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Chairperson: Iĺıdio Pereira Lopes
Supervisor: V́ıtor Manuel dos Santos Cardoso

Member of the Committee: David Mathew Hilditch
Richard Pires Brito

Outubro & 2022

 http://researchgroup.university.com


ii



”L’amor che move il sole e l’altre stelle.”

Dante, Paradiso XXXIII, v. 145

Ao Silva.

iii



iv



Acknowledgments

My first acknowledgment belongs to my supervisor, prof. Vitor Cardoso, for guiding me

through the intricate paths of General Relativity. Thank you for having me as one of your

students and for all the fruitful discussions we shared.

I would not have been allowed to pursue my dream of studying physics if it was not for

the caring support of my grandparents. I keenly thank them for that. I also want to thank

my parents for their persistent guidance and unconditional support.

I am now the proud owner of a 1/3 of a microwave, I owe Daniel and Mariana for that.

I want to thank David, Ivo and Ricardo for all the moments of bursting laughter we

shared while in desperation to finish a report. I am sure I would never be able to complete

this journey without your friendship.

I want to thank Tomás Cabrito for the memes and for all the passionate conversations. I
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Resumo

Um dos maiores desafios que enfrentamos em astrof́ısica é estudar buracos negros e com-

preender de que forma a relatividade geral os decreve adequadamente. Acredita-se que

os candidatos a buracos negros sejam bem descritos pela solução de Kerr. Contudo, a

evidenciência de matéria escura e o comportamento anómalo da gravidade no interior do

horizonte de eventos levam-nos a considerar outras soluções de espaço-tempo conhecidas

como black hole mimickers. Algumas teorias sugerem que campos escalares bosónicos po-

dem formar soluções compatas estáveis, dificeis de distinguir observavelmente de buracos

negros, intituladas de estrelas dea bosões. Neste projeto, consideramos o seu limite para

campos fracos, isto é, campos escalares muito leves (∼ 10−17eV ) acoplados de forma fraca
com a gravidade, conhecido como estrela de bosões Newtoniana. O nosso objetivo é estudar

se estas soluções podem reproduzir a acreção de um buraco negro de Kerr, sendo potenciais

black hole mimickers. Aplicando o modelo de Novikov-Thorne, descrevemos a acreção de

um disco estacionário, fino, e opticamente denso. Comparamos o fluxo eletromagnético de

discos em torno de buracos negros e de estrelas de bosões newtonianas, identificando assi-

naturas sobre a natureza do objecto acretante. Encontramos um espaço de parâmetros de

massa e rotação do buraco negro tal que a luminosidade bolométrica dos discos é a mesma.

Discutimos como o espectro de emissão dos discos na banda mais energética do ultravioleta

pode ser usado para diferenciar as duas soluções de espaço-tempo. Por fim, verificamos

se estrelas de bosões newtonianas descrevem as luminosidades de alguns centros galáticos

ativos. Concluimos que estes que são consistentes com soluções compactas de campos

escalares leves (∼ 10−16 − 10−19eV ).

Palavras-chave: Buraco Negro de Kerr; Estrela de bosões; disco de

acreção; modelo de Novikov-Thorne
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Abstract

A major challenge we face in astrophysics is to study black holes and understand how good

a description general relativity is for them. Black hole candidates are believed to be well

described by the Kerr solution. However, the existence of dark matter evidence and the

pathological behaviour of gravity inside the horizon motivate the search for other spacetime

solutions, known as black hole mimickers. Some theories suggest that scalar boson fields

could form stable self-gravitating solutions, hard to distinguish through observations from

black holes, known as boson stars. In this work, we take their weak field limit, consisting of

very light fields (∼ 10−17eV ) weakly coupled to gravity, known as Newtonian boson stars.
Our goal is to study if these solutions could mimic the accretion of a Kerr black hole and

potentially be considered black hole mimickers. Working with the Novikov-Thorne model, we

describe the accretion dynamics for steady geometrically thin and optically thick accretion

disks. We compare the thermal flux profiles of disks around black holes and Newtonian

boson stars, identifying signatures relating to the nature of the accreting compact object.

A parameter space of mass and Black Hole spin is found such that the disks have the same

bolometric luminosities. We discuss how the emission spectra of the disk for the high UV

band can be considered to discern the two spacetime solutions. In conclusion, we check if

Newtonian boson stars describe active galaxy nuclei luminosity observables and find them

consistent with self-gravitating light scalar fields (∼ 10−16 − 10−19eV ).

Keywords: Kerr black hole; Boson star; Accretion disk; Novikov-

Thorne model
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Chapter 1

Introduction

1.1 General relativity

The story of a mathematical description of gravity starts with the publication of Principia

[4] in 1687 where Newton presented his universal law of gravitation. In Newtonian physics,

gravity is an attractive radial force F⃗ acting on massive bodies, whose strength depends

on their masses, on the inverse of the square of the distance r between them and on a

gravitational constant G

F⃗ = G
Mm

r2
e⃗r , (1.1)

where m and M are the bodies masses and e⃗r is the radial unit vector.

The theory is remarkably accurate for small energies, masses and velocities. In fact, the

theoretical prediction of the existence of Neptune by John Adams and Urbain Le Verrier and

the moon landing in 1969 were achieved using Newtonian gravity only.

However, there were some astronomical observations such as the precession of the per-

ihelion of Mercury which could not be explained under Newtonian gravity. Besides, in 1905

Einstein published the theory of special relativity [5] postulating that no physical effect can

propagate faster than the speed of light. This was inconsistent with Newton’s instantaneous

theory, motivating the search for a covariant description of gravity. In Newtonian physics,

the Poisson equation ∇2Φ = 4πGρ relates the gravitational potential Φ with the matter
density ρ which is originating it. When Einstein came up with his famous relation between

rest mass m and energy E = mc2 it became clear that energy alone could also be a source

of gravity and the equations should account for such effect.

In 1916, Einstein published the theory of general relativity (GR) [6]. GR theory asserts

that space and time are not independent concepts but a continuum: spacetime, i.e., a 4-

dimensional manifold with a tangent space defined everywhere where special relativity holds

locally. Spacetime is described by a metric field gµν which defines length and time, encoding

the information of the gravitational potential. The Einstein field equations of GR consist

of 10 nonlinear differential equations relating the universe matter content, encoded in the

stress-energy tensor Tµν , with spacetime curvature, encoded in the Einstein tensor Gµν :

1



1.2. BLACK HOLES

Gµν + Λgµν =
8πG

c4
Tµν , (1.2)

where Λ is the cosmological constant. According to GR, gravity is the result of spacetime

curvature caused by the universe energy-matter content. However, the Einstein field equa-

tions alone are not sufficient to describe the whole picture. For this, we must include the

geodesic equation (1.3), which explains how spacetime curvature affects matter dynamics:

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0, (1.3)

where s is any affine parameter along the worldline and Γµαβ are the Christoffel symbols. On

one hand, the energy-matter content of the universe curves spacetime, on the other hand,

the spacetime curvature itself affects the dynamics of the universe’s energy-matter content.

1.2 Black holes

The idea of an astrophysical object so massive that not even light could escape from it - a

dark star - was originally proposed by John Michell [7] in 1783. Using Newtonian physics, and

considering light to be made out of massive particles travelling with a velocity c , he derived

the radius RS of such objects as a function of their mass M, coincidentally obtaining the

Schwarzschild radius:

RS =
2GM

c2
. (1.4)

However dark, these objects would still affect the motion of neighbouring bodies, and

their existence could still be indirectly inferred. Despite being mentioned in the work of many

remarkable physicists like Laplace, the idea of dark stars was discarded for centuries for the

lacking of a theory about the gravitational influence on massless waves, which replaced the

Newtonian corpuscular theory of light.

