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Abstract

Numerical relativity, the branch of general relativity that uses
simulations to solve the Einstein equations, has proven an in-
valuable tool in studying gravity, from gravitational wave as-
tronomy to foundational questions such as cosmic censorship
and space-time stability studies. Most current numerical rel-
ativity codes use Cartesian or spherical coordinates, which are
not ideally suited to many systems that present structure around
an axis, examples of which are black hole head-on collisions and
critical collapse around an axis. In this thesis, I present the new
code I have created to do numerical relativity simulations with
a free choice of spatial coordinates, and present results and sim-
ulations in both cylindrical and spherical coordinates.
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Chapter 1

Introduction: Numerical
Relativity

Numerical relativity, the branch of general relativity that uses simulations to
solve the Einstein equations, has proven an invaluable tool in studying grav-
ity. Its role, first in the discovery of gravitational waves [1], and nowadays
in the crucial field of gravitational wave astronomy [2, 3] cannot be over-
stated, as it produces the results to which compare observations in order to
understand the sources of the gravitational radiation. But its importance
doesn’t end there, as it is also a main pillar on the study of foundational
issues in gravity, some examples being cosmic censorship [4, 5], non-linear
stability of space-times [6, 7], the Hoop conjecture [8, 9, 10] and even cos-
mological evolution [11, 12, 13]. The reason why numerical relativity has
such prominence in such a vast array of topics is because, when we are in
the strong field regime and non-linearities are important, it is the only tool
able to give us results to the precision needed, provided the scales in the
problem are amenable [14, 15, 16, 17].

My objective in this thesis is to create a new numerical relativity code, that
I will focus on systems with axisymmetry. There exists many numerical
relativity codes already [18, 19, 20], so it is important to address the question
of why a new code would be worth the effort. The answer is twofold.

First, there is the pedagogical side to the endeavor. Creating a new code
is quite a learning experience, forcing the author to engage with all the
intricacies of a numerical relativity simulation and understand the problems
in depth. Moreover, in this thesis I intend to present a guide of some of the
steps necessary, in order to direct a reader interested in developing a new
code, or understanding how codes are developed.

1



2 CHAPTER 1. INTRODUCTION

Secondly, and perhaps more relevant for my future research, I believe the
currently existing codes are not ideal for axisymmetric systems. Those sys-
tems are abundant in numerical relativity, both motivated from an astro-
physical viewpoint and from a purely relativistic perspective, examples of
which could be black hole head on collision or critical collapse around an
axis. The system of coordinates that is better suited to describe such sys-
tems is cylindrical coordinates, but most existing codes are written either
in Cartesian or spherical polar coordinates and those systems require much
higher precisions in order to capture axis structure than cylindrical symme-
try. The converse is also true: if I want to study a system with spherical or
planar structure in axisymmetry, these other systems will be better suited.
That is why I believe there is a need to create a code that works with any
coordinate system of our choice, although this is not a new idea (see [20])
either.

Importantly, the step of moving to a different system of coordinates is not
the last word in Numerical relativity codes either, but that supports my
reasoning: in order to keep expanding the systems that we might be able to
study, we have to keep the code-making culture alive.

Many of the numerical difficulties in simulating a hyperbolic system in curvi-
linear coordinates can be studied by looking at the simplest such system:
the scalar wave equation. That will motivate the structure of my thesis, that
starts with an in-depth treatment of the scalar wave equation in chapter 2,
highlighting how many of its numerical characteristics and challenges will
translate into numerical relativity, and how to simulate the system correctly.
From that, I will move on to the full numerical relativity formulation that
I use in chapter 3, including a basic discussion of the system and which
extra problems arise with it. In chapter 4 I will present the results of several
simulations, that test the correctness of the code, and finally I will end up
with some comments about open questions and future research.



Chapter 2

The scalar wave equation

2.1 Analytical properties of the solution

In this section:
Singularities in the equation— Compact solutions — Superposition of

ingoing and outgoing waves — Boundary conditions — Boundary error —
Analytical solution

This section is a bit of groundwork for the next sections, with two main
purposes. The first is to get some theoretical understanding of the solutions
of the scalar wave equation: how the solution will look like, which terms
can give us complications at the computational level and what are natural
boundary conditions. The second is to come up with a specific analytical
solution that later we can test our code against to see if it reproduces it
successfully.

The equation we want to solve is the scalar wave equation, given as follows:

1

c2
∂2ϕ

∂t2
= ∇2ϕ. (2.1)

This is a good proxy for Einstein’s equations for a couple of reasons. First
of all, as we will see later, they can both be written in the same form:

∂u

∂t
= L(u), (2.2)

where L is a differential operator. Both our formulation of Einstein’s equa-
tions and the scalar wave equation will have this form with different op-
erators, so the code and understanding of one will translate to the other.
Second (although not independent) both systems admit wave-like solutions,

3



4 CHAPTER 2. THE SCALAR WAVE EQUATION

and this will be useful in particular when getting and understanding of the
necessary boundary conditions.

In particular in our code, this equation will be solved in cylindrical coordi-
nates (ρ, φ, z) and axisymmetry (∂φ = 0), in which the equation looks:

∂2ϕ

∂ρ2
+

1

ρ

∂ϕ

∂ρ
+
∂2ϕ

∂z2
− 1

c2
∂2ϕ

∂t2
= 0. (2.3)

The first thing we notice is that there is a singular term at the axis (the
second term in the equation, that scales like 1/ρ). Numerically this is going
to be one of our sources of complication, since although infinities will cancel
analytically, they need not do it in our simulation. More about this in the
next section.

Solutions to (2.3) by separation of variables look like plane waves that de-
crease in amplitude far from the axis (see appendix A). Their amplitude far
from the axis is given by:

|ϕk|2 =
Ak

kρρ
. (2.4)

As we can see, these waves don’t decrease in amplitude in the z direction,
so solutions have infinite extent. If we think about systems that we might
want to study that generate waves, we have the sources localized somewhere
in space (an oscillating dipole, a black hole merger...) and the rest is empty
space. Therefore, we will not get waves of infinite extent, and these solutions
are not well adapted to study our problem analytically. It is important to
note, however, that in a simulation the fields are not represented in terms of
a functional basis, so the fact that the basis of solutions in cylindrical coor-
dinates doesn’t have the behavior we want will not matter in a simulation,
except for the choice of initial data.

In order to get waves of finite extent, let’s look at the equation in spherical
coordinates (r, θ, φ). In that system, it is written like follows:

1

c2
∂2ϕ

∂t2
=

1

r

∂2

∂r2
(rϕ) +

1

r2
1

sin2 θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
. (2.5)

We can do separation of variables, but don’t separate totally, in order to
keep the information about the time dependence without having to do a
superposition of Fourier modes. The decomposition I will consider is the
following:

ϕlm = ψl(r, t)Ylm(θ, φ). (2.6)

The angular part is such that I can do separation of variables, but if I
went through with all the calculations, I would find that these are the well-
known spherical harmonics. Therefore, I can use its defining property in the
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equation below, and I get:

1

c2
∂2

∂t2
(rψ)− ∂2

∂r2
(rψ) = − l(l + 1)

r2
rψ. (2.7)

Let’s look at the simplest case, with l = 0. This case is spherically symmet-
ric. Then the solution is really easy to find, as a superposition of ingoing
and outgoing waves:

ψ =
f(r − ct) + g(r + ct)

r
. (2.8)

This solution is important, because, as we can see in equation (2.7) when
r → ∞, the term in the right-hand side approaches zero and all modes look
like this very far away. This, therefore, can serve as our boundary condition.
If we were to be thinking in the cylindrical solutions basis, what that would
mean, is that we need a superposition of solutions such that very far away
the result doesn’t go to infinity, but decay.

Therefore, a reasonable boundary condition for our solutions is to enforce
that they look like (2.7) very far away. But if we think about this in terms
of characteristics [21], the incoming wave is “bringing information” from
very far into our domain. We might say that nothing happens outside our
domain, and therefore we don’t want any information coming in. That leads
us to impose the following boundary condition:

ϕ→ f(r − t)

r
when r → ∞. (2.9)

This seems to indicate that to indicate that, referring to causality, there
should only be outgoing waves in all our domain. But that is not true for a
physical system that is not localized at a point, and it is easy to see by the
fact that in that case we would have an irregularity at the origin. A general
solution has an ingoing component, and suppressing it will lead to an error
that we can study. Let’s take the following solution:

ϕ =
f(r − t) + g(r + t)

r
. (2.10)

If we force it to be totally outgoing at the boundary, we are adding a negative
ingoing wave at the boundary

ϕnum = ϕ− g(r + t)

r
. (2.11)

If g is really small at the boundary anyway, the error will not be big. But
it will propagate inwards and increase with r so it has the potential to be a
problem. It is important to keep this in mind in simulations.
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Now that we have understood the properties of the solutions to the equation,
let’s look at a particular solution that we can use to test our simulation with.
The simplest realistic solution of the ones I have looked at corresponds to
the l = 0 (spherically symmetric) mode. As we saw earlier, the solution
for that case is a superposition of incoming and outgoing waves. In order
to be a valid solution in our simulation, it has to be regular at the origin.
Therefore the numerator has to vanish at the origin for all times

f(−ct) + g(ct) = 0 ⇒ g(x) = −f(−x) ∀x. (2.12)

With that constraint, we can write our general wave that is regular at the
origin as

ϕ =
f(r − t)− f(−r − t)

r
. (2.13)

Note how we need an ingoing wave in order to have regularity. In order
to determine it from initial data, we need both the values of the function
and its derivative at t = 0. In our case, let’s look at the specific case of
∂tϕ|t=0 = 0. Let’s define the following new variables for simplicity:

σu = r − t; σv = r + t. (2.14)

For the incoming and outgoing waves that means

∂ϕ

∂t

∣∣∣∣
t=0

= 0 ⇒
[
−f ′(σu) + f ′(−σv)

]∣∣
t=0

= −f ′(x) + f ′(−x) = 0 ⇒

⇒ f(x) + f(−x) = C = 2f(0),

(2.15)

where x stands for any argument to the function, that has a single variable.
The general solution of the type above is

ϕ(r, t) =
f(σu) + f(σv)− 2f(0)

r
. (2.16)

Now let’s impose the initial conditions on the values of the function:

ϕ(r, 0) = h(r) =
f(r) + f(r)− 2f(0)

r
⇒ 2f(x)− 2f(0) = xh(x)

⇒ ϕ(r, t) =
1

2

uh(σu) + vh(σv)

(r/σ)
. (2.17)

The above expression is a solution for any choice of initial conditions. In
particular, for the tests afterwards I will use a Gaussian for initial data

h(r) = e−r2 = e−ρ2−z2 . (2.18)
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2.2 Implementation of the equation

In this section:
General hyperbolic form — evolution algorithm MOL-RK4 —

computational grid — back-trace of characteristics — boundary conditions
at the origin — Taylor theorem — convergence and error — stability

analysis and CFL condition

The scalar wave equation is second order, but if we introduce a new variable
we can reduce it to a first order system:

∂ϕ

∂t
= ψ

∂ψ

∂t
= c2∇2ϕ.

(2.19)

This is of the general form
∂u

∂t
= L(u), (2.20)

with L an operator that might include spatial derivatives but not ones with
respect to time. The equations for numerical relativity are also of this form,
and that is the reason why a careful study of the scalar wave is so useful in
order to understand and develop the methods for the full non-linear system.
A system of this type can be simulated in many different ways, but we will
choose a Method Of Lines (MOL) with a Runge-Kutta of 4th order (RK4)
to do the time evolution [22]. This method consists on discretizing space
first, taken the vector function u to a vector of discrete values û, which the
right-hand side will mix, but there are no longer space derivatives. Then we
have an ODE

dû

dt
= L(û), (2.21)

and as such, we can use any time evolution method that we would use for
an ODE. In my case I will choose fourth order Runge-Kutta, in which the
system is evolved as follows:

k1 = L(ûn)

k2 = L(ûn + k1∆t/2)

k3 = L(ûn + k2∆t/2)

k4 = L(ûn + k3∆t/2)

ûn+1 = ûn +
∆t

6
(k1 + 2k2 + 2k3 + k4) .

