℓφℓm |C+ =κ−1(2Λ+)−2(e+)ℓ+1φℓm |C+ =

∞∑
p=ℓ

1

p !
ρ

p−ℓ
⋆ (κ−1Qℓ

p;ℓ,m)|I + (3.112)

Assuming the well-definedness of the i 0-cylinder logarithmic NP constants, their evaluation at the critical set
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I+ yields the following:

ρ̃N +
ℓ,m = 1

ℓ!
(κ−1Qℓ

p;ℓ,m)|I + (3.113)

Examining the expression for Qℓ
ℓ+1;ℓ,m |I + using Corollary 3.105, we obtain:

ρ̃N +
ℓ,m = q+(ℓ) Dℓ,ℓ,m (3.114)

where q+(ℓ) is a numerical factor.

By making minimal adjustments and employing Proposition 1, along with Equation (3.18), we computed

the classical NP constants at I − on 3.4 and 3.6. Analogously, we can derive results similar to those in subsec-

tion 3.7, with the required modifications. The time-dual propositions can be summarized as follows:

Proposition 11. Suppose φ̃ is a spin-0 field propagating in Minkowski spacetime with analytic initial data near

i 0 as given in equation (2.30), and it satisfies the regularity condition Dp;p,m = 0. If the classical NP constants at

I − are well-defined, then:

N −
ℓ,m = q−(ℓ) Bℓ+1,ℓ,m . (3.115)

Hence, the I − classical NP constants are exclusively determined by the initial data parameter Bℓ+1,ℓ,m , where

q−(ℓ) represents a numerical factor.

Proposition 12. If the f (ρ̃) = ρ̃ modified NP constants at I − are well-defined, then for the spin-0 field φ̃, which

propagates in Minkowski spacetime with analytic initial data close to i 0 as described in equation 2.29, we have

the following relationship:

ρ̃N −
ℓ,m = q−(ℓ) Dℓ,ℓ,m (3.116)

if the f (ρ̃) = ρ̃ modified NP constants at I − are well-defined, then they are solely determined by the initial data

parameter Dℓ,ℓ,m .

The summary of this section can be presented as follows: The i 0 cylinder NP constants at I ± are well-

defined and they depend only on specific initial data parameters. At I +, the classical NP constants depend

solely on Aℓ+1,ℓ,m , while at I −, they depend only on Bℓ+1,ℓ,m . These results have been derived from the anal-

ysis of the modified NP constants and their relations to the initial data parameters.

Corollary 6. Consider a spin-0 field φ̃ propagating in Minkowski spacetime with analytic initial data close to

the point i 0, which can be described using (2.30):

• In the absence of the regularity condition, the classical NP constants become ill-defined.

• When the regularity condition is met and the classical NP constants are well-defined, it is typically observed

that the classical NP constants at I ± do not match.
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• Provided the logarithmic NP constants at I ± are well-defined, they originate from the same initial data,

leading to their equivalence up to a numerical constant.
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3.9 Conclusions

General relativity is a theory of gravitation that explains the force of gravity as a curvature of spacetime

caused by mass and energy. Black holes, which are objects with such strong gravitational forces that nothing,

not even light, can escape them, are an important aspect of this theory. When an object falls into a black hole, it

is reduced to just three numbers, leading to the loss of a large amount of information, a problem known as the

"information paradox." A recent theory called "soft hair" has been proposed to explain this paradox by positing

that non-trivial distortions in clocks, sensitive to the black hole’s consumption history, can provide an infinite

number of properties for a black hole in certain limits. The NP constants are quantities defined on null infinity

in general relativity that obey conservation laws for asymptotically flat gravitational fields. These constants can

be used to study the residual radiation present in spacetime after a black hole collision, and have been shown

to be zero for stationary spacetimes such as the Schwarzschild and Kerr solutions. However, it is still an open

question whether the NP constants are zero for all stationary spacetimes. In this thesis, we have computed the

NP constants for a spin-0 field propagating near spatial and null infinity. The analysis was carried out using

prescribed analytic initial data close to i 0 in Minkowski spacetime, and we discussed the infinite hierarchy of

NP constants.

To achieve this, we employed the concept of the i 0 cylinder framework. We investigated the relation be-

tween the NP constants at future and past null infinity by identifying the specific part of the initial data that

determines these constants. It was noted that when analytic initial data is prescribed near i 0, the solution loses

regularity at the critical sets I±, where i 0 and I meet. This loss of regularity is governed by a constant Dp;p,m

present in the parametrization of the initial data. When the regularity condition (Dp;p,m = 0) is not satisfied, the

classical NP constants are not well-defined, which allowed us to conclude that for spin-0 fields the expantion

of the physical field φ̃ around null infinities is polyhomogeneous, that is, written in powers of ρ̃−1 and log(ρ̃).

Overall, the detailed treatment of violation of peeling along null infnities for the spin-0 field was done using

(2.58), where the existence of logarithmic terms destroyed the smoothness of the field along the conformal

boundary I .

In cases where the regularity condition is met, we have observed that the classical NP constants at I ±

originate from distinct components of the initial data. Specifically, these components are described by the pa-

rameters Aℓ+1;ℓ,m and Bℓ+1;ℓ,m . Consequently, there is no direct correspondence between the NP constants

at future and past null infinity. However, we have also demonstrated that by employing the modified NP con-

stants proposed in [32], which incorporate a function f (ρ̃) with f (ρ̃) = ρ̃, we obtain conserved quantities that

do not hinge on the regularity condition. Notably, these modified constants precisely mirror the terms within

the initial data governing field regularity, denoted as Dp;p,m . This presents a valuable alternative approach for

examining the conservation properties of the system without being reliant on the regularity condition.

In summary, it is apparent that while the classical NP constants at I ± do not generally correspond, the i 0

cylinder NP constants at I ± do align, even with a numerical factor, owing to their common origin within the

initial data.
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