GR was able to provide a consistent explanation about the gravitational effect on light:

photons follow spacetime null geodesics, resulting in light bending close to massive bodies.

The more massive an object is, the more bent the photon trajectory will be. Thus, there

exists a mass beyond which the photon path is closed upon the surface of the object and

light can not escape from it.

The understanding of what could be at the origin of these dark stars would come much

later, relying on the developments in stellar evolution. A star lives as long as nuclear reactions

occur at its core, forming new elements and releasing a huge amount of energy. This

energy exerts pressure on matter balancing the gravitational pull and preventing the star

from collapsing. Once a star drains out of fusion fuel, the gravitational pull overcomes

the radiation pressure and the star collapses. What happens next depends on how massive

the remnant star is. If it is lighter than the Chandrasekhar limit (≈ 1.4M⊙) [8], electron
degeneracy pressure will balance the gravitational pull and a white dwarf is formed. If it is

heavier than the Chandrasekhar limit, degeneracy pressure between neutrons would still be

2



CHAPTER 1. INTRODUCTION

able to prevent the collapse as long as its mass is not much greater than ≈ 2M⊙ [9], this
result is known as the Tolman–Oppenheimer–Volkoff limit.

For objects more massive than the TOV limit there is no known physical effect that

can balance gravity and the star collapses. Oppenheimer and Snyder [10] concluded that,

during the collapse, the gravitational potential becomes so strong that light is trapped inside

a region of spacetime separated from an outside observer by an event horizon and a black

hole (BH) is formed. Hence, the idea of BHs reappears two centuries later as a possible end

state for massive stars.

In 1916, Karl Schwarzschild [11] derived the first spherically symmetric vacuum solution

of the Einstein field equations, describing spacetime around a massive, uncharged and static

object. Although, it was only a few decades later, in 1958, that David Finkelstein understood

that his solution could describe a BH with an event horizon at Schwarzschild radius [12].

Most astrophysical objects have angular momentum so it was natural to assume that

BHs were no exception. Solving Einstein field equations for a rotating BH was a tremendous

task performed by Roy Kerr in 1963 [13], his solution is known as - the Kerr solution.

Although intriguing, BHs are thought to be relatively simple astrophysical objects, being

completely described with, at most, 3 parameters: their mass M, angular momentum J and

charge Q. This property results from the uniqueness theorem, which was derived indepen-

dently by Israel [14], Carter [15] and Robinson [16]. It is, however, not feasible to have an

isolated charged astrophysical object in the universe. If such an object existed, it would be

quickly neutralised by the surrounding plasma. Thus, BH candidates are expected to be well

described by the Kerr solution, which depends only on their mass and spin.

A BH candidate must be heavier than the neutron star limit ∼ 3M⊙ [17], not larger than
its Schwarzchild radius and must not emit any electromagnetic radiation. BH candidates

mass is usually inferred from orbital parameters or observations of nearby gas dynamics.

There are two main categories of BH candidates: stellar-mass BHs [18] and supermassive

BHs [19]. Stellar-mass BHs have small masses M ∼ 3−100M⊙ and result from the collapse
of massive stars at the end of their lives. It is widely believe they are abundant in our

galaxy with some estimates giving 108 BHs. Supermassive BHs have much larger masses

M ∼ 105−1010M⊙ and are usually found at the center of galaxies, constituting active galactic
nuclei (AGN) and quasars. Their mechanism origin is still unclear with some theories arguing

they result from mass accretion and merging with other BHs. There could exist a third, still

unexplored, category of BHs: intermediate-mass BHs, which, for some reason, did not grow

enough to become supermassive BHs. These would have masses M ∼ 102 − 104M⊙, filling
the gap between stellar-mass and supermassive BHs.

1.3 Black hole mimickers

Even though astrophysical BH candidates do not correspond to perfect vacuum solutions,

e.g., most of the times they are surrounded by matter forming an accretion disk (AD), it is

widely believed they are well described by the Kerr solution.

There are, however, two strong reasons for questioning the Kerr paradigm and looking for

3



1.3. BLACK HOLE MIMICKERS

other solutions that could potentially describe BHs. One is related to the existence of dark

matter (DM) in the universe and the other is related to the pathological behaviour inside the

event horizon.

DM is a large fraction of, presumably non-baryonic, matter in the universe which interacts

weakly with light, thus being dark, which is responsible for the huge gravitational attraction

required to explain velocity curves in spiral galaxies [20]. DM is thought to be overwhelm-

ingly more abundant than baryonic matter described by the Standard Model, constituting,

approximately, 27% of the universe’s mass [21]. There is strong evidence supporting its

existence: gravitational lensing, the cosmic microwave background, the formation and evo-

lution of galaxies, and galaxies dynamics within galaxy clusters. DM also plays an important

role in the cosmological lambda - cold dark matter model ΛCDM explaining the formation of

structures in the universe, without which some galaxies should not exist at all.

We are lacking, however, a theory to understand its nature. Despite the strong belief that

it is non-baryonic, it could consist of faint astrophysical objects such as brown dwarfs, BHs

or neutron stars, constituting massive compact halo objects [22]. Even considering that they

could explain some DM mass, it is unlikely that they can account for the entire DM content

of the universe. Nowadays, most DM models are based on new and undiscovered particles

not included in the standard model such as axions [23, 24], originally introduced to explain

the absence of CP violation in QCD, and weakly interacting massive particles (WIMPS) [25].

Therefore, in the same way baryonic matter forms structures like stars, DM particles

could also form localised and stable solutions of the Einstein field equations that could be as

massive and compact as BH solutions.

On the other hand, GR predicts that as we approach the singularity, matter density and

spacetime curvature grow infinite, suggesting that the theory breaks down closer to this limit.

Despite the current belief that this would not happen in a quantum theory of gravity, i.e., a

theory of gravity compatible with quantum mechanics, such a theory does not exist. This

motivates the search for alternative solutions with a regular behaviour that could describe

BH candidates.

The best way to test the Kerr paradigm is to consider other astrophysical objects, known

as BH mimickers, that could mimic the observations of BH candidates and compare them

against experimental data.

BH mimickers are solutions of the Einstein field equations which are hard to distinguish

observably from BHs but do not have an event horizon. Some possibilities discussed nowadays

as possible BH mimickers are wormholes [26], gravastars [27, 28], brane world solutions [29]

and boson stars (BS) [30]. There are two lines of approach for studying BH mimickers. One

consists in describing BHs under new theoretical frameworks, which usually do not include

rotation, and devising experiments for testing them. Another approach is to constrain possible

deviations from the Kerr spacetime, which could arise from macroscopic quantum effects,

the presence of exotic matter or classical extensions of GR [31].

An important property regarding these objects is stability: it has been shown that worm-

hole solutions supported by phantom scalar fields are unstable [32], while gravastars [33] and

boson stars [34] have well-established stability regions.

Most tests regarding astrophysical objects analyse gravitational and electromagnetic
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CHAPTER 1. INTRODUCTION

waves emitted by them or in their surroundings, which encode information on the back-

ground metric. There is an ongoing effort to identify signatures that could motivate the

existence of such solutions and infer their properties, such as spin and mass.

Just like BHs, BH mimickers will show particular signatures in gravitational waves emission

from a perturbation analysis or binary collisions. In fact, some have been proposed for the

case of gravastars [35] and BSs[36]. However, not all objects allow for a perturbation analysis,

as is the case of most wormhole models, which have a short lifetime.

Most electromagnetic radiation from BH candidates comes from the surrounding AD.