(2.22)

From now on I will make no distinction between the discretized vector of val-
ues û and the true solution u, and the same for the right-hand side operator,
as it will be clear which one is being discussed from the context.
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Regarding the space discretization, I will sample the functions on a 2D grid
(since we have axisymmetry we only have 2 spatial dimensions) and I will
take fourth order centered derivatives. The fourth order partial derivatives
have the following formulas, for the first derivative

∂ϕ

∂ρ
=
ϕi−2,j − 8ϕi−1,j + 8ϕi+1,j − ϕi+2,j

12∆ρ
+O(∆ρ4), (2.23)

and for the second

∂2ϕ

∂z2
=

−ϕi,j−2 + 16ϕi,j−1 − 30ϕi,j + 16ϕi,j+1 − ϕi,j+2

12∆z2
+O(∆z4). (2.24)

We can notice that each of them need two neighboring points in order to be
calculated, therefore I will create my grid with two ghost nodes on each side.
An important thing to consider when creating the grid are the coordinate
singularities (like 1/ρ). If we have any grid point with ρ = 0, in our floating
points we are going to get inf, and even though we might divide it by
another inf later, in such a way that analytically it should be well-behaved,
with floating points we have lost all information, and the result will be Nan
(see [23]). Of course, this is not the behavior we want. The simplest way to
solve this problem is to not have any points at ρ = 0, by using a cell-centered
grid. That way points in ρ will be indexed as

ρi = (i+ 1/2)∆ρ. (2.25)

And the minimum value for ρ = ∆ρ/2. This will not give any floating point
errors in division until ∆ρ ∼ ϵ ∼ 10−16, but of course in that regime floating
point errors will already start dominating in all our domain, so we will never
go to such a high precision. In this way, part of the problem of regularity is
solved, but as we will see, there is more to this.

Now that we have studied the requirements of our grid we know that it has
to be a 2D cell centered grid with two grid nodes on each side. We can find
a plot of the grid in Fig. 2.1.

We need the ghost nodes in order to take derivatives close to the boundary,
but which values should we have there? That is going to be imposed by
boundary conditions. In our case the boundaries are of two distinct types:
the one with ρ = 0 is the axis of symmetry, therefore to the left of it our
domain is supposed to continue. The rest of the boundaries are simply
surfaces that we choose arbitrarily in space to delimit our computational
domain, since we can’t cover all of space with our method. Therefore the
boundary conditions there will be approximate.

For the first type, the boundary condition is that whatever is on the other
side of the axis is the same as what is on this side, by symmetry. Mathe-
matically, this means that the derivative at the axis is zero

∂nϕ|Γint
= 0. (2.26)
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Figure 2.1: Layout of our computational grid.

And for our grid nodes, it is direct to see that the ghost nodes should have
the same values as the corresponding point on the domain

ϕ−1,j = ϕ0,j ; ϕ−2,j = ϕ1,j . (2.27)

Regarding the outer boundaries, we will impose the outgoing wave boundary
condition discussed in the previous section. The way to implement it in code
will be the following. If the function has this form

ϕ(r, t) =
f(r − t)

r
, (2.28)

then in the next time step it will be

ϕ(r, t+∆t) =
f(r − t−∆t)

r
=
r −∆t

r

f(r −∆t− t)

r −∆t
=
r −∆t

r
ϕ(r −∆t, t).

(2.29)
The interpretation is immediate: if we want to know what value the wave
will have at a point later, we just back-trace the characteristic (where the
wave is coming from) and get the value at the corresponding point, reduced
by the correct geometric factor. This idea is plotted in Fig. 2.2. Another
point is worth noting, that the reference value along the characteristic will
almost surely not be a grid point. Therefore, we will have to do bi-linear
interpolation with the four neighboring points, which will increase the error
of the boundaries even more. But we know that the error created in the



10 CHAPTER 2. THE SCALAR WAVE EQUATION

Figure 2.2: The values of the ghost nodes are calculated by tracing the
characteristics back to the origin in time and interpolating the value of the
function at the previous point, in order to impose outgoing wave boundary
conditions.

boundaries satisfies the wave equation in the domain, therefore it will prop-
agate inwards, and we can trust the results in the parts of the domain that
have not been in causal contact1 with the boundary yet.

Now that the scheme is designed and presented, the question is, how big is
the error on our simulations? Should we expect the numerical solution to
approach the analytical solution? How will the error behave with increasing
resolution? The first thing to address is that our discretization is based
on the fact that we can approximate derivatives by finite differences, and
that is itself based on Taylor’s theorem [24]. Therefore, if the conditions for
this theorem are not fulfilled, our formulas will not work, and the error will
in general be bigger than we expect. This might seem an overly rigorous
tangent, but it does have a very important consequence for our simulations.

Taylor’s theorem says that for a function n times differentiable at a point c,
the function around that point can be expressed as

f(x) =

n−1∑
k=0

f (k)(c)

k!
(x− c)k +

f (n)(x1)

n!
(x− c)n with x1between x and c.

(2.30)
Therefore, in order to get an approximation of order n around a point, the
function has to be n times differentiable. In terms of our finite differences
therefore, we need the functions to be C5 for the first derivative, and C6 for

1Meaning that a wave from the boundary has had time to reach them
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the second derivatives2.

The specific orders will be important later, but for now it is enough to know
that we cannot take derivatives across points in which the fields are irregular.
This discards the completely outgoing functions as solutions to evolve, for
example, since they are not regular in the origin, and therefore we would
have unknown error 2 grid points from the origin3. We will find a case
like this when dealing with black holes. This is also very important, as we
will see, because in a curvilinear coordinate basis, some tensor components
are not regular, and we cannot differentiate them computationally (even
if analytically there is no problem) so we will have to find an alternative
procedure.

Assuming that all of our functions will be at least C6, Taylor’s theorem tells
us exactly how our error will scale with resolution. Therefore a good test of
the implementation is to check that for an arbitrary function, the error in its
derivatives scales as expected. Tests like this will be done for all differential
methods in the code, and some be presented in the next section. Let’s
study also how the error looks at a later time step, in which the function to
differentiate also has some error from the previous steps. At every step, the
error in the calculation of the right-hand side operator is fourth order. The
error of the RK4 method is also fourth order, so the solution that we have
in each time step is already fourth order. Therefore the total error on the
calculation is

L(û) = L(û) + αN−4 = L(u+ βN−4) + αN−2 = L(u) + [L(β) + α]N−4.
(2.31)

Where α and β are arbitrary functions. The overall error is fourth order,
but notice how this relies on the operator being linear. I believe that if
L(u, ∂iu) is a sufficiently differentiable function of its arguments, meaning
it can be expressed as a Taylor series in them, then the leading order of the
error in L(û) will still be the same as the linear case. This is because, if we
have non-linear terms of the form u2 or u∂iu, the error will be like

(u+ βN−4)(u+ βN−4) = u2 + 2uβN−4 + β2N−8. (2.32)

And the leading term is still fourth order. Therefore we can test the evolu-
tion by calculating the total error (with the L2 norm for example) at each
time step and seeing if it scales like we expect it to. This is the other main
test that I will perform.

2Note that in those formulas we divide by ∆x and ∆x2 respectively. Therefore, al-
though the error is fourth order, it comes from the fifth and sixth order remainders.

3Since the fourth order finite difference includes points that are two grid spacings away,
the approximation at one point is only ensured to converge if the function is sufficiently
differentiable in the region between those grid points.
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Finally, we would like to know if our scheme is stable. Meaning, will the
error increase too fast and completely cover the solution during evolution?
This is in principle hard to quantify, and the CFL4 condition presents a
good rule of thumb. If we want to be a bit more precise, we can perform a
Von Neumann stability analysis, that consists of studying how the evolution
affects the individual modes that make up a solution. This is of course only
valid for linear equations, since for non-linear ones, we can’t find a basis
of the space of solutions since it is not a linear space at all. If we find
that some modes are increased without bound, then we know our method
will be unstable, but such an analysis gives a necessary but not sufficient
condition for stability. In any way, it is useful to get some understanding
of the system, and giving us some conditions for our discretization. In the
appendix B we can find the stability analysis for our method, and we get
the following condition:

c∆t

∆2
≲ 1.2; ∆2 =

(
1

∆z2
+

1

∆ρ2

)−1/2

. (2.33)

This is a type of CFL condition. The size of the physical domain of depen-
dence c∆t has to be smaller than the physical domain of dependence (related
to the grid size ∆2) in order to not lose information in each time step. It is
also common to quantify the grid size with the following quantities

∆1 =

(
1

∆z
+

1

∆ρ

)−1

; ∆min = min(∆ρ,∆z). (2.34)

These other measures have the property that

∆min > ∆2 > ∆1; ∀∆ρ ̸= 0,∆z ̸= 0. (2.35)

But also more importantly, we can find a factor such that

∆min/α < ∆2; ∆2/α < ∆1; with α >
√
2. (2.36)

That means that if we write the stability condition as

∆t

∆
= C. (2.37)

with C the Courant factor, the condition can be expressed with any of
the measures as long as we choose a small enough Courant factor. In my
simulation I will use ∆1 the most restrictive of the three measures mentioned,
and C = 0.4, well inside the stability region, that for ∆1 is C ≲ 1.7.

Now that we have all the computational elements and expectations for the
error, let’s test the implementation.

4Courant–Friedrichs–Lewy



2.3. NUMERICAL TESTS 13

2.3 Numerical tests

In this section:
Static tests — snapshots — convergence plot — boundary error

I will start discussing the static tests. These are tests in which we don’t use
the evolution scheme, but rather we focus only in parts of the right-hand side
operator being correctly calculated. The finite difference approximations
have an associated order of convergence, meaning the order of the leading
order correction in the grid spacing. For my case, this convergence will be
fourth order, as presented in formulas (2.23) and (2.24). The idea behind the
static tests is the following: I can take a specific function (only restriction
is it has to be C6), compute its derivative in code and compare with the
analytic results. I repeat this process for many different grid spacings, and
I can quantify how the error varies with resolution. If the method is not
correctly implemented, the convergence will be different from theoretically
expected, therefore it is a good test for the implementation. The way that I
quantify the error is by using the L2 norm of the difference with the analytic
solution

(error) =

√∑
i,j

(
ϕ̂ij − ϕij

)2
. (2.38)

This is a common choice, but any norm will be good for studying conver-
gence. Let’s look at the results of some specific tests. In Fig. 2.3 we find
two tests of this type. We present the results as a linear fit in a log-log plot,
such that the expected power law will show as a straight line with the con-
vergence factor as its slope. In general, if the resolution is not high enough,
we don’t know the specific shape of the error, and we could find something
different than the line. But if we are in the regime in which the leading error
term is much higher than the others, then it will look like

(error) = αN−4. (2.39)

Where N is the number of grid points in the relevant direction, or in both,
depending on the method to be tested.

Now for the tests and results of the simulation. In Fig. 2.6 we can see some
snapshots of the evolution of the scalar wave. The first test is already passed:
we don’t see any instabilities of the domain. Once the wave reaches the
boundary, we see that we get reflection, which is not what is to be expected
from a wave in vacuum. This is a result of the boundary conditions being
only approximate, and will be good when they are far away. In this case
they are close to study the whole behavior. In order to be able to trust our
implementation, we need to quantify the error.
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(a) Convergence tests for the first deriva-
tive in z.

(b) Convergence test for the Laplacian.

Figure 2.3: Convergence tests for derivatives of a Gaussian function. Notice
that both ∆ρ and ∆z are decreased for the Laplacian, since the error scales
with both of them.

In order to quantify the error, I will compare with the analytical solution
found in section 2.1. The instantaneous error (defined as in formula (2.38)
for each time step) will be plotted against time. The simulation will be
repeated for several resolutions, and all of those functions will be added to
the plot. The result is Fig. 2.4.

In that figure we can see that we increase the resolution, the error looks the
same, just smaller. As discussed in the previous section, if our method is
well implemented, we expect to it to scale as N−4. Therefore, to test for
this we re-scale all the errors times N4, and if they coincide we have correct
convergence. In Fig. 2.5 we can see that plot, and it presents correct fourth
order convergence.

This is before the wave reaches the boundary. Once that happens, boundary
error becomes important, as we can see in the snapshots of the evolution.
Our numerical solution will stop showing correct convergence, since our
model (with outgoing waves at the boundary) and our analytical solution
don’t agree anymore. If the analytical solution is ϕ, and the correct solu-
tion to our model (with reflections) is ϕ̃, the error that we compute does
not approach zero exactly when ∆ϕ̃ = ϕ − ϕ̃ starts being significant. The

error will instead approach
∥∥∥∆ϕ̃∥∥∥, and that we can see in Fig. 2.7. This

modelling error doesn’t scale with resolution, but rather with the distance
to the boundaries, since our boundary conditions become more and more
precise the farther away they are.

In this chapter we have introduced most methods and ideas that will be
necessary in order to do a numerical relativity simulation, but in a simpler
setting. The complication in doing the full numerical relativity evolution
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Figure 2.4: L2 norm of the error in the scalar wave simultion as a function
of time, for different resolutions.

(a) Log scale (b) Linear scale

Figure 2.5: Error in the scalar wave simulation multiplied by the resolution
factor N to the fourth power. Coincidence of lines means correct conver-
gence. Each line corresponds to the resolution marked in the legend. The
maximum grid spacing is ∆ρ = ∆z ≃ 0.47, and the minimum is approxi-
mately 0.049.
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(a) t = 0 (b) t = 0

(c) t = 3.31 (d) t = 3.31

(e) t = 6.62 (f) t = 6.62

(g) t = 9.94 (h) t = 9.94

Figure 2.6: Here we can see some snapshots of the evolution of the initial
data discussed in section 2.1
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Figure 2.7: The error doesn’t converge to zero anymore once the boundary
effects become important around t = 6, but it converges to the norm of the
reflected wave instead. Each line corresponds to the resolution in the legend.

might seem just a practical one, since the equations are going to be much
more complex, and that is certainly a big part of it. Implementing the full
equations, with all the tensorial terms, is certainly not an easy task. We
will find, however, that the complications are not only practical, but we will
have to put even more focus on regularity, and also on choosing a correct
slicing. These matters will be discussed in the next chapter.
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Chapter 3

Numerical Relativity

3.1 BSSN equations

In this section:
General BSSN explanation — definition of the variables — hidden terms

— constraint equations

The problem of solving Einstein’s equations numerically is deeply complex,
one of the main reasons being coordinate invariance, that mixes gauge and
physical degrees of freedom in the solutions. As written by Einstein, they
are not specially well suited to be solved as an initial value problem, so I will
work with an alternative equivalent formalism, that separates the system of
equations in evolution equations for some new variables, and constraints.
These are the BSSN equations [25, 26, 27]. An in-depth discussion of the
form of this equation is outside the scope of this text, but can be found in
[28] and [29] for the specific form used here. I will limit myself to offer the
most basic intuition of the terms and make the necessary definitions.

There are many re-formulations of Einstein’s equations, but most of them
are not stable. The BSSN (by Thomas W. Baumgarte, Stuart L. Shapiro,
Masaru Shibata and Takashi Nakamura) formulation has proven empirically
to be stable, and that is one of the reasons why nowadays it is mostly
the standard in numerical relativity simulations, and that is why it is the
formulation I use. It is based on a 3+1 decomposition of space-time, in which
it is sliced into spatial hyper-surfaces that cover our space-time parametrized
by a time coordinate. This makes it more directly applicable as an initial
value problem.

The terms in the equations can loosely be separated into five groups, that

19
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I will mark with different colors in order to make the meaning stand out in
the equations

1. Metric terms: they tell us how the geometry of space looks at a single
moment in time. They are (γ̄ij , ϕ, Λ̄

i), called the conformal metric, the
conformal factor and the connection vector. The first two reproduce
the metric on every slice by a conformal transformation

γij = e4ϕγ̄ij , (3.1)

and hence the name. The connection vector is analytically redundant,
since we are going to have a constraint on its value, but one of the main
ideas of BSSN is promoting it to an independent variable to evolve.
We will see what is the constraint later.

2. Second fundamental form terms: they tell us how the geometry looks
when considering the embedding of space into space-time. They carry
the degrees of freedom of the conjugate momenta of the metric com-
ponents, and tell us how those evolve. They are (K, Āij), which allow
us to reconstruct the second fundamental form or extrinsic curvature
on each slice

Kij = e4ϕĀij +
1

3
γijK. (3.2)

We see that Āij corresponds to the trace-free part of the extrinsic
curvature, conformally transformed, and K is the trace. I will refer to
these terms as the conformal extrinsic curvature (sometimes conformal
trace-less extrinsic curvature) and the trace of the extrinsic curvature.

3. Gauge terms: These terms specify the slicing, how the space-time is
separated into individual spaces. They are (α, βi) the lapse and the
shift. Roughly, the lapse tells us how fast time moves at a certain
point, and the shift how the spatial coordinates are shifted from one
slice to the next (see [28] for a more detailed explanation). If we know
these terms and the metric in one slice, we can reproduce the metric
in the space-time as follows:

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
. (3.3)

The shift and lapse are freely specifiable, as they represent the freedom
in choosing spatial slices of our space-time. In practice, the best way
to specify them is through evolution equations, of them the following
choice being standard

∂tα = −2αK; ∂tβ
i = Bi; ∂tB

i =
3

4
∂tΛ̄

i. (3.4)
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This is referred to as the 1+log slicing with Gamma-driver condition
for the lapse and shift, respectively. The new variable that appears,
Bi, is just used for reducing the order of the time derivative. This is
not the only option, but it is important to keep in mind when looking
at the equations, that we need another two equations for the lapse and
shift that we are free to choose.

4. Matter terms: They represent the matter and energy present at each
moment in space. They are (ρ, S, Si, Sij). These are contractions
of the energy momentum tensor that represent the momentum and
energy that a normal observer to the spatial slices would measure.
The simulations I present in this thesis are in vacuum, so I will not go
in more detail about these terms.

5. Background terms: In order to have correct tensorial behavior for
all our terms, a reference metric is introduced. These terms do not
evolve, so they are not part of our variables, but they will appear in the
equations. In particular, we are going to choose the reference metric
to be the flat metric, and background terms will be marked with a hat.
We have the flat metric γ̂ij , the connection that is compatible with it
and torsion-free Γ̂k

ij , and the covariant derivative that corresponds to

that connection D̂i.

Due to the introduction of the background terms, we basically have two ge-
ometries in our slices: both the one inherited from the space-time curvature,
that we conformally re-scale and denote with a bar, and the flat geometry,
denoted with a hat. I will refer to the covariant derivatives compatible with
each as conformal derivatives D̄i and flat derivatives D̂i.

Now that a basic introduction to all the terms has been presented, these are
the BSSN equations, that follow from Einstein equations:

∂⊥γ̄ij =− 2

3
γ̄ijD̄kβ

k − 2αĀij (3.5a)

∂⊥Āij =e
−4ϕ

[
−2αD̄iD̄jϕ+ 4αD̄iϕD̄jϕ+ 4D̄(iαD̄j)ϕ− D̄iD̄jα+ (3.5b)

α
(
R̄ij − 8πSij

)]TF
+ α

(
KĀij − 2ĀikĀ

k
j

)
− 2

3
ĀijD̄kβ

k

∂⊥ϕ =− 1

6
αK +

1

6
D̄kβ

k (3.5c)

∂⊥K =
α

3
K2 + αĀijĀ

ij − e−4ϕ
(
D̄2α+ 2D̄iαD̄iϕ

)
+ (3.5d)

4πα(ρ+ S)

∂⊥Λ̄
i =γ̄jkD̂jD̂kβ

i +
2

3
∆ΓiD̄jβ

j +
1

3
D̄iD̄jβ

j (3.5e)

− 2Ājk
(
δij∂kα− 6αδij∂kϕ− α∆Γi

jk

)
− 4

3
αγ̄ij∂jK − 16παγ̄ijSj .
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The right-hand side looks complicated, but there are still many terms that
conceal further computational complexity. These terms are:

1. Covariant derivatives. These change when the geometry of the space
changes, so at every moment in time they are not the same. The flat
derivatives don’t change during evolution, so the conformal derivatives
can be expressed as

D̄iVj = ∂iVj − Γ̄k
ijVK = ∂iVj − Γ̂k

ijVK −∆Γk
ijVK = D̂iVj −∆Γk

ijVK .
(3.6)

Equivalent equations can be found for second derivatives. This still
requires us to calculate the connection functions at every time step,
which is our next hidden term.

2. The difference of the Christoffel symbols ∆Γk
ij = Γ̄k

ij − Γ̂k
ij or connec-

tion functions, appear in several places in the equations and have to
be calculated for taking conformal derivatives, as we just have seen.
We can do the calculation in Cartesian coordinates, in which the flat
Christoffel symbols vanish

∆Γk
ij =

1

2
γ̄kl (∂iγ̄lj + ∂j γ̄il − ∂lγ̄ij) =

1

2
γ̄kl

(
D̂iγ̄lj + D̂j γ̄il − D̂lγ̄ij

)
.

(3.7)
The resulting formula is coordinate independent, by virtue of partial
and flat derivatives coinciding in Cartesian coordinates, and therefore
will be valid in general.

3. The conformal Ricci tensor R̄ij . A formula for the tensor can be found
in [29], as

R̄ij = −1

2
γ̄klD̂kD̂lγ̄ij + γ̄k(iD̂j)Λ̄

k +∆Γk∆Γ(ij)k+

+γ̄kl
(
2∆Γm

k(i∆Γj)ml +∆Γm
ik∆Γmjl

)
.

(3.8)

As we can see, this term is not trivial, and will pose one of the biggest
implementation challenges for a single term.

4. The Lie derivatives. In the equations those are hidden, but we have
one for every variable hidden in the time derivative

∂⊥ = ∂t − Lβ. (3.9)

5. Raised indices and contractions. Although they make index notation
a lot cleaner, it is useful when we need to perform computations to
choose a version of the tensor (with all indices down for example) and
add a term of the conformal metric (in this case it is the one used to
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lower and raise indices) to represent the other versions. Also, we have
contractions in the equations like the following:

∆Γi = γ̄jk∆Γi
jk. (3.10)

Of course, that is only part of the system. As discussed earlier, we need
gauge conditions too, and if there was matter in our space-time we would
have to evolve the matter terms too, through hydrodynamics equations. But
the other part that we are missing are the constraints, which in our system
are the following:

Mi = e−4ϕ

(
6Āij∂jϕ+ D̄jĀ

ij − 2

3
γ̄ijD̄jK

)
= 0,

H =
2

3
K2 − ĀijĀ

ij + e−4ϕ
(
R̄− 8D̄iϕD̄iϕ− 8D̄2ϕ

)
= 0,

Ci = Λ̄i −∆Γi = 0.