Observational signatures in disks emission spectrum have been discussed for many BH mim-

ickers as is the case of BSs [37], rotating gravastars [38], brane-world BHs [39] and wormholes

[40].

BSs consist of self-gravitating time-dependent scalar fields, which have been studied as a

toy model for exotic matter in the universe, such as DM halos [41] and BH mimickers [42].

Despite not existing strong evidence supporting them, the confirmation of the Higgs boson

detection [43] at CERN in 2013 motivated the existence of scalar fields in the universe, which

could form self-gravitating solutions.

In this work, we are interested in studying if the weak field limit of BS, known as Newtonian

boson stars (NBSs), could behave as BH mimickers. NBSs are thought to be made out of

very light boson fields of mass µ ∼ 10−22eV and have been studied in the context of fuzzy
(light) DM to account for the small-scale observations incompatible with CDM models [44].

1.4 Testing strong field gravity

Einstein theory of GR, despite being elegant and mathematically robust, still needed to

surpass the test of experiment. Einstein proposed three tests in 1916: explain the perihelion

precession of Mercury’s orbit, light deflection by the Sun and gravitational redshift of light.

The first test of GR happened right after the publication of the theory in 1916. Consid-

ering GR effects, Einstein ended a six decades conundrum, finally explaining the perihelion

precession of Mercury’s orbit, which mainly occurs due to perturbations from the other plan-

ets. However, the first big success of the theory happened when Eddington, a renowned

astrophysicist of the time, went on an expedition to the island of Principe and measured the

light deflection by the Sun during a solar eclipse.

Thus, within the first decades after the publication of GR, the theory was successfully

tested, mostly with observations in the solar system where gravity is weaker. Some tests as

the measurement of gravitational redshift, i.e., particles losing energy when travelling against

a gravitational field, and the observation of gravitational lensing were only made possible by

technological advances in 1954 and 1979, respectively.

GR becomes even more fascinating when considering the strong field regime, where grav-

ity is extreme. The theory predicts, among other things, the existence of BHs with spacetime

singularities of infinite density and spacetime curvature enclosed by an event horizon. Un-

derstanding if such objects exist in the universe and how accurately described by GR theory

they are is one of the major challenges we face in astrophysics.

5



1.5. ACCRETION DISKS

Since it is impossible to observe a BH directly, its existence and properties have to be

sustained from indirect observations.

Most stellar BH candidates are believed to be in binary systems, either with another BH,

a neutron star or a regular star. When the star companion loses matter, mainly through the

Roche lobe of the binary potential, a flattened band of spinning matter is formed around the

BH, an AD. Friction between adjacent rotating layers in the disk makes matter slowly lose

angular momentum and spiral toward the BH. The disk gets hotter close to its inner edge,

making stellar mass BH the brightest source of X-rays in the sky. The first BH candidate

considered was the bright X-ray source Cygnus X-1 in 1973 [45], with a mass M ≈ 21M⊙.
The AD spectrum depends on the properties of the disk and the surrounding spacetime.

Besides affecting the structure of the disk itself, e.g., the location of its inner edge depends

on the BH spin, spacetime curvature bends the trajectory of photons emitted from the disk

making them lose energy. Thus, the AD spectrum is a powerful tool to probe spacetime, study

the central compact object and ultimately test general relativity. In fact, most measurements

of BH spin come from X-ray spectroscopy related to the AD spectrum [46].

So far most observations of BH candidates relied on electromagnetic radiation. The

paradigm changed when in 2016, LIGO and VIRGO [47] collaborations confirmed the detec-

tion, for the first time, of gravitational waves from a binary BH merger. Gravitational waves

are a theoretical prediction of GR, consisting of spacetime ripples resulting from the motion

of massive bodies. They constitute ideal probes of spacetime as they interact very weakly

with matter and show little dispersion, carrying along information of the source metric. BH

binaries are expected to be strong sources of gravitational waves, especially during in-spiral,

merger and ring-down phases. This makes them ideal for testing GR in the strong field

regime and understanding the nature of BH candidates.

In 2019, another breakthrough happened when the Event Horizon Telescope presented

the first image of the shadow of the BH at the centre of galaxy M87 [48]. The shadow of

a BH consists of a large dark area in the centre against a bright background and is formed

by the gravitational lensing of the BH event horizon. In 2022, the collaboration released the

first image of the supermassive BH at the centre of our galaxy - Sgr A* [49].

So far, all observations of BH candidates are consistent with the Kerr paradigm. Despite

existing many approaches for studying the nature of these compact objects, mainly through

the study of electromagnetic and gravitational waves, we will focus on electromagnetic ob-

servations related to ADs.

1.5 Accretion disks

To understand the AD spectrum and relate it with BH properties like the spin, we first need

a theoretical framework for the disk’s structure.

Broadly speaking, an AD consists of a band of spinning matter around a central accreting

object. AD study is a vibrant research field as there is a widespread view that they are linked

to a variety of astrophysical phenomena such as star and planetary formation and associated

with the most energetic events in the universe as is the case of X-ray binaries and AGNs.
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CHAPTER 1. INTRODUCTION

In 1969, Lynden-Bell [50] argued that viscosity stresses in ADs could be powering AGNs

by converting the gravitational energy of the accreted matter into radiation. Despite the

strong motivation for AD theory, we were still lacking a mathematical description modelling

the dynamics of the accretion flow.

Finally, in 1973 Shakura and Sunyaev [51] proposed the standard model of ADs, also

known as the α-disk model. The model presents a Newtonian analytical solution for an

equatorial, geometrically thin and optically thick disk around a static BH. However, some

well-known results from GR were incorporated into the model, e.g., the inner edge of the

disk was assumed to be at innermost stable orbit radius. The model is commonly referred

to as α-disk because an α parameter was introduced to account for the turbulent viscosity

in the disk.

Remarkably soon after the publication of the α-disk model, in 1974, a relativistic version

of the theory was elaborated by Novikov and Thorne [52, 53] describing the accretion process

for a Kerr BH. In the following decades, several AD models with different geometries and

including new effects have been proposed: the polish doughnut disk, the slim disk and the

advection-dominated accretion flows are a few examples.

Disk viscosity is a crucial part of the model as it is responsible for the angular momentum

transport mechanism and for generating friction, making the disk radiate. In 1991, Balbus

and Hawley [54] discussed that weak magnetic fields present in the disk could originate insta-

bilities, known as magnetorotational instabilities, responsible for the emergence of turbulent

viscosity.

Nowadays, the AD paradigm is a fully established theory, largely sustained by experiments

and it has proven to be a powerful tool to study BH candidates, especially using X-ray

spectroscopy.

X-ray spectroscopy is a technique for measuring the spin of BH candidates and is based

on two methods: the continuum fitting [55], which analyses the thermal spectrum of the AD,

and the reflection spectroscopy, which analyses the most prominent feature of the reflection

spectrum, the Fe Kα line [56]. While the latter may be used to study all kinds of BHs, the

continuum fitting technique can be applied to supermassive BHs as they emit in optical/UV

bands for which measurements are noisier due to dust absorption [46].

1.6 Outline

The focus of this project is to understand if compact objects made of light boson fields could

mimic BH accretion.

In chapter 2, we introduce the Kerr spacetime and review some circular orbit properties,

which are fundamental for describing the accretion process. Starting from the Poisson-

Schrödinger equation, we derive the elementary properties of the Newtonian boson stars in

chapter 3. In chapter 4, we discuss the accretion flow dynamics and how they influence BH

evolution, presenting the Novikov-Thorne model and introducing Thorne’s limit. Additionally,

we describe how X-Ray Spectroscopy is used to survey gravity in the strong field regime.

In chapter 5, we compare the properties of AD around NBSs with the ones around BHs,

7
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discussing The project conclusions and final remarks are presented in chapter 6.
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Chapter 2

Black holes

In this chapter geometrized units c = G = 1 will be used. The Kerr line element for a BH

of mass M and spin J, rotating in the φ direction, in Boyer–Lindquist coordinates (t,r ,θ,φ)

can be written as

ds2 = −
(
1−
2Mr

Σ

)
dt2 −

4aMr sin2 θ

Σ
dtdφ+

Σ

∆
dr2

+Σdθ2 +

(
r2 + a2 +

2a2Mr sin2 θ

Σ

)
dφ2, (2.1)

where Σ = r2+ a2 cos2 θ, ∆ = r2−2Mr + a2 and a = J/M. The metric describes stationary
and axisymmetric spacetime about the polar axis and, when considering a static BH a = 0,

we recover the Schwarzschild solution.

The metric is singular for Σ = 0 and ∆ = 0 but only the first represents a physical

singularity where spacetime curvature is infinite, for r = 0 and θ = π/2. The second

condition give us the event horizon radius for the Kerr spacetime

rEH = M +
√
M2 − a2. (2.2)

The square root in (2.2) implies that for a BH to exist it requires |a| < M, otherwise it
would have a naked singularity, i.e., a singularity not hidden by an event horizon, violating the

cosmic censorship conjecture [57]. Let us also define, for the sake of simplicity, a spinning

parameter a∗ = J/M2 = a/M that varies from a∗ = 0 for a Schwarzschild BH to a∗ = 1 for

a maximal spinning Kerr BH.

2.1 Circular orbits in axisymmetric spacetimes

We are interested in studying AD dynamics where we assume particles undergo nearly circular

geodesic motion. The spectrum of the disk depends on quantities related to particle orbital

motion: its specific energy E, specific angular momentum L and orbital velocity Ωφ.

We will analyse a test particle circular orbital motion along the equatorial plane, deriving

9
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expressions for E, L and Ωφ. A generic time-independent axisymmetric spacetime will be

considered since these results are also useful for describing the accretion flow around NBS.

We start by considering a line element of the form

ds2 = gttdt
2 + gr rdr

2 + gφφdφ
2 + 2gtφdtdφ+ gθθdθ

2, (2.3)

note that we neglect the term gr t as we can always find a coordinate transformation such

that it vanishes.

The particle’s equations of motion can be obtained by applying the variational principle

to the geodesics lagrangian

LG =
1

2
gαβ ẋ

αẋβ. (2.4)

Defining λ as any parameter along the world line, e.g., the particle’s proper time for

time-like geodesics, we can write the Euler-Lagrange equation as

d

dλ

(
∂LG
∂ẋα

)
−
∂LG
∂xα

= 0, (2.5)

where ẋα = dxα

dλ . Considering only motion along the equatorial plane θ =
π
2 and dθ = 0.

As spacetime is time independent and axisymmetric this implies that the lagrangian does not

depend explicitly on t nor φ. According to Noether’s theorem these two symmetries originate

two conserved quantities: energy E = −Pt = ∂LG
∂ṫ
and angular momentum L = Pφ =

∂LG
∂φ̇
.

Using the definition of E and L, we can express them as function of the metric compo-

nents and velocities ṫ and φ̇

E = −gtt ṫ − gtφφ̇, (2.6)

L = gφφφ̇+ gtφṫ . (2.7)

Rearranging the previous equations we find ṫ and φ̇

ṫ =
gφφE + gtφL

g2tφ − gttgφφ
, φ̇ = −

gtφE + gttL

g2tφ − gttgφφ
. (2.8)

Using the expressions (2.8) and the conservation of rest mass gµν ẋ
µẋν = −1 we obtain

gr r ṙ
2 + gθθθ̇

2 = Veff(E, L, r, θ), (2.9)

where

Veff(E, L, r, θ) =
gφφE

2 + 2gtφEL+ gttL
2

g2tφ − gttgφφ
− 1 (2.10)

is the effective potential of the test particle. As we are restricting ourselves to circular orbits

along the equatorial plane we must require ṙ = θ̇ = 0 and r̈ = θ̈ = 0, the first condition

implies Veff = 0 the second implies ∂rVeff = 0. Solving the system of equation give us explicit

expressions for Ωφ (2.11), E (2.12) and L (2.13).

10
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Ωφ =
φ̇

ṫ
=
−∂rgtφ ±

√(
∂rgtφ

)2 − ∂rgtt∂rgφφ
∂rgφφ

(2.11)

E = −
gtt + gtφΩφ√

−gtt − 2gtφΩφ − gφφΩ2φ
(2.12)

L =
gtφ + gφφΩφ√

−gtt − 2gtφΩφ − gφφΩ2φ
(2.13)

We also present the expressions of ΩBH (2.14), EBH (2.15) and LBH (2.16) for the case

of orbital motion around a Kerr BH, where the upper (lower) sign represents a particle whose

momentum is parallel (anti-parallel) to the BH spin.

ΩBH = ±
M1/2

r3/2 ± aM1/2
(2.14)

EBH =
r3/2 − 2Mr1/2 ± aM1/2

r3/4
√
r3/2 − 3Mr1/2 ± 2aM1/2

(2.15)

LBH = ±
M1/2

(
r2 ∓ 2aM1/2r1/2 + a2

)
r3/4

√
r3/2 − 3Mr1/2 ± 2aM1/2

(2.16)

2.2 Innermost stable circular orbits - ISCO

Unlike what happens in Newtonian mechanics, not all circular orbits for test particles orbiting

BHs are stable in GR. There is a boundary beyond which all inner circular orbits are unstable

and particles plunge directly into the BH. This boundary is known as the innermost stable orbit

(ISCO). In Newtonian mechanics, circular orbital motion requires balancing the gravitational

pull with the centrifugal force. However, near the BH horizon, the gravitational pull gets so

intense that the centrifugal force can not balance it. Thus, stable circular orbital motion

does not exist close to BHs. As most AD models assume the inner edge of the disk is at

ISCO radius, it is essential to understand how rISCO varies with BH mass and spin.

All circular orbits which verify ∂2r Veff ≥ 0 are stable. In order to find rISCO, we must solve
the limiting condition for stability ∂2r Veff = 0. In 1972, Bardeen [58] derived an expression

for rISCO in Boyer–Lindquist coordinates as a function of the BH spin a
∗:

rISCO = M
{
3 + Z2 ∓ [(3− Z1) (3 + Z1 + 2Z2)]1/2

)}
, (2.17)

where

Z1 = 1 +

(
1−

a2

M2

)1/3 [(
1 +

a

M

)1/3
+
(
1−

a

M

)1/3]
,

Z2 =

(
3
a2

M2
+ Z21

)1/2
,

11



2.2. INNERMOST STABLE CIRCULAR ORBITS - ISCO

where the upper (lower) sign represents a corotating (counter-rotating) orbiting particle.

Figure 2.1 represents how the rISCO (2.17) and rEH (2.2) vary with BH spin a
∗.

rISCO corotating

rISCO counter-rotating

rEH

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

a *

r
/M

Figure 2.1: rISCO and rEH as function of the BH spin a
∗

We observe that rISCO = 6M for an orbiting particle around a Schwarzchild BH. When

considering a Kerr BH, we find that rISCO for corotating orbiting particles is always smaller

than the one of counter-rotating orbiting particles.Thus, corotating particles can develop

stable orbits much closer to the BH. For a maximal Kerr spinning BH, rISCO = 9M for the

case of counter-rotating particles, and rISCO = M for corotating ones.
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Chapter 3

Newtonian boson stars

In this section we will use ℏ = c = G = 1. BSs are localised and stable solutions of a complex
scalar field Φ coupled to gravity. Unlike ordinary stars where the nuclear reactions in the core

generate pressure which balances their gravitational pull, in BSs the balancing pressure arises

from the Heisenberg principle. In 1964, Derrick [59] proved that no time stable localzied

solutions with finite energy exist. However, the stress-energy tensor T Sµν (3.7) only depends

on the absolute value of the scalar field |Φ|2. We would still obtain a time-independent
gravitational field by considering a time-periodic scalar field

Φ = Ψ(r)e−iΩt , (3.1)

where Ψ(r) is a real function which statisfies the boundary conditions ∂rΨ(0) = 0 and

limr→∞Ψ(r) = 0 and Ω is the energy of the field.