(3.11)

3.2 Regularity problems

In this section:
Curvilinear irregularity and orthonormal frame formalism — parity —

moving puncture

One of the main complications in using curvilinear coordinates for our sim-
ulations is irregularity problems in special points, like the axis in cylindrical
coordinates or the origin in spherical coordinates. This problem is twofold:
first, in the differential operators there appear irregular terms, as in the
Laplacian, that in cylindrical coordinates and axisymmetry is

∇2ϕ =
∂2ϕ

∂ρ2
+

1

ρ

∂ϕ

∂ρ
+
∂2ϕ

∂z2
− 1

c2
∂2ϕ

∂t2
. (3.12)

As it was discussed in section 2.2, terms like 1/ρ will not be problematic
as long as there are no grid points exactly in the irregular places (the axis
in this case). The problem we will face here is related to the other type of
error I introduced in section 2.2, differentiating irregular fields. These come
about because of using a coordinate basis in curvilinear coordinates, as will
be discussed in detail below. Afterwards, I will discuss the conditions on
the components of a tensor in curvilinear coordinates in order to represent
a smooth field, and finally I will present the methods that exist in order
to simulate space-times in which the fields are truly irregular, as in a black
hole.
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Irregularity in a curvilinear basis

To illustrate the problem, let’s consider a field in Cartesian coordinates

V = V x∂x + V y∂y + V z∂z. (3.13)

In Cartesian coordinates, covariant derivatives are simply partial derivatives.
Therefore, the regularity condition that we want for our simulation, that
covariant derivatives of a field are regular, reduces to the condition that the
components are smooth. Later we will see some examples of how that is not
true for other coordinate systems. Let’s assume that our field is smooth,
which implies that all the Cartesian components are smooth, and change
to cylindrical coordinates for example. The same vector field will then be
expressed as

V = (cosφV x + sinφV y) ∂ρ+V
z∂z +ρ

−1 (− sinφV x + cosφV y) ∂φ. (3.14)

The φ component is no longer regular. A way to understand the problem is
to look at the flat metric in cylindrical coordinates

γ̂ij
.
=

 1 0 0
0 1 0
0 0 ρ2

 . (3.15)

With this metric, the basis vector in the φ direction has zero norm at the
axis

||∂φ||γ̂ = ρ. (3.16)

The basis vector shrinks, and the corresponding component has to grow to
compensate for that, resulting in an irregular component. We can solve
this problem by translating our components into an orthonormal frame, in
which all our basis vectors are orthonormal with respect to the flat metric.
This will re-scale the components to get rid of the irregularities, and the
components will then be differentiable through finite differences.

This method could bring the question, where does the flat metric come
from, why use it instead of any other metric? After all, this problem is not
geometric, since even if we were on a manifold without metric it will appear.
The answer is that, any metric will pick up the problematic factors when
doing a change of coordinates

γρρ = γxx cos
2 ϕ+ γyy sin

2 ϕ+ (γxy + γyx) sinϕ cosϕ

γρz = γxz cosϕ+ γyz sinϕ

γρϕ = ρ
[
(γyy − γxx) sinϕ cosϕ+ γxy cos

2 ϕ− γyx sin
2 ϕ

]
γzϕ = ρ(γzy cosϕ− γzx sinϕ)

γϕϕ = ρ2
[
γxx sin

2 ϕ− (γxy + γyx) sinϕ cosϕ+ γyy cos
2 ϕ

]
.

(3.17)
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And any choice of (smooth) metric with respect to which the basis is or-
thonormal will get rid of the irregular terms. Using the flat metric is just
the simplest choice. It is worth stressing that this is a geometric solution to
a non-geometric problem.

Changing the basis everywhere implies changing the components by the
change of basis matrix [30]

V A = eAi V
i. (3.18)

The change of basis matrix to an orthonormal frame is usually referred to
in the literature as the vielbein, which is calculated from the orthonormality
condition

eAi e
B
j γ̂ij = δAB. (3.19)

Let’s look at one example to see how the components are regular in this
basis. In cylindrical coordinates the vielbein is

eAi
.
=

 1 0 0
0 1 0
0 0 ρ

 . (3.20)

Since it is diagonal, we can identify the directions of the basis vectors one
to one with the ones before. The new basis vectors are

eP = ∂ρ; eZ = ∂z; eΦ = ρ−1∂φ. (3.21)

And the vector field of our example in that base looks like

V = (cosφV x + sinφV y) eP + V zeZ + (− sinφV x + cosφV y) eΦ. (3.22)

which is regular. This example illustrates how the orthonormal frame for-
malism works, and it means that all smooth fields have smooth components
in any coordinate system. The formulas for all differential terms have to be
changed to account for the new basis, and the details can be found in the
appendix C.

Parity conditions

Let’s assume we have a co-vector field X and in cylindrical components it
is given by

Xρ = e−ρ2 ; Xz = XΦ = 0. (3.23)

It looks smooth in cylindrical coordinates, but in Fig. 3.1 we can see that
it results in non-continuous Cartesian components, and therefore the first
derivative will not be regular. This shows that even when all the components
look well-behaved in cylindrical coordinates, they could be representing a
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(a) ρ component of a vector field. (b) The corresponding x component.

Figure 3.1: In (a) the ρ component of a vector field that doesn’t go to zero
at the origin is presented. In (b) we can see that the the corresponding x
component is not regular, signifying that that choice of Xρ doesn’t represent
a smooth vector field.

non-smooth field at the origin, and it is important to understand which
conditions on the cylindrical components ensure smoothness.

This problem comes about because the basis vectors change sign under a
parity inversion

êP (φ+ π/2) = êP (φ); êΦ(φ+ π/2) = êΦ(φ). (3.24)

Therefore, if we have a continuous vector field at the axis

V P (0, φ+ π/2)ê(φ+ π/2) = V P (0, φ)ê(φ), (3.25)

the component itself has to change sign to account for the change of sign of
the basis. This will happen to all tensor fields, if they have a basis term of
the form

eρ ⊗ ..⊗ eρ︸ ︷︷ ︸
nρ

eΦ ⊗ ..⊗ eΦ︸ ︷︷ ︸
nΦ

ez ⊗ ..⊗ ez︸ ︷︷ ︸
nz

. (3.26)

That term has parity (−1)nρ+nΦ , therefore the corresponding term has to
have the same parity when ρ = 0. In the particular case of axisymmetry, all
objects don’t depend on φ, and coming back to the example before

V P (0) = −V P (0). (3.27)

All parity -1 objects have to be zero at the axis.

This explains why our example above did not represent a smooth vector
field. Incidentally, this also tell us how to implement boundary conditions
at the origin, as will be discussed in section 3.3.
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Figure 3.2: Embedding diagram of a trumpet slice of Schwarzschild. An
embedding diagram represents the geometry of a two-dimensional surface
by embedding it in 3D space [34, 35]

Moving puncture

All the analysis so far was to study when components of a smooth tensor
field are smooth and vice versa, in order to be sure we don’t take derivatives
of non-smooth fields or components. But in numerical relativity, we want to
study systems with real irregularities: black holes. If we have such a system,
how do we deal with the fact that we are differentiating non-differentiable
functions? One of the original ideas, referred to as static puncture nowadays
[31, 32], was to treat the offending term analytically in the derivatives, and
evolve the rest. This method would be the most direct choice, but it has an
important problem: since the irregular term does not evolve, the position
and character of the singularity stays fixed. This is a detrimental flaw if
we want to evolve moving black holes, for simulations for example of binary
mergers. Another idea was needed for such simulations.

That idea is what we now callmoving puncture [33], for its similarity with the
static puncture method and ability to move the singularities throughout the
grid. The idea is at the same time straight-forward and subtle. It is straight-
forward because avoiding regularity concerns, we directly differentiate the
irregular terms, without analytic treatment of the derivatives or anything
of that sort. It is subtle because in order to have the error be localized in
the irregular region, we need to adopt a certain type of slices for our space-
time. These slices are called trumpet slices, because of the shape of their
embedding diagrams (Fig. 3.2).

These slices have a couple of important properties. First of all, they don’t
include the black hole singularity, since they end at a finite areal radius.
That is desirable, because that is a very irregular point, that analytically
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will not affect the rest of our domain, since it is covered by a horizon. The
second property is that the boundary around the singularity (which is inside
the horizon) is infinitely far away. In the embedding diagram, it is all the
way down in the trumpet. That means that although the metric is not
regular there, analytically those errors don’t propagate outwards.

In simulations, we find that this method works, and although there is the
uncontrolled error at the origin, it doesn’t contaminate all the domain. Why
it works is not completely understood from a computational point of view,
but the heuristic picture goes like follows: the grid nodes that are less than
one stencil away from the origin have a big error from the irregularity at
the origin. That error does propagate outwards computationally, but once
we are a couple of grid points away from the singularity, the equations are
numerically well described (meaning that the error is convergent to zero).
In that area, the extra error will approximately follow the equations, and
since signals cannot propagate out of the black hole horizon, that will also
be the case approximately in the simulation. That means that the amount
of error that gets out of the horizon depends on the accuracy of our method,
therefore presenting the same convergence as the rest of the error.

We want our spatial slices to have trumpet geometry, and we can impose
that in two ways:

1. We can start with initial data that corresponds to analytical trumpet
slices, if those are known. Such initial data for Schwarzschild and Kerr
black holes can be found in [36, 37].

2. In a more general case in which trumpet initial data is not available, we
can start with another type of slices and use gauge conditions to evolve
our slices into the trumpet geometry [33, 38, 39]. The combination of
1+log slicing for the lapse

∂tα = −2αK, (3.28)

and a Gamma driver condition for the shift

∂tβ
i = Bi; ∂tB

i =
3

4
Λ̄i, (3.29)

have been found to have the desired property.

To illustrate both methods, I will simulate a Schwarzschild black hole both
with trumpet initial data, and with wormhole initial data with the necessary
gauge to have it evolve into a trumpet geometry.
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3.3 Implementation

In this section:
General implementation strategy —computational objects — boundary

conditions — non-fixed constraints

In the previous chapter, we presented the equations, and the main ideas to
deal with the irregularity, that is the biggest problem of doing simulations
in curvilinear coordinates. Now the general strategy behind the implemen-
tation will be discussed.

From section 3.1 we see that implementing the equations, with all those
hidden terms, will be highly non-trivial. There are many ways to go about
it, for example, one could choose to have a field for every tensor component,
and write explicitly in the code the combination of terms that is hidden by
the tensor notation. That would be a valid method, but it would run into
complications once we wanted to change the spatial coordinates, since the
formulas might change. Therefore, I will adopt a different strategy: I will
create computational objects that correspond to the mathematical objects
as closely as possible, in order to be able to write the equations as similarly
as possible to the tensor notation in which we present it. For that I am
going to use the following objects:

• GridFunction. It is the most basic object, represents a field in a 2D
grid, the same as in the scalar wave case.

• Tensor. Another direct choice. It can be indexed to find its com-
ponents, which are expressed in the orthonormal frame. We can take
partial derivatives of it, but it doesn’t have methods for the flat deriva-
tives, since those will depend on our coordinates.

• Metric. Inherits from tensor, but the inverse can be calculated, and it
serves to do contractions.

• Coordinates. This object contains all the necessary information about
the flat geometry on the grid, and the coordinates we are using for
it. It includes the connection and the vielbein to change into the
orthonormal frame. It allows us to take flat derivatives of the other
objects.

• State. This is the grouping of all different fields into a single object
that represents the state at each time and that is evolved. It contains
information about the coordinates through a coordinates object, and
dedicated functions to calculate and store the hidden terms at each
time-step.
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It is important to mention that we have to store all tensor components not
only because of preserving the possibility of changing coordinates, but also
because in axisymmetry, we don’t have simplification of tensor components.
In spherical symmetry, all vectors have to be radial, for example, so we
can only store the radial component of the vectors and write the formulas
by hand. Since this doesn’t happen in cylindrical coordinates, there is no
simplification. This has the effect that the code structure is simple to extend
to 3D, if that was my intention in the future.

In terms of how the system is evolved, I will use a MOL-RK4 algorithm to
evolve the state object, in the same way that was done for the scalar wave.
The constraints will not be imposed, but instead they will be tracked to
study error and convergence.