3.1 NBS spacetime

In order to describe the accretion process of a NBS and compare it with the one of a BH,

we need to find the metric for a NBS.

We start from the action S of a massive complex scalar field Φ minimally coupled with
gravity

S ≡
∫ √

−g
(
R

16π
−
1

2
gµν∂µΦ∂νΦ

∗ − U(|Φ|2)
)
d4x, (3.2)

where R is the Ricci scalar of the metric, g = det(gµν) is the metric determinant and Φ
∗ is

the field complex conjugate. The first term of S is the Einstein-Hilbert action, the second
term is the kinetic term and the last term is a self-interaction potential U .
Admitting a weak scalar field |Φ| ≪ 1, we will consider a simple mass term potential and

neglect higher order terms

U ∼
µ2

2
|Φ|2 +O

(
|Φ|4

)
, (3.3)

where µ is the scalar field mass.
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The action S (3.2) enjoys a U(1) symmetry, i.e., is invariant under a global phase rotation
Φ → Φe iα, which, according to Noether’s theorem, implies the existence of the conserved
current

jµ = −
igµν

2
(Φ∗∂νΦ−Φ∂νΦ∗) (3.4)

and the associated conserved charged

Q =

∫
Σ

d3x
√
−gj t , (3.5)

where the integration is performed over a spacelike hypersurface of constant time Σ and j t

is the time component of the 4-current. The conserved Noether charge Q corresponds to

the total number of bosons in the BS. If we have considered a local U(1) symmetry for the

action, that would lead to charged NBS [60].

Varying the action with respect to Φ∗ and gµν , we obtain a coupled system of field

equations for complex field Φ and the metric field gµν , the Einstein-Klein-Gordon system:

1√
−g ∂µ

(√
−ggµν∂νΦ

)
= µ2Φ

Rµν −
1

2
Rgµν = 8πT

S
µν ,

(3.6)

where Rµν is the Ricci tensor and T
S
µν (3.7) is the stress-energy tensor of the scalar field.

T Sµν = ∂µΦ
∗∂νΦ−

1

2
gµν

[
∂αΦ

∗∂αΦ+ 2U
(
|Φ|2

)]
(3.7)

A NBS is made out of individual scalar particles with an energy, approximately, given by

their rest-mass energy Ω ≈ µ. The spacetime metric in the weak field limit [61] can be
written as

ds2 = −(1 + 2U)dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (3.8)

Assuming Φ is non-relativistic, the system of field equations can be simplified to leading

order terms, obtaining the Schrödinger-Poisson system (3.9), where Φ̃ is the Schrödinger

field, which relates to the Dirac field Φ by the transformation Φ̃ =
√
µe iµtΦ.

i∂tΦ̃ = −
1

2µ
∇2Φ̃ + µUΦ̃

∇2U = 4πµ|Φ̃|2
(3.9)

Using the ansatz (3.1) we obtain a simplified system of field equations that can be solved

numerically :

∂2rΨ+
2

r
∂rΨ− 2µ(µU + γ)Ψ = 0,

∂2r U +
2

r
∂rU − 4πµ2Ψ2 = 0,

(3.10)
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Figure 3.1: Potential radial profiles of the potential U(r) and the scalar field Ψ(r), describing
all the fundamental NBS.

with the constraints |Ψ| ≪ 1, |U| ≪ 1 and Ω ≈ µ.
One can observe that the system (3.10) is left invariant under the scaling transformation

(Ψ,U , γ)→ λ2(Ψ,U , γ) r → r/λ, (3.11)

where λ is a scaling parameter. Defining the mass of a NBS MNBS as

MNBS = 4πµ
2

∫ ∞
0

r2|Ψ|2dr (3.12)

these scaling transformations simply mean that we are scaling MNBS as MNBS → λMNBS.
This result is extremely useful since once a fundamental solution is found, by solving the

system of field equations (3.10), we can always find a parameter λ to rescale the solution

and obtain new NBSs solutions of different masses MNBS without having to solve the system

explicitly again. Given a sufficiently small λ parameter, the rescaled solution will also satisfy

the constraints on µ, U and Ψ.
A numerical solution of the system of field equations describing all fundamental NBSs’

potential is described in figure 3.1. The NBS gravitational potential U , unlike the BH one,
is regular close to the origin. This result will be extremely important for explaining the

differences in the ADs dynamics between BHs and NBSs.

We observe that U asymptotically behaves as a Newtonian potential U ∼ −MNBS/r ,
while Ψ decays exponentially for larger radii.

The definition of a NBS’s radius R is ambiguous since NBSs have no surface and the

field Ψ extends to infinity. A reasonable definition, commonly used in the literature, is to

define R as the radius of a sphere containing 98% of the mass.
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All fundamental NBSs satisfy the mass-radius relation

MNBSµ =
9.1

Rµ
, (3.13)

which implies that as a NBS shrinks it gets more massive.

We numerically found an expression for MNBS as a function of the scaling parameter λ,

the field’s mass µ and the radius R

M

M⊙
≈ 2.4× 106 λ

(
1012m

R

) (
10−17eV

µ

)2
. (3.14)

It exists, however, a limit to a NBS radius: the Schwarzschild radius R = 2MNBS, below

which spacetime is described by a BH solution. Intuitively, this suggests the existence of a

maximal mass for BSs. This limit was computed for the case of non-interacting scalar fields

and the result is known as Kaup mass limit MKaup, assuming the value MKaupµ ≈ 0.63.
Since the validity of the Newtonian regime implies that all NBS solutions considered must

verify the conditions |Ψ| ≪ 1, |U| ≪ 1 and Ω ≈ µ, we impose a mass limit of MNBSµ ≤ 0.55
which corresponds to a potential U ≈ −0.095 and to a field Ψ ≈ 0.02.

3.2 Circular orbits

Unlike what happens for BHs, all circular orbits around a NBS are stable,i.e., rISCO = 0. As

the NBS metric is axisymmetric and time independent, depending only on MNBS and µ, we

can use the results of the previous chapter to compute E (2.12), L (2.13) and Ωφ (2.11)

for circular orbits around NBSs.

Figure 3.2 represents the radial profiles of E, L and Ω for a test particle undergoing

circular equatorial orbital motion around a NBS and a BH with the same mass.

An incoming particle from infinity releases gravitational energy E and loses angular mo-

mentum L as it increases its orbital velocity Ωφ. The EBH and LBH profiles have a minimum

for rISCO, below which they increase drastically. However, this does not occur for a NBS

where ENBS and LNBS decrease steadily until r = 0. A similar behaviour can be observed for

the angular velocity, ΩNBS increases steadily until r = 0 and ΩBH increases infinitely, closer

to the origin.

16



CHAPTER 3. NEWTONIAN BOSON STARS

ENBS

EBH a
*=0

0 20 40 60 80 100

0.94

0.96

0.98

1.00

1.02

r /M

E
[m

]

(a)

LNBS

LBH a
*=0

0 20 40 60 80 100

0

2

4

6

8

10

r /M

L
[m

2
]/
1
0

1
0

(b)

ΩNBS

ΩBH a
*=0

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

r /M

Ω
[m

-
1
]/
1
0

-
1
1

(c)

Figure 3.2: Radial profiles of the specific energy E (a), specific angular momentum L (b) and

angular velocity Ω (c) for a test particle undergoing circular equatorial orbital motion around

a NBS, with a field mass µ = 10−17eV , and a BH with the same mass M = 4× 106M⊙.
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Chapter 4

Accretion disks

The accretion flow dynamics is described by a set of non-linear, coupled differential equations

of magnetohydrodynamics which is complex to be solved analytically.

Usually one makes a few assumptions about the geometry and optical thickness of the

disk that allow us to simplify the model. If the horizontal extension of the disk r is much

larger than the vertical extension of the disk (height H) the disk is considered to be thin

(H/r ≪ 1). If the photons mean free path is smaller than the height of the disk, the disk is
considered to be optically thick and most of the thermal emission will happen at the surface

of the disk.

In this work, we will describe the accretion process around a steady, equatorial, geo-

metrically thin and optically thick accretion disk. The disk geometry is well described with

cylindrical coordinates (t, r,Φ, z) with an half-thickness h(r) such that its vertical extension

varies from −h to h, vanishing for the inner edge of the disk at rin.
Matter flowing toward the central compact object has considerable angular momentum,

thus rotating around it in nearly circular geodesics. When matter loses angular momentum

and moves to an inner (faster) orbit, an outer (slower) orbit gains momentum, originating a

continuous flow of momentum to the outermost part of the disk. There must exist an angular

momentum transport mechanism responsible for carrying it away as matter approaches the

centre. This angular momentum transport mechanism is originated from magnetic fields,

turbulence and viscosity present in the disk. Then, matter’s differential rotation originates

tangential stresses responsible for heating the disk and making it radiate.

The AD flux is highly determined by its accretion rate . One can usually obtain a rea-

sonable estimate for Ṁ from Eddington accretion rate ṀEdd . The ṀEdd corresponds to the

accretion for which matter’s gravitational pull perfectly balances its radiation pressure. For

Ṁ > ṀEdd extensive mass losses through stellar winds start to occur from the outermost

portion of the disk.

We can estimate ṀEdd as a function of the central compact object mass M

ṀEdd =
LEdd
ηc2
, (4.1)

where LEdd is the Eddington luminosity and η is the accretion efficiency. η depends on
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the nature of the accretion process and the background metric and describes how efficient

the accretion process is at converting rest mass into heat, which is then radiated away as

luminosity. For a static BH, η ≈ 5.7% and for a maximally rotating one, η ≈ 42% while
estimates from AGNs require η ≈ 0.1. Taking η = 0.1 we can define ˙MEdd as

ṀEdd = 2.218× 10−2
(
M

106M⊙

)
M⊙/year (4.2)

However, astrophysical accretion rate flows must be smaller than ṀEdd . One usually

estimates Ṁ from the Eddington ratio fEdd such that

Ṁ = fEdd ṀEdd , (4.3)

where fEdd ∼ 10−4 for most AGNs[62].

4.1 Shakura and Sunyaev model

The α-disk model presents a classical description of the accretion flow dynamics for a steady

geometrically thin and optically thick disk around a static accreting BH. The model assumes

that the inner edge of the disk rin is at the ISCO radius rISCO. Besides, in the α-disk model,

the disk’s particle motion is mostly determined by the gravitational field of the accreting

object, neglecting the presence of magnetic fields and the influence of gas pressure.

Assuming matter rotation in the disk is Keplerian, we can write the orbital velocity Ω as

Ωφ =

√
GM

r3
. (4.4)

For the sake of convenience let us define a surface density of matter Σ by integrating

the disk’s mass density ρ along the vertical direction

Σ =

∫ h
−h
ρdz, (4.5)

where h is the half-thickness of the disk.

Let us also define the vertically integrate stress Wrφ between adjacent rotating rings on

the disk

Wrφ =

∫ h
−h
wrφdz = −αΣcs , (4.6)

where α is a parameter describing the efficiency of the angular momentum transport mech-

anism and cs is the speed of sound.

The structure and the energy flux of an AD in the α−model can be derived from the
conservation equations of energy, mass and angular momentum along the radial and vertical

direction. The model also considers a transport equation to describe how radiation reaches

the surface of the disk and an equation of state for the disk’s plasma.

The flow of matter in the disk is described by the continuity equation, establishing the

conservation of mass. In a steady-state regime, the continuity equation can be written as
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∇ · (ρu⃗) = 0, (4.7)

where u⃗ is the particle’s velocity.

Using Gauss’s law and integrating the continuity equation in cylindrical coordinates we

obtain the AD’s accretion rate Ṁ:

Ṁ = 2πrurΣ, (4.8)

where ur is the inward radial velocity of matter.

The conservation of angular momentum along the radial direction is described by the

Navier-Stokes equation. Integrating the equation along the z-direction and expressing it in

cylindrical coordinates gives

∂uθ
∂t
+ ur

∂

∂r

(
Ωφr

2
)
=
1

r2Σ

∂

∂r
(rWrφ). (4.9)

Assuming a steady state regime, we integrate the equation (4.9) along the radial direction

obtaining

ṀΩφr
2 = −2πWrφr2 + C, (4.10)

where C is an integration constant. C can be determined using the fact that in the last

stable orbit r = rin tangential stresses are expected to vanish Wrφ = 0. Finally, we obtain an

expression for the disk’s stress

Wrφ =
ṀΩφ
2π

(
1−

√
rin
r

)
. (4.11)

Neglecting the motion of the disk plasma along the vertical direction, the conservation

of angular momentum simply reduces to the hydrostatic equilibrium equation

1

ρ

dP

dz
= −
GM

r3
z, (4.12)

where P is the pressure.

The surface pressure of the disk is much smaller than the pressure on the equatorial

plane, P (h)≪ P (z = 0). This allows us to find the half thickness of the disk h as a function
of central pressure P = P (z = 0)

h ≈
(
P

ρ

)1/2( r3
GM

)1/2
, (4.13)

where M is the mass of the central compact object.

As particles spiral towards the central compact object, they lose angular momentum and

gravitational energy, increasing their rotational velocity. The energy conservation equation

states that the disk flux F balances the work of the forces shearing stress, −2πr2WrφΩ with
the rest mass energy flow. Thus F can be obtained by solving the equation
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F =
1

4πr

dL
dr
=
1

4πr

d

dr

[
Ṁ

(
v2φ −

GM

r

)
− 2πr2WrφΩ

]
. (4.14)

Replacing (4.11) into (4.14) yields

F =
3

8π
Ṁ
GM

r3

(
1−

√
rin
r

)
. (4.15)

The energy from stress inside the disk needs to be transported to the surface where it

can be radiated away. This mechanism is described by a radiative diffusion equation

ε =
3

4

σFu0
c
, (4.16)

relating, for a given flux F , the energy density of radiation inside a layer with the surface
density Σ and the disk opacity σ. Assuming the disk locally behaves as a black-body, we can

estimate ϵ from the Stefan–Boltzmann law

ϵ = σSBT
4, (4.17)

where T is the local temperature of the disk and σSB is the Stefan–Boltzmann constant.

The black-body spectral distribution allows us to compute L(ν), the luminosity of the

disk as a function of the frequency ν

L(ν) =
16ν3π2h cos i

c2

∫ Rout
rin

rdr

ehν/kT − 1
(4.18)

where i is the disk inclination, kB is the Boltzmann constant, h is the Planck constant and

ri (rout) is the inner (outer) edge of the disk.