The error will be second order this time. Most partial derivatives are calcu-
lated as before, but we have advective terms inside the Lie derivatives

LβTij = βk∂kTij + ... (3.30)

Such terms are calculated through an upwind method for stability reasons.
This method has a one-sided stencil, so in order to achieve the same fourth
order accuracy, we would need extra ghost nodes. With only two ghost nodes
on the boundary, we have to reduce the order of the derivative. According
to the discussion of error in section 2.2, even in the non-linear case, the
convergence of the error at each time step is given by the part with the
slowest convergence, so the total error will be second order.

In terms of outer boundary conditions, the ones in the outer boundary will
be the same, with the small difference that the fields will be allowed to
oscillate around a non-zero value. The boundary condition this time is

ϕ(r, t) = ϕ0 +
f(r − t)

r
. (3.31)

Regarding the interior boundary, and as a result of our parity discussion,
the fields will be copied into the ghost nodes with a corresponding factor of
the parity of that term

ϕ−1,j = (−1)nρ+nΦϕ0,j . (3.32)

In the case that we do a simulation in a different system of coordinates, the
interior boundary condition will change. For example, in spherical coordi-
nates

ϕ(−r, θ) = (−1)nρ+nΦϕ(r, π − θ) ⇒ ϕ−1,j = (−1)nρ+nΦϕ0,−j . (3.33)

And what also will change is the CFL condition. Since the grid is no longer
constituted of equally sized cells, the limiting grid size will be the smallest.
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The smallest grid size corresponds to the first cell, that has an area of
∆r ×∆r∆θ, therefore, if we use one of the measures discussed before

∆min = min(∆r,∆r∆θ) = ∆r∆θ. (3.34)

The time-step, which is limited by this quantity, will be limited quadratically
in resolution, which means that a simulation in these coordinates will be
significantly slower.
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Chapter 4

Tests and results

In this chapter, I present a discussion of the necessary tested to be confi-
dent in the code being correct, and present the results I have obtained by
doing three different simulations. The simulations have been chosen to be
complementary and give a high degree of confidence on the code. My main
tool for testing is comparison with an analytical solution, but I also present
a setup without an analytical counterpart to see how we can track the error
in that case using the constraints of the system.

4.1 Code testing

The code has many parts that could possibly be wrong individually, so
when testing, it is important to keep in mind all the moving pieces and try
to isolate them as much as possible with well-chosen tests that only depend
on some of them. A schematic view of the parts of my code would be:

1. Object implementation and methods

2. Evolution methods

3. Mathematical operators

The first one is easy to understand and test. My object that represents
fields (GridFunction), for example, has an operator to sum it with another
field, that iterates over the elements and sums them individually. This is
the kind of low-level details that it is very important to test for upfront,
because at the end there will be a lot such methods. If one of them were
to be wrong (for example, if the iteration in the sum is badly implemented
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and it skips the corners of the domain) it would be really hard to track this
error down in a simulation. Therefore, for every object method, I set up
several tests with example cases and check that they produce the correct
results. Testing tensor methods also makes some simplifications later, since
if a formula works for a given tensor, there is no need to test it for the
specific components.

The second group encompasses the implementation of the evolution operator
itself and the boundary conditions. It is partly tested with the correct scalar
wave simulation in chapter 2, but in the full numerical relativity case the
boundary conditions will be different, so it needs to be tested again. We gain
confidence on them by running simulations that don’t crash, and, provided
we trust the implementation of the evolution operator on the right-hand side
of the evolution equation

∂tu = L(u), (4.1)

by finding correct convergence to an analytical solution. Among my tests
that I will present later, the Teukolsky wave will address mainly this part.
It has the advantage that since it is a linear solution, most of the terms in
the evolution equations will be zero, so that the correct implementation of
those terms and of the evolution operator can be tested separately.

Lastly, the mathematical operators have to be checked. There are a lot of
them, including but not limited to:

1. All derivative operators (∂i ,D̂i, D̂iD̂j , Lβ ...)

2. The calculation of the connection functions ∆Γijk.

3. The Ricci tensor R̄ij .

4. The Hamiltonian and momentum constraints H, Mi.

5. The right-hand side operator in equation (4.1).

The strategy behind most of them is to compare with an analytic solution.
They depend on several variables, and for a good test, all the terms should
be non-zero. For example, take the Hamiltonian constraint

H =
2

3
K2 − ĀijĀ

ij + e−4ϕ
(
R̄− 8D̄iϕD̄iϕ− 8D̄2ϕ

)
. (4.2)

The last term can be separated into the flat derivative and the connection
function contribution,

D̄2ϕ = D̂2ϕ−∆ΓkD̂kϕ. (4.3)
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In order to test the second term, one needs an analytic solution in which
both ∆Γk and ϕ are non-zero. This type of considerations will be specially
relevant when testing the right-hand side operator, since there are so many
terms that it helps to keep in mind which are tested already and which
aren’t.

I have tested all the mathematical operators. In appendix D an example
can be found of how this is done for the Ricci tensor. But the right hand
side operator is more complicated: not only finding the analytic solution
for a specific state is hard, but it also includes the gauge information. It is
possible that a gauge choice has been made that leads to unstable evolution,
so that operator needs to be tested in evolution. The simulations presented
will work as tests for this operator.

4.2 Teukolsky waves

In this section:
Simulation set-up and analytical comparison — snapshots of the solution

— convergence plots

For my first test, I am going to look at a gravitational wave in vacuum.
Gravitation waves are solutions to the linearized vacuum Einstein’s equa-
tions [30]

□hij = 0, (4.4)

and therefore will only be valid approximations for small amplitudes. The
specific waves I am going to look at are Teukolsky waves [40], which are
spherical quadrupolar solutions. In an orthonormal frame in spherical coor-
dinates they are given by

hAB
.
=

 Afrr Bfrθ Bfrϕ

Bfrθ Cf
(1)
θθ +Af

(2)
θθ (A− 2C)fθϕ

Bfrϕ (A− 2C)fθϕ

(
Cf

(1)
ϕϕ +Af

(2)
ϕϕ

)
 , (4.5)

where the capital constants (A, B, C) are functions of only the radius and
time, and the fab functions are angular, and have five different versions,
corresponding to m = ±2,±1, 0. Of these, only the ones with m = 0 are
axisymmetric, so those are the ones I will concern myself with here. These
are given by

frr = 2− 3 sin2 θ; frθ = −3 sin θ cos θ; frϕ = 0; f1θθ = 3 sin2 θ

f
(2)
θθ = −1; fθϕ = 0; f

(1)
ϕϕ = −3 sin2 θ; f

(2)
ϕϕ = 3 sin2 θ − 1.

(4.6)
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And the radial-time parts are given in terms of a seed function and its
derivatives

A(r, t) = 3

[
F (2)

r3
+

3F (1)

r4
+

3F

r5

]
,

B(r, t) = −

[
F (3)

r2
+

3F (2)

r3
+

6F (1)

r4
+

6F

r5

]
,

C(r, t) =
1

4

[
F (4)

r
+

2F (3)

r2
+

9F (2)

r3
+

21F (1)

r4
+

21F

r5

]
.

(4.7)

F (t, r) = F1(t − r) + F2(t + r) is the seed function, and its derivatives are
defined as

F (n) :=

[
dnF1(x)

dxn

]
x=t−r

+ (−1)n
[
dnF2(x)

dxn

]
x=t+r

. (4.8)

In my case I will choose the following seed function

F (t, r) = A

{
(t− r) exp

[
−
(
t− r

λ

)2
]
− (t+ r) exp

[
−
(
t+ r

λ

)2
]}

.

(4.9)
This choice follows the same reasoning as the scalar wave solution discussed
in section 2.1, a superposition of ingoing and outgoing waves in such a way
that we will have regularity at the origin.

I will perform a test in both spherical coordinates and cylindrical coordi-
nates, the solution in cylindrical coordinates being

hPP = A
[
f
(2)
θθ cos2 θ + frr sin

2 θ
]
+Bfrθ sin(2θ) + Cf

(1)
θθ cos2 θ,

hPZ = A
[
frr − f

(2)
θθ

]
cos θ sin θ +Bfrθ cos(2θ)− Cf

(1)
θθ cos θ sin θ,

hPΦ = (A− 2C)fθϕ cos θ +Bfrϕ sin θ,

hZZ = A
[
frr cos

2 θ + f
(2)
θθ sin2 θ

]
− 2Bfrθ sin θ cos θ + Cf

(1)
θθ sin2 θ,

hzΦ = −(A− 2C)fθϕ sin θ +Bfrϕ cos θ,

hΦΦ = Cf
(1)
ϕϕ +Af

(2)
ϕϕ .

(4.10)

A schematic view of how these terms are calculated can be found in appendix
E.

As mentioned in the previous section, this will be good to test the evolution
methods in my code, since it is dynamical, and because it is linear, most
terms in the right-hand side operator will not play a role. That is helpful
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because in the case that the simulation didn’t work and all the terms played
a role in it, the error would be very hard to track down.

The error will be calculated in the same way as in the scalar wave case: the
numerical solution is to be compared with the analytic solution at each time
step and the norm of the error is compared for different resolutions. We
expect fourth order convergence at this point. The gauge conditions used
are zero shift and harmonic slicing

∂tα = −α2K; βi = 0. (4.11)

Given all that, we have the necessary ingredients to perform the simulation.
We can see snapshots of the evolution of the hPP = hρρ component in
Fig. 4.1. These results are from the cylindrical coordinates simulation.
As before, simple inspection doesn’t ensure the correctness of the results,
so I have presented the convergence tests for both cylindrical and spherical
coordinates simulations in Fig. 4.2, where we can see that the error is fourth
order as expected, since the shift is zero and therefore there are no upwind
derivatives. This test gives us good confidence in the evolution algorithm of
my code.

4.3 Trumpet initial data

In this section:
Initial data — Comparison of X and ϕ as a variable — Convergence plots

As mentioned in the previous chapter, I am going to simulate the Schwarzs-
child black hole with two types of initial data: one that already has the
trumpet geometry and one that will evolve into it. The trumpet initial data
is given in [36] and translated to cylindrical coordinates it is

α =
r̄

r̄ + 1
; MK =

1

(r̄ + 1)2
; ψ = eϕ =

√
1 +

1

r̄
; γ̄ij = ηij ;

MĀAB
.
=

2

3

1

(r̄ + 1)2

 1− 3ρ2/r2 −3zρ/r2 0
−3zρ/r2 1− 3z2/r2 0

0 0 1

 ;

βA
.
=

1

(r̄ + 1)2

 ρ̄
z̄
0

 .
(4.12)

Where r̄ = r/M =
√
ρ2 + z2/M is the radius in units of the black hole mass.

This radius is related to the areal radius as

R = (r̄ + 1)M. (4.13)
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(a) t = 0 (b) t = 1.2

(c) t = 2.4 (d) t = 3.6

Figure 4.1: Snapshots of the evolution of the Teukolsky wave. I am plotting
107hρρ.

(a) Results in cylindrical coordinates. (b) Results in spherical coordinates.

Figure 4.2: The norm of the difference between the computational and an-
alytical solution, scaled with the resolution to fourth order. Coincidence
of lines means correct convergence. Each line corresponds to the resolution
given in the legend. In (a), the lines range from a grid spacing of 0.15 to 0.12.
In (b) those resolutions correspond to ∆r = 0.3, ∆θ ≃ 0.13 and ∆r = 0.19,
∆θ ≃ 0.079.
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Figure 4.3: Comparison of X and ϕ for the initial data. Both are not
differentiable.