Opacity describes how radiation is absorbed and scattered while inside the disk. There

are two main contributions to the disk opacity: Thomson scattering and free-free absorption.

Thomson scattering describes the scattering of radiation on free electric charges and has a

cross-section of σT ≈ 6.65 × 10−25cm2. The free-free absorption describes the photon’s
scattering on free ions of the disk and has a cross-section described by Kramer’s law σf f ∼
ρT−7/2. Free-free absorption is the main source of opacity for the inner and hotter regions

of the disk while Thomson scattering is predominant in the outer regions of the disk.

Finally, the equation of state describing matter in the disk sums the contributions of gas

Pgas and radiation Prad pressures:

P = Pgas + Prad (4.19)

Assuming the disk plasma consists mostly of ionized gas we can express Pgas as

P =
2ρKBT

mp
, (4.20)

where KB is the Boltzmann constant and mp is the proton’s mass.
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In general, Prad is well approximated with

Prad =
1

3
ϵ. (4.21)

We have now a system of equations that is hard to be solved analytically. In their original

paper, Shakura and Sunyaev decomposed the disk into three regions and solved the system

for each region, obtaining analytical estimates for the equations. They considered 3 regions:

an inner region where radiation pressure dominates c2s = ϵ/3ρ and disk opacity is dominated

by Thomson scattering; an intermediate region where gas pressure dominates c2s =
2KBT
mp
and

disk’s opacity is dominated by free electron scattering and outer region where gas pressure

dominates and the opacity is mostly determined by free-free absorption.

4.2 Novikov and Thorne model

In this section, we will briefly review the Novikov-Thorne model. All physical quantities will

be averaged over a timescale ∆t and over the azimuthal angle ∆φ = 2π. This allows us

to neglect fluctuations in the background metric as well as inhomogeneities in the accretion

flow.

The model assumes the disk particles move on the equatorial plane in nearly-circular

geodesic orbits around a rotating BH of mass M. This assumption is reasonable as the

pressure of the plasma is negligible in comparison with the gravitational potential of the

accreting object. Thus, each particle in the disk moves in a keplerian fashion with an angular

velocity Ωφ, a specific energy E and a specific angular momentum L. The model assumes

an angular momentum transport mechanism, as in the α-disk model, from viscous magnetic

and turbulent stresses. Besides, the equatorial plane is assumed to be perpendicular to the

BH’s spin

The disk average surface density Σ can be obtained by integrating vertically the average

rest mass density ⟨ρ0⟩

Σ(r) =

∫ h
−h
⟨ρ0⟩ dz, (4.22)

where h is the half-thickness of the disk.

Matter in the disk can be described as an anisotropic fluid with a stress-energy tensor

Tµν

Tµν = ρ0u
µuν + 2uµqν + tµν , (4.23)

where uµ is the particle’s 4-velocity, an energy flow vector qµ and a stress tensor tµν measured

in the averaged rest frame such that uµq
µ = 0 and uµt

µν = 0.

Let us define the average torque W rφ by vertically integrating
〈
trφ

〉
:

W rφ =

∫ h
−h

〈
trφ
〉
dz. (4.24)

In order to derive the time-averaged radial structure of the AD, we need to consider the

conservation of mass, energy Eµ = −Tµν (∂/∂t)ν and angular momentum Jµ = Tµν (∂/∂φ)ν ,
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4.2. NOVIKOV AND THORNE MODEL

just like we did for the Newtonian case.

Using Gauss’s law, the time-averaged accretion rate Ṁ can be obtained from the con-

servation of rest mass ∇µ (ρ0uµ) = 0

Ṁ ≡ −2π
√
−gΣur , (4.25)

where ur is the particle’s radial velocity and
√
−g is the metric determinant.

Integrating the energy conservation law ∇µEµ = 0 yields[
Ṁ0E − 2π

√
−gΩW rφ

]
,r
= 4π

√
−gFE, (4.26)

where F is the time-averaged flux of the disk. Equation (4.26) states that the energy radiated
from the AD’s surface 4π

√
−gFE results of the balance between the rest-mass energy flow

Ṁ0E and the work done by viscous stresses in the disk 2π
√
−gΩW rφ.

Integrating the angular momentum conservation law ∇µJµ = 0 yields

[
Ṁ0L− 2πrW rφ

]
,r
= 4π

√
−gFL. (4.27)

Similarly, the first term in equation (4.27) represents the angular momentum carried by the

rest mass flow in the disk and 2πrW rφ represents the angular momentum transported by

viscous torques in the disk. These terms are balanced by the angular momentum carried

away from the disk’s surface 4π
√
−gFL.

In order obtain an expression for F , we need to eliminate the viscous torques W rφ from
equations (4.26) and (4.27) and to apply the circular orbit relation E,r = ΩφL,r . Finally, the

radial flux of the AD yields

F(r) = −
Ṁ0

4π
√
−g

Ω,r
(E −ΩL)2

∫ r
rin

(E −ΩL)L,rdr. (4.28)

Let also define the luminosity L of the disk which takes into account the entire flux

distribution

L = 4π
∫ ∞
rin

F(r)rdr. (4.29)

Novikov-Thorne model is believed to be a good description of the accretion process when

the disk luminosity is ∼ 30% of the Eddington Luminosity. The model has been widely used
in the literature for modeling BH candidates constituting X-ray binaries and AGNs. In fact,

most X-ray spectroscopy models use it to describe the flow dynamics responsible for the

emission spectra. The uncertainties introduced from this assumption have been constrained

[63] and do not limit the accuracy of the results.

The derivation above does not limit the nature of the accreting compact object. Thus,

the model can be adapted to different astrophysical objects, as is the case of NBSs, by

incorporating their circular orbit behaviour.
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4.3 Thorne limit

We are now going to understand how a Kerr BH changes during the accretion process. Our

goal is to find explicit expressions for its mass M and spin a∗ as a function of the accreted

rest mass Mo . Bardeen [64] was the first physicist to perform this calculation for the first

time in 1970. One of the main assumptions of his calculation was the neglection of AD’s

thermal photons accretion, considering that the only particles accreting to the BH were the

ones plunging directly from rISCO.

Assuming a vacuum exists between the inner edge of the disk and the BH, we can

neglect any losses that occur between ISCO and the BH. Thus, after completing the last

stable circular orbit, matter will plunge directly into the BH carrying along an energy EISCO
and an angular momentum LISCO, corresponding to their values on the last stable orbit.

Intuitively, we expect that as the BH accretes matter from the disk, M and a∗ will

increase. The inner edge of the disk risco will naturally compensate for these effects as it

depends on the properties of spacetime, which is now changing due to accretion.

If a BH accretes a rest mass ∆M0, its mass will change ∆M and its total angular mo-

mentum change ∆J

∆M = EISCO(z)∆M0 ∆J = LISCO(z)∆M0, (4.30)

where z = rISCO/M.

As Kerr spacetime depends only on the BH mass M and spin a, there is a direct relation

between rISCO and a
∗. Assuming circular equatorial and stable orbits, we can express EISCO,

LISCO and a
∗ as a function of z and M:

Eisco(z) =

√
1−

2

3z
(4.31)

Lisco(z,M) =
2M√
27
[1 + 2

√
3z − 2] (4.32)

a∗isco(z) =
1

3

√
z [4−

√
3z − 2]. (4.33)

The differential equation governing a∗ evolution can be obtained using the chain rule, the

definition of a∗ = J/M2 and (4.30):

da∗

dM
=
d(J/M2)

dM
=
1

M2
LISCO
EISCO

−
2

M
a∗. (4.34)

Accretion increases (decreases) the BH spin if the right hand side of (4.34) is positive

(negative). When the right hand side vanishes, the BH spin reaches the equilibrium value

which depends on the spacetime solution considered.