Using the variable X = e−2ϕ instead of ϕ turns out to give better results
numerically [33, 41, 42], as I also found in my code. In this case we have

X =
r̄

r̄ + 1
. (4.14)

We can see a plot of both fields along the ρ = 0 line in Fig. 4.3. Both are
not differentiable, so a priori the error should be the same

I think the difference comes in the following way. Although we cannot use
Taylor’s expansion (2.30) in this case, looking at it might give us a hint.
The error term depends on the derivative in a point of the stencil domain.
Although X is not differentiable at r̄ = 0, if we look at the derivatives they
are all bounded in the region R − {0}, while that is not the case for ϕ.
Therefore, the error from differentiating ϕ can be much bigger than it is for
X. This is, of course, hand-wavy, because we don’t have any formula for
the error, but I think it gives us a hint of why X could be a better variable
numerically, even though it is still not differentiable. Also, the effect of the
finite difference is to “smooth” features smaller than the grid spacing. For
X, this means that the kink in the function will be lost, but that is not
such a big error. For ϕ, the irregularity gets smoothed out, resulting in a
formally infinite error.

Another thing to consider is that the solution will only be time-independent
if a suitable gauge is chosen. In this case that choice is

∂⊥α = α(α− 1)K. (4.15)
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Given that the solution has to be time-independent, the error in our simu-
lation can be studied by looking at the time derivative of the state

∂tu = L(u) = 0 analytically. (4.16)

We can see the results in Figs. 4.4(a) and 4.4(b), both in log and linear
scale. There are a couple of things we can see from those plots: first, we
have correct second order convergence everywhere except on the area close
to the origin (as expected per moving puncture) and the region that is in
causal contact with the boundaries. That error is also as expected, and it
doesn’t improve with resolution since it comes from an approximation that
does not depend on resolution, but rather on distance from the origin. It is
equivalent to the error studied in section 2.3. On the linear scale plot, we
can observe how the boundary that is closer (the left one) produces a bigger
error.

The results of the test are therefore satisfactory. Most of the terms are in
the evolution equations are tested in this simulation, except the ones that
depend on ∆Γijk or Λ̄i, since those are zero here.

4.4 Wormhole initial data

In this section:
Initial data — Hamiltonian constraint for testing — Gauge choice —

Wrong convergence and possible reasons

Let’s turn our attention now to wormhole initial data

α =

(
r̄

r̄ + 1/2

)2

; MK = 0; ψ = eϕ = 1 +
1

2r̄
; γ̄ij = ηij ;

MĀAB = 0; βA = 0.

(4.17)

The lapse choice α = ψ−2 = X is referred to as a “pre-collapsed” lapse,
because it starts being zero at the puncture, instead of evolving towards
that. For this initial data to develop into a trumpet geometry we need to
use the standard slicing conditions mentioned in section 3.2, that are given
by the 1+log lapse condition

∂tα = −2αK, (4.18)

and a Gamma driver condition for the shift

∂tβ
i = Bi; ∂tB

i =
3

4
Λ̄i. (4.19)
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(a) Results in log scale

(b) Results in a linear scale

Figure 4.4: Plots of the error in the simulation with trumpet initial data,
calculated by comparison with the analytical solution. The difference lines
correspond to the different resolutions in the legend. Coincidence of lines
means correct convergence. In (a) we can see that the convergence is correct
except inside the horizon and near the boundaries, as expected. In (b) we can
see how the area that is in causal contact with the boundary has a constant
error with resolution, since the boundary conditions are approximate, and
the error is bigger the closer the boundaries are.
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(a) Violation of the hamiltonian constraint for the initial data.

(b) Violation of the Hamiltonian constraint at t = 10M

Figure 4.5: Violation of the Hamiltonian constraint at t = 18M for different
resolutions, each line corresponding to the resolution given in the legend.
Those resolutions correspond to ∆ρ ≃ ∆z ≃ 0.49 to ∆ρ ≃ ∆z ≃ 0.33. In
(a) we can see correct fourth order convergence, for initial data, as expected.
For (b) we see second order convergence (as expected because of the upwind
derivatives) in part of the domain, but not all of it, even excluding the areas
that are in causal contact with the boundary. This should be investigated
further.
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In this case, we use the violation of the Hamiltonian constraint to track the
error, since the analytical solution is not known. The results can be found
in Fig. 4.5(a) and Fig. 4.5(b). The convergence is plotted both for the
initial data, in which the expected convergence is fourth order since βi = 0
and therefore there are no advective derivatives, and for a later time. The
correct convergence for initial data indicates that it is correctly set up. For
a later time, correct convergence is not found in all of the domain, as in
the figure the region 10M < r < 20M seems to have constant error. This
should be investigated further, although the two previous tests give us a
strong indication of where the error lies. The only terms that were not
tested before are those that depend on Λ̄i and ∆Γijk, which leaves us with
few candidates for the erroneous term. Alternatively, since the grid spacing
is rather big in this simulation 0.33 ≤ ∆ ≤ 0.49, it is possible that we are
still not in the region of convergence, since the leading error term doesn’t
dominate.
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Chapter 5

Conclusion and future work

In this thesis, I have presented my work in creating a new numerical relativ-
ity code in axisymmetry, with arbitrary spatial coordinates. This, although
not innovative, is important for two reasons. The first being the low-level
understanding of the methods of numerical relativity that I have developed
through the endeavor, that is going to be very useful in my future research.
The second is because I have developed a new tool, with the prospect that
it will be specially useful for problems I am interested in, as critical collapse
[43, 44]. Among the main takeaways from this work are the requirements
and methods needed to do stable simulations when working with irregular
terms, how the numerical error behaves in numerical relativity simulations
and how to translate the complicated system of equations into a code that
is as simple as possible.

But this work is far from done, there are many improvements that would
increase the usefulness of the code. In the short term, I would like to fix
the faulty wormhole initial data simulation and simulate a black hole head
on collision, since that would just involve setting up the analytical initial
data. In the medium term, the code would benefit from an implementation
of Kreiss-Oliger dissipation [45] and parallelization. This would allow me to
run for far longer times, and see more interesting physics. A solver for the
initial data (solving the constraint equations at t = 0) [46] could be added in
this stage, what would open the door for far more complex and interesting
simulations. Finally, once all of that was done, my code would be suitable
for studying critical collapse for long times, which is one of my interests. At
this stage the code could be extended to 3D, since this wouldn’t be such a
big change implementation-wise, and it would allow me to simulate a vast
array of systems, from binary black hole mergers, to non-symmetric collapse
etc...
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As a conclusion, this works leaves me with my feet firmly planted in the field
of numerical relativity, which has proven of invaluable importance to the
study of gravity and the universe. Armed with my code and the knowledge
obtained from it, I hope to be able to reach interesting and exciting findings
and results in the near future.



Appendix A

Analytical solutions of the
wave equation in cylindrical
coordinates

To find analytical solutions to the equation I will use the method of separa-
tion of variables, in which the choice of coordinates is equivalent to choosing
a basis for the solution.1 In this appendix, I present that basis in cylindrical
coordinates. Let’s remember that the axisymmetry condition implies that
we are restricting our study to the subspace of solutions that don’t depend
on φ, over which derivating with respect to φ is always zero ∂φ = 0. The
equation in these coordinates is

∂2ϕ

∂ρ2
+

1

ρ

∂ϕ

∂ρ
+
∂2ϕ

∂z2
− 1

c2
∂2ϕ

∂t2
= 0. (A.1)

Let’s look for a separation of variables basis of solutions, in which each
element will be of the form

ϕα = T (t)R(ρ)Z(z). (A.2)

The procedure is straight-forward, and we are left with three terms that only
depend on one of the variables, therefore each of them has to be constant
individually,

R′′

R
+

1

ρ

R′

R︸ ︷︷ ︸
λ

+
Z ′′

Z︸︷︷︸
µ

− 1

c2
T ′′

T︸ ︷︷ ︸
η

= 0, (A.3)

1This, of course, is only a product of our analytical method. At the numerical level, the
function is not represented in terms of a basis, so the motivation to choose one coordinate
system will mainly be symmetry and accuracy related.
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with the constraint λ+ µ− η = 0. Without further information, we should
include the solutions with both positive and negative constants in our basis.
But if we restrict our interest to a particular space of solutions, like L2,
it turns out that some solutions are linearly dependent on the others, and
we don’t need them as part of the basis. Our interest lays in simulations
though, so one could ask: how do we restrict the results of our simulation
to represent functions in a specific function space? The solution is simpler
than it looks: if the initial data is in L2 (what we could call realistic initial
data) then the solution will also be.2 The only terms that we need for our
basis are the oscillatory terms, therefore I will make the re-definitions

λ = −k2ρ, µ = −k2z , η = −ω2/c2 ⇒ ω2/c2 = k2ρ + k2z . (A.4)

The separated equations for our basis terms are then
ρ2R′′ + ρR′ + k2ρρ

2R = 0

Z ′′ + k2zZ = 0
T ′′ + ω2T = 0

. (A.5)

The first equation is the only one that is not trivial. If we change the variable
ρ → kρρ, we can see by inspection that is the zeroth order Bessel function.
Therefore, the elements of our basis are the following functions

ϕk =
[
AkρH

(1)(kρρ) +BkρH
(2)(kρρ)

] [
Cke

−i(kzz−ωt) +Dke
−i(kzz+ωt)

]
.

(A.6)
The Hankel functions of order zero have the following asymptotic form

H(1)(kρρ) ≈
√

−2i

π

eikρρ√
kρρ

; H(2)(kρρ) ≈
√

2i

π

e−ikρρ√
kρρ

. (A.7)

Far away, the basis of the solution just look like regular waves, but scaled
by a geometric factor

ϕk ≈ 1√
kρρ

[
Ake

−i(kzz+kρρ−ωt) +Bke
−i(kzz+kρρ+ωt)

]
. (A.8)

I think this asymptotic form, although not exact, gives us a lot better in-
tuition of how this waves look like. Let’s think about how physical these
solutions are. In particular, let’s consider we have some system, that has
some structure around the axis. Maybe it is a vibrating dipole, or maybe it
is a black hole head on collision that is sending gravitational waves very far
away. For these systems, the sources are localized in a given area, and if we
go far away, the radiation that reaches us is only the one coming from that

2Keep in mind that this will no longer be the case when we move to the non-linear
case. But in that case we will not try to introduce a basis either, as that is a linear space
concept.
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part of space, we cannot have waves with infinite wave-fronts. But that is
exactly how our solutions (A.8) look like. In practice, this means that in
order to resolve any “physical” wave in this basis, we will need a big super-
position of elements so that they cancel far away. That is what motivates
us to think about spherical waves as a basis in the text instead.
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Appendix B

Stability analysis of the
method

Let’s perform a Von Neumann stability analysis of the evolution method.
In such an analysis, we take the basis functions (calculated in the previ-
ous appendix) and expect the algorithm to act linearly on them. Then we
check whether the solutions grow exponentially, in order to find a necessary
condition for stability in the case that they don’t. In mathematical terms,
we have the solution at one time-step, and we get the solution on the next
time-step

un+1 = αun, (B.1)

and the necessary condition for stability is α < 1. α typically depends on
the algorithm parameters (∆t,∆x, ...) so this is a condition on them. Let’s
calculate that factor for my algorithm, starting with the finite differences
acting on the basis functions, given by

ϕ = J0(kρρ)e
−ikzz. (B.2)

Since it is a product of functions of the individual variables, we can look at
the action of the finite difference Laplacian on each individually.

∇2
FDϕ = J0(kρρ)∇2

FDe
−ikzz + e−ikzz∇2

FDJ0(kρρ). (B.3)

The first term is easy to calculate

∇2
FDe

−ikzz = e−ikzz−(eikz2∆z + e−ikz2∆z) + 16(eikz∆z + e−ikz∆z)− 30

12∆z2
=

= − 1

∆z2
cos(2kz∆z)− 16 cos(k∆z) + 15

6
e−ikzz = −Fz(kz∆z)

∆z2
e−ikzz.