We then rewrite (4.34) as a function of z derivatives:

M
dã

dz

dz

dM
=
1

M

LISCO
EISCO

− 2ã. (4.35)
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To solve this differential equation we plug the expressions for a∗(z) (4.33), EISCO(z)

(4.31)and LISCO(z) (4.32) obtaining the solution

z

z1
=

(
M1
M

)2
, (4.36)

where z1 and M1 are the values of z and M when the BH started accreting. Without loss

of generality, let us consider an initially static BH described by the Schwarzchild metric such

that z1 = 6. We can then plug the solution (4.36) in (4.33) and obtain an evolution law for

a∗ as a function of the BH current M and initial M1 masses:

a∗(M) =


√
2
3
M1
M

[
4−

√
18

(
M1
M

)2
− 2

]
. if M ≤

√
6M1

1 if M >
√
6M1

(4.37)

We will focus now on describing how the BH’s mass M changes with the accretion of a

rest mass M0. Starting from equation (4.30) we obtain the differential equation:

dM

dM0
= EISCO(z). (4.38)

Substituting the energy EISCO(z) (4.31) in the previous equation, we obtain, after inte-

grating it, the current mass of the BHM as a function of its initial massM1 and the accreted

rest mass M0:

M

M1
= 2
√
2 sin

(
M0
3M1

)
+ cos

(
M0
3M1

)
. (4.39)

Figure 4.1 represents the spin a∗ evolution of an initially static BH a∗ as a function of its

mass M.

We observe from figure 4.1 that the BH spin changes rapidly at the beginning of the

accretion process and stabilises for a∗ = 1. This result would mean that a BH would be

maximal spinning after the accretion of a rest mass ∆M0 ≈ 1.5M1, which corresponds to
increasing the BH mass only by a factor of

√
6 ∼ 2.4. This result is inconsistent with the

cosmic censorship conjecture as it admits that BHs would develop naked singularities after

relatively short accretion.

In 1969, Thorne [65] discussed the evolution of the BH spin due to accretion, including

the contribution of angular momentum carried by thermal photons emitted from the AD.

Some photons carry an angular momentum parallel with the BH’s rotation, spinning it up.

On the other hand, photons carrying an angular momentum anti-parallel with BH’s rotation

will spin the BH down.

As the cross-section for photons carrying anti-parallel angular momentum is larger (see

section 2.1), their accretion originates a torque that will decrease the BH’s spin. Thorne

rewrote equations (4.37) and (4.38) including the energy and angular momentum contribu-

tions of the absorbed photons, obtaining
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Figure 4.1: Spin evolution due to the accretion process for an initially static BH a∗ = 0 as a

function of its mass M.

da∗

dM
=
d
(
J/M2

)
dM

=
1

M2
Lisco + Ṁ

−1(dJ/dt)radiation

Eisco + Ṁ−1(dM/dt)radiation
−
2

M
a∗ (4.40)

and
dM

dM0
= E(z) + Ṁ−1(dM/dt)radiation , (4.41)

where Ṁ−1(dJ/dt)radiation and Ṁ
−1(dM/dt)radiation are energy and the angular momentum

contributions arising from photon’s accretion.

Thorne numerically integrated the differential equations (4.40) and (4.41) and obtained

a limit for the BH spin of a∗ ≈ 0.998, this result is known in the literature as Thorne limit.
Besides, Thorne showed that if the initial spin is greater than this limit, the photon’s accretion

will slow the BH down to Thorne limit, never violating the cosmic censorship conjecture. It

is worth noting that Bardeen and Thorne models agree for smaller values of spin a∗ < 0.9,
meaning that the photon’s effect only becomes relevant for large values of spin.

4.4 X-ray spectroscopy

BHs are believed to be associated with the strongest sources of X-Rays in the sky. X-ray

spectroscopy studies the BH’s emission spectra, consisting of two techniques: the continuum

fitting method and reflection X-ray spectroscopy.

The theory is a powerful tool for testing the Kerr nature of BH candidates and GR in

the strong field regime. X-ray spectroscopy methods have been extensively used to measure

the spin of BH candidates, constrain deviations from Kerr spacetime and find signatures of

BH mimickers. They were formulated to describe emissions from ADs around Kerr BHs but

have been generalised to other spacetime backgrounds.
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4.4.1 The continuum fitting method

The continuum fitting method analyses the thermal component of a geometrically thin and

optically thick AD. The model usually assumes the disk is well described by the Novikov-

Thorne model such that the AD flux F is modeled by equation (4.28). We assume that the
disk locally behaves as a black-body, in the sense that locally is at thermal equilibrium with

a temperature depending on the BH’s mass and the accretion rate.

The thermal spectrum is strongly dependent on rISCO location as most of the flux is

emitted closer to the inner edge of the disk. The emission in the inner region of the disk

peaks in the optical/UV band (1-100 eV) for supermassive BHs and the soft X-ray band

(0.1-1 keV) for stellar mass BHs. However, the technique has only been used to measure the

spin of stellar mass BHs as the UV radiation is strongly absorbed by dust in the interstellar

medium, making it difficult to obtain accurate measures [46].

The fit of the thermal spectrum measures the radiative efficiency η = 1− EISCO of the
AD, where EISCO is the specific energy of a test particle at the ISCO radius. Thus, the

thermal spectrum from an AD around a Kerr BH could be indistinguishable from the one

around another compact object as long as the radiative efficiencies are the same.

The model depends on 5 parameters: the BH accretion rate Ṁ, the BH mass M, the BH

spin a∗, the inclination angle i to the line of sight of a distant observer and their distance

D. When relaxing the Kerr hypothesis, e.g., by including deformation parameters to account

for deviations of Kerr spacetime, more parameters need to be added to the model. These

parameters are strongly degenerate, to reduce this effect the model usually requires inde-

pendent measures for Ṁ, M, i and D. When doing this, the spin a∗ and possible deviation

parameters are estimated by the fit of the thermal spectrum.

Figure 4.2: Numerical simulation of thermal spectrum for different values of the BH spin a∗.

D=10kpc, i = 45o , M = 10M⊙ and Ṁ = 2× 1018g/s (fig 1.8 in [1])

The high-energy cut-off on the thermal spectrum strongly depends on η. Thus, when

considering a Kerr background, there is a direct relation between EISCO and a
∗, allowing us

to easily measure spins. Figure 4.2 shows the dependence of the high-energy cut-off on the

BH spin.
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4.4.2 Fe Kα line method

The reflection X-ray spectroscopy, also known as the Fe Kα, is another method commonly

used for measuring the spin of stellar mass and supermassive BH candidates and probe

spacetime in the strong field regime.

The most standard approach is to consider a thin AD, described by the Novikov-Thorne

model, surrounding a Kerr BH with a hotter and optically thin corona (100keV) located above

it as represented in figure 4.3. The theory has been generalised to other compact objects

such as neutron stars or boson stars.

Despite existing models describing the corona, its exact nature and geometry are still

unknown. The most common choice for the corona’s geometry is the lamp-post geometry,

consisting of a point-like source aligned with the BH rotation axis.

Figure 4.3: Schematic view of the disk-corona model including the AD, a corona and an

accreting BH (fig.1 in [2])

The corona could be formed out of jets emitted from the BH, which did not have enough

velocity to escape and were retained above the BH. Other models suggest the corona can

be the atmosphere above the AD or matter plunging the BH from ISCO.

Thermal photons emitted closer to the disk’s inner edge will inverse-Compton scatter off

free electrons of the corona, originating an energetic X-ray continuum with power law cut-off.

This power law component irradiates the colder AD with photons that are absorbed or