(B.4)
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For the Bessel function, I didn’t calculate the proportionality factor analyti-
cally, but looked at the effect of the finite difference operator on the function
and tried to find a proportionality constant. This, of course, is a weak point
of this analysis, since I can not be sure the effect is exactly linear in that
case, although the numerical results give some confidence about it. It seems
to be the case that

∇2
FDJ0(kρρ) = −Fρ(kρ∆ρ)

∆ρ2
J0(kρρ), (B.5)

with Fρ an oscillating function bounded by Fρ(x) ∈ [0, 5.324..]. If that is
the case, the effect on the basis function of the discretized operator is

∇2
FDϕ = −

[
Fz(kz∆z)

∆z2
+
Fρ(kρ∆ρ)

∆ρ2

]
ϕ. (B.6)

Let’s look now at the fourth order Runge-Kutta, to see what are the bounds
on that factor From the previous discussion, the RHS operator of the scalar
wave equation, when discretized, acting on a basis element is

L(u) =

[
ψ

c2∇2
FDϕ

]
=

[
0 1

−c2F̂ (kz∆z, kρ∆ρ) 0

] [
ϕ
ψ

]
, (B.7)

where, for simplicity, I have made the definition:

F̂ :=

[
Fz(kz∆z)

∆z2
+
Fρ(kρ∆ρ)

∆ρ2

]
. (B.8)

The algorithm is the following:

k1 = L(ûn),

k2 = L(ûn + k1∆t/2),

k3 = L(ûn + k2∆t/2),

k4 = L(ûn + k3∆t),

ûn+1 = ûn +
∆t

6
(k1 + 2k2 + 2k3 + k4) .

(B.9)

Which in our case reduces to

k1 =Mûn,

k2 =Mûn +Mk1∆t/2,

k3 =Mûn +Mk2∆t/2,

k4 =Mûn +Mk3∆t,

ûn+1 =

(
1 + ∆tM +

1

2
∆t2M2 +

1

6
∆t3M3 +

1

24
∆t4M4

)
ûn.

(B.10)

Note how the evolution term is a truncation to fourth order of the expansion
of the exponential, which would be the exact solution for the problem ∂tu =
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Mu. The stability condition can be expressed as the determinant of the
evolution matrix being less than one

R := 1 + ∆tM +
1

2
∆t2M2 +

1

6
∆t3M3 +

1

24
∆t4M4; det(R) ≤ 1. (B.11)

The determinant of that matrix is

det(R)(λ = F̂∆t2) =

(
1− λ

2
+
λ2

4!

)2

+ λ

(
1− λ

3!

)2

, (B.12)

and the condition of this being less than one implies λ < 8, therefore

c2∆t2
[
Fz(kz∆z)

∆z2
+
Fρ(kρ∆ρ)

∆ρ2

]
≤

(
c∆t

∆2

)2

FM ≤ 8. (B.13)

Where FM = max(Fz, Fρ) ≈ 5.4, which results in the stability condition

c∆t

∆2
≲ 1.21. (B.14)
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Appendix C

Changes in the orthonormal
frame formalism

When using the orthonormal frame formalism, the derivatives will change,
since at each point we have a non-constant matrix acting on the components.
The covariant derivatives will have a similar form by introducing the spin
connection ωB

CA [30]

DCXA = eiC∂iXA − ωB
CAXB; ∂C = eiC∂i. (C.1)

We will be justified in writing the covariant derivatives this way as long as
it will reduce to the usual formula when changing back to the coordinate
basis. That will always happen if we define the spin-connection as

ωB
CA := eBk e

j
Ae

i
CΓ

k
ij − ekAe

i
C∂ie

B
k . (C.2)

This formula has a very important property, in that it relates all possible
spin connections with their Christoffel symbols. In particular, it works for
connections that are not compatible with the metric for which the vielbeins
are orthonormal. In our case, that means that we can use this formula
for conformal derivatives too. In general, the above formula works for any
change of basis, not just to an orthonormal one.

The above definition implies

DCe
A
i = 0. (C.3)

For any possible covariant derivative. That is very important since it will
allow us to change basis inside derivatives.1

1It is important to note that this convention is not universal, some people define the
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The fact that these formulas work for every connection, independently of
whether or not it is related to the metric with respect to which the basis is
orthonormal has one important consequence. That is that the difference of
spin-connections corresponds to the difference of Christoffel symbols, trans-
lated into the orthonormal frame

∆ωC
AB = ω̄C

AB − ω̂C
AB = eiAe

j
Be

C
k ∆Γk

ij . (C.5)

So that it will not be a new variable, and the formula used for translating
derivatives will be the same in the orthonormal frame. In general, tensorial
terms in the equations will have the same expressions, but non-tensorial
terms (as the connection) might change.

The Lie derivative is another of the terms that have to be modified. In a
coordinate basis it is given by

LβTij = βk∂kTij + (∂iβ
k)Tkj + (∂jβ

k)Tik. (C.6)

The individual terms in the formula are not tensorial, and therefore they
are subject to change. In fact, since we have partial derivatives, there are
going to be some extra terms with derivatives of the vielbein

eCAB = eCk e
i
A∂ie

k
B. (C.7)

The full equation in this case is

(LβT )AB =βC∂CTAB +
(
∂Aβ

C
)
TCB + (∂BV

C)TAC+

+ 2eC[AD]V
DTCB + 2eC[BD]V

DTAC .
(C.8)

Let’s now look at a specific example, cylindrical coordinates. The vielbein
was given in the text as

eAi
.
=

 1 0 0
0 1 0
0 0 ρ

 . (C.9)

The only non-zero Christoffel symbols are

Γ̂ρ
ϕϕ = −ρ; Γ̂ϕ

ρϕ = Γ̂ϕ
ϕρ = ρ−1. (C.10)

The only non-zero spin-connection values are, then

ω̂Φ
ΦP = ρ−1; ω̂P

ΦΦ = −ρ−1. (C.11)

spin connection as
DCe

A
i = ωA

iC , (C.4)

and that will result in a different formula for the covariant derivative. In our case, I think
that the convention I used is more useful.
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Some derivatives in this system of coordinates are presented.

The first derivative of a first rank tensor is

D̂AXB
.
=

 ∂ρXρ ∂ρXz ∂ρXΦ

∂zXρ ∂zXz ∂zXΦ

ρ−1 (∂ϕXρ −XΦ) ρ−1∂ϕXz ρ−1 (∂ϕXΦ +Xρ)

 . (C.12)

In our case, since we have axisymmetry, all the ϕ derivatives are zero.

The second flat derivative of a scalar

D̂AD̂Bf = ∂A∂Bf − ω̂C
AB∂Cf = eiA∂i

(
ejB∂jf

)
− ω̂C

ABe
k
C∂kf =

= eiAe
j
B∂i∂jf +

(
eiA∂ie

j
B

)
∂jf − ω̂C

ABe
k
C∂kf.

(C.13)

In cylindrical coordinates we can make the appropriate substitutions to find

D̂AD̂Bf
.
=

 ∂2ρf ∂ρ∂zf ρ−1∂ρ∂ϕf − ρ−2∂ϕf

∂z∂ρf ∂2zf ∂z∂ϕf
ρ−1∂ϕ∂ρf − ρ−2∂ϕf ∂ϕ∂zf ρ−2∂2ϕf + ρ−1∂ρf

 . (C.14)

In particular, we find that if we take the trace with the flat metric δAB,
we get the formula for the Laplacian in section 2.1. This is because the
traditional calculus operators are written in orthonormal coordinates.

Let’s look at the second derivative of a covector field,

D̂AD̂BXC = D̂A

(
∂BXC − ω̂D

BCXD

)
=

= eiAe
j
B∂i∂jXC − (ω̂D

BCe
i
A + ω̂D

ACe
i
B)∂iXD −

(
ω̂D
ABe

i
D − ejA∂je

i
B

)
∂iXC+

+
(
ω̂E
ABω̂

D
EC + ω̂E

AC ω̂
D
BE − ∂Aω̂

D
BC

)
XD.

(C.15)

The easiest contribution is the derivative of the z component, since many
terms will vanish

D̂AD̂BXZ = eiAe
j
B(∂i∂j − Γ̂k

ij∂k)XZ . (C.16)

In fact that contribution will be in the three components, so they will all
have the same general form as the z component plus some extra factors.
The z component is

D̂AD̂BXz
.
=

 ∂2ρXz ∂ρ∂zXz ρ−1∂ρ∂ϕXz − ρ−2∂ϕXZ

sym ∂2zXz ρ−1∂z∂ϕXz

sym sym ρ−2∂2ϕXz + ρ−1∂ρXz

 . (C.17)
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The ρ component is

D̂AD̂BXρ
.
=

 ∂2ρXρ ∂ρ∂zXρ ρ−1∂ρ∂ϕXρ − ρ−2∂ϕXρ − ρ−1∂ρXΦ + ρ−2XΦ

sym ∂2zXρ ρ−1∂z∂ϕXρ − ρ−1∂zXΦ

sym sym ρ−2∂2ϕXρ + ρ−1∂ρXρ − 2ρ−2∂ϕXΦ − ρ−2Xρ

 .
(C.18)

And finally the Φ component

D̂AD̂BXΦ
.
=

 ∂2ρXΦ ∂ρ∂zXΦ ρ−1∂ρ∂ϕXΦ − ρ−2∂ϕXΦ + ρ−1∂ρXρ − ρ−2Xρ

sym ∂2zXΦ ρ−1∂z∂ϕXΦ + ρ−1∂zXρ

sym sym ρ−2∂2ϕXΦ + ρ−1∂ρXΦ + 2ρ−2∂ϕXρ − ρ−2XΦ

 .
(C.19)

In axisymmetry

D̂AD̂BXρ
.
=

 ∂2ρXρ ∂ρ∂zXρ −ρ−1∂ρXΦ + ρ−2XΦ

sym ∂2zXρ −ρ−1∂zXΦ

sym sym +ρ−1∂ρXρ − ρ−2Xρ

 , (C.20)

D̂AD̂BXΦ
.
=

 ∂2ρXΦ ∂ρ∂zXΦ ρ−1∂ρXρ − ρ−2Xρ

sym ∂2zXΦ +ρ−1∂zXρ

sym sym ρ−1∂ρXΦ − ρ−2XΦ

 . (C.21)

In the formulas there are terms of the type

ρ−1∂ρXρ − ρ−2Xρ, (C.22)

which seem to require the components to be proportional to ρ2 in order to
ensure regularity of the second derivative, but we can see that those terms
are really

ρ−1∂ρXρ − ρ−2Xρ = ∂ρ(Xρ/ρ), (C.23)

and from our discussion in section 3.2 we know that Xρ/ρ has to be smooth
if X is a smooth vector field, so those terms are well-behaved.

Another term that looks like it could cause problems is ρ−1∂ρXz, but because
of axisymmetry Xz has to be even on ρ, and smooth if it describes a smooth
field. If we furthermore assume that it is analytic around the origin, we can
write as a Taylor series

Xz(ρ) =
∞∑
k=0

α2kρ
2k =

∞∑
n=0

α̃n(ρ
2)n = f̃(ρ2), (C.24)

where f̃ is an analytic function (therefore also smooth). Then we can see
that term will be regular

ρ−1∂ρXz = 2f̃ ′(ρ2). (C.25)
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We can see how the formulas for the derivatives will look and how the
derivatives are smooth despite the fact that we are in curvilinear coordinates.
An important point to mention is that these formulas were calculated in
order to do tests of the code, but in the simulation these formulas are not
written like this. The derivatives are written in its most general form with
terms of the spin-connection, in such a way that it is possible to change
coordinates just by changing ω̂A

BC
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Appendix D

Tests of the Ricci tensor

The Ricci tensor is one of the most complicated single terms, so it is a good
example of how terms are tested. In the code, the Ricci tensor is calculated
with the following formula

R̄AB = −1

2
γ̄CDD̂CD̂Dγ̄AB + D̂(AΛ̄B) −

[
D̂(Aγ̄B)C

]
Λ̄C+

γ̄CDγ̄EF
[
∆ΓFCD∆Γ(AB)E + 2∆ΓFC(A∆ΓB)ED +∆ΓFAC∆ΓEBD

]
.
(D.1)

For all the terms to be tested, we just need γ̄AB ̸= γ̂AB. Remember that
in the code I am using an orthonormal frame, denoted in the components
by a capital Latin letter, because of the regularity of the components. I am
going to perform three different tests, the first of which using the following
metric:

γ̄ij
.
=

 f(ρ) 0 0
0 g(z) 0
0 0 ρ2

 . (D.2)

The corresponding Ricci tensor is

RAB
.
=


f ′(ρ)
2ρf(ρ) 0 0

0 0 0

0 0 f ′(ρ)
2ρf(ρ)2

 . (D.3)

For a specific example, let’s make a choice for the functions informed by
parity conditions,

f(ρ) = 1+ ρ2e−ρ2 ⇒ f ′(ρ) = 1+ 2ρ(1− 2ρ2)e−ρ2 ; g(z) = 1+ e−z2 . (D.4)

which that choice the Ricci tensor is

RAB
.
=


(1−ρ2)e−ρ2

1+ρ2e−ρ2
0 0

0 0 0

0 0 (1−ρ2)e−ρ2

(1+ρ2e−ρ2 )2

 . (D.5)
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The connection vector is non-zero, as we want for a good test of all the terms

Λ̄P =
ρ(1− ρ2)

eρ2 + ρ2
+ ρe−ρ2 ; Λ̄Z = − z

1− ez2
; Λ̄Φ = 0. (D.6)

Now I do a convergence test. The diagonal tests are expected to converge
to their values, for non-diagonal terms we have derivatives of terms that do
not depend on the given variable, which result in terms like

∂zf(ρ) =
f(ρ)− f(ρ)

∆z
=

ε

∆z
numerically. (D.7)

Although we have a term that should be zero analytically, in the code there
is imprecise cancellation of floating points, that result in a term of the order
of machine precision, and we will be able to see this effect in the plots. In
our case, we have a second derivative, so the slope of the increase of error
with resolution is going to be two. This error is nothing to worry about,
it is always present when taking numerical derivatives, but usually it is
masked by the truncation error in the Taylor expansion. It is several orders
of magnitude smaller than any other error in the problem, so it is negligible.
We see the results of the convergence test in Fig. D.1.

Now let’s do another test for the Schwarzschild spacetime in isotropic coor-
dinates. In these coordinates we have the metric

γij = ψ4γ̂ij ; ψ =

(
1 +

M

2r

)
. (D.8)

And therefore the Ricci tensor in cylindrical coordinates is

Rij
.
= λ(r)

 1− 3ρ2/r2 −3zρ/r2 0
−3zρ/r2 1− 3z2/r2 0

0 0 ρ2

 , (D.9)

with the common factor

λ(r) =
4rM

(2r2 +Mr)2
. (D.10)

When calculated in code, we get the results in Fig. D.2. Note that this
metric is irregular at the origin, so one stencil away from it we are going to
have uncontrolled error. For a static test, is enough to avoid that area in
the calculation of the norm.

Now I would like to test and use the code also in spherical coordinates. For
that I have to supply the new connection vielbein and its derivatives to the
coordinates object. The analytic solution for the Ricci tensor is

Rij
.
= λ(r)diag(−2, r2, r2 sin2 θ) ⇒ RAB

.
= λ(r)diag(−2, 1, 1). (D.11)
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(a) Convergence of RPP . (b) Convergence of RZZ .

(c) Convergence of RPZ . (d) Convergence of RZP .

(e) Convergence of RΦΦ.

Figure D.1: Convergence of the Ricci tensor for the first test.
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(a) Convergence of RPP . (b) Convergence of RPZ .

(c) Convergence of RZP . (d) Convergence of RZZ .

(e) Convergence of RΦΦ.

Figure D.2: Convergence of the Ricci tensor for a Schwarzschild spacetime.
The region next to the origin is not included in the norm, since the fields
are not differentiable there.
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(a) Convergence of Rrr. (b) Convergence of RΘΘ.

(c) Convergence of RrΘ. (d) Convergence of RΘr.

(e) Convergence of RΦΦ.

Figure D.3: Convergence of the Ricci tensor calculated in spherical coordi-
nates.
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We can find the results of the convergence test in figure D.3. All of the
terms present the expected convergence.

These tests give us high confidence of the Ricci tensor term being correctly
implemented, and similar tests are done for all mathematical operators.



Appendix E

Calculation of the Teukolsky
waves

In this section:
Linearized equations — tensor harmonics — specific solution

In the literature, I haven’t found a source that compiles the ideas of how
the formulas for the Teukolsky waves are derived, so in this appendix I will
present a schematic view of how that calculation can be done.

Teukolsky waves are a solution to the following equation:

□hij = 0. (E.1)

This is a form of the linearized Einstein’s equations. How these come about
is described in any basic text in General Relativity [30]. Basically, this
describes how the perturbations from Minkowski space-time will look if the
deviation is not really big. But since it is just a linear equation, the solutions
are going to be very similar to the scalar wave that I discussed at length
in chapter 2, the extra complication coming from the fact that now we are
dealing with a tensor quantity.

As for the scalar case, we will look at solutions in spherical coordinates, for
the same reasons as before: we want waves that don’t have an infinite extent,
since those are the ones that model radiation by real localized sources. In
General Relativity, the equations and the geometry are two faces of the
same coin, so what that means in geometric terms is that the space-time
is asymptotically flat. Asymptotic flatness is the condition that when we
go really far away our space-time looks like Minkowski space-time, and in
particular this means that all perturbations die out with increasing distance,
as we want for our waves.
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Now, in this case, we cannot look at spherically symmetric solutions because
of the well-known result that there are no gravitational waves in spherical
symmetry. The solution that we will use instead is a Teukolsky wave [40].
These are quadrupolar solutions, which correspond to the main mode of
a radiating system. Here I will present a sketch of how these waves are
derived, following the methods of [47], and the expressions presented in the
appendix of [48], in order to get a general understanding of how they work,
and then present the solutions both in spherical and cylindrical coordinates.

The idea is very similar to the one behind the solutions to the scalar wave,
but this time the solutions are separated into tensor spherical harmonics

h
(jlm)
ab (t, r, θ, ϕ) = φ(l)(r, t)T

(jlm)
ab (θ, ϕ). (E.2)

The tensor spherical harmonics are defined by the following eigenfunction
equations:

J2Y
(jlm)
ab = j(j + 1)Y

(jlm)
ab ,

L2Y
(jlm)
ab = l(l + 1)Y

(jlm)
ab ,

JzY
(jlm)
ab = mY

(jlm)
ab ,

(E.3)

where J2, L2 and Jz are differential operators, that include spin (matrix)
terms. The term L2,

L2T
(jlm)
ab = −

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
T
(jlm)
ab = l(l+1)T

(jlm)
ab , (E.4)

is straightforward, as it will help us separate the wave equation in the radial
and the angular part.

The radial equation reduces to

Wlφ(l) = r−1 ∂
2

∂r2
(rφ)− l(l + 1)r−2φ− ∂tφ = 0. (E.5)

Defining the following operators

D+
l := ∂r − l/r, D−

l := ∂r + (l + 1)/r, (E.6)

we find
Wl+1

(
D+

l φ(l)

)
= 0, Wl−1

(
D−

l φ(l)

)
= 0. (E.7)

So we have raising and lowering operators, and therefore we can calculate
the solution for l = 0, which is easy, and raise it to the order that we want.
That way we have

φ(0)(r, t) =
f(t± r)

r
,

φ(1)(r, t) =
f ′(t± r)

r
∓ f(t± r)

r2
,

φ(2)(r, t) =
f ′′(t± r)

r
∓ 3f ′(t± r)

r2
+

3f(t± r)

r3
,

(E.8)
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where the different signs imply an outgoing or ingoing wave, and the general
solution is a superposition of both. Of course, we can also solve the equation
(E.7) in terms of spherical Bessel functions, but for that we have to Fourier
transform and we lose the explicit time dependence.

The Teukolsky wave corresponds to the quadrupole mode (j = 2) and thus
is a superposition of the modes L = 0, 1, 2, 3, 4. Which superposition? Well,
we have to take into account two things:

• Gravitational waves have two independent polarizations, so we can
divide the solutions into the polarization types.

• The solution has to be in Lorentz gauge, thus its divergence must be
zero.

How to separate the polarizations is up to us, and the common choice is
to separate the polar modes (that transform under parity as (−1)l) and
the axial modes (that pick a sign (−1)l+1). In our case, the modes with
l = 0, 2, 4 are polar, and the modes with l = 1, 3 are axial.

Thus, the polar wave will be of the form

h
(pol)
ab = a0φ(0)T

(40m)
ab (Ω) + a2φ(0)T

(42m)
ab (Ω) + a4φ(0)T

(44m)
ab (Ω). (E.9)

In order to find the specific constants of the linear combination, we have to
impose the Lorentz gauge. In [48] they give the formula for the divergence
of each of the solution modes. For our purposes it is enough to know that
is of the form

∂a

(
φ(l)T

ab
(jlm)

)
= α(jlm)φ(l−1)T

ab
(jl−1m) + β(jlm)φ(l+1)T

ab
(jl+1m), (E.10)

where α and β are complicated constants with 6-j symbols and so on, but
nevertheless constants that depend only on l, j and m. Thus, the condition
that the polar wave is divergenceless corresponds to the following equations
for the constants:

a0β40m + a2α42m = 0,

a2β42m+ a4α44m = 0.
(E.11)

We have three constants and two conditions because the overall scale cor-
responds to the polarization. The axial wave will be constructed in exactly
the same way.

As a recap, the Teukolsky waves are calculated in the following way:

1. Find the relevant spherical tensor harmonics by solving the eigenvalues
equations.
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2. Raise the radial l = 0 solution to the highest multipole order involved
in the desired solution (in the Teukolsky wave, that is l = 4).

3. Divide the solution in polar and axial waves.

4. Solve the Lorentz gauge equation to find the specific combination of
constants in each polarization.

The detailed calculations are outside the scope of this thesis, but I believe a
knowledge of the steps required for the derivation is helpful to understand
better the solutions we are dealing with.

In the text the solutions are given, but in order to perform a comparison in
the code, we need the specific form of the functions for all times. This can
get very complicated soon, as exemplified by the simplest of the three radial
functions,

A(t, r) =
3A
λ4r5

e−
(r+t)2

λ2

{
e

4rt
λ2

[
−4r2(r − t)3 + 6λ2rt(r − t) + 3λ4t

]
−

4r2(r + t)3 − 6λ2rt(r + t)− 3λ4t
}
.

(E.12)

By the time we get to C, each formula is several lines long, therefore I will
introduce some new variables and functions in order to simplify the formulas.
Let’s consider the new variables

λu = r − t; λv = r + t; λw = r. (E.13)

The last variable is redundant, but it will simplify the formulas. With these
variables, the functions for all times are

A(r, t) :=
3A
w5

[a(u,w) + a(v, w)] ,

B(r, t) :=
2A
w5

[b(u,w) + b(v, w)] ,

C(r, t) :=
−A
4w5

[c(u,w) + c(v, w)] ,

(E.14)

with the auxiliary functions

a(u,w) = −e−u2
(4u3w2 + 6u2w − 6uw2 + 3u− 3w)

b(u,w) = e−u2
(4u4w3 + 6u3w2 − 12u2w3 + 6u2w − 9uw2 + 3u+ 3w3 − 3w)

c(u,w) = e−u2
(16u5w4 + 16u4w3 − 80u3w4 + 36u3w2 − 48u2w3+

42u2w + 60uw4 − 54uw2 + 21u+ 12w3 − 21w).

(E.15)

This is the way I implemented the analytical solutions in the code, since I
found it to be the simplest.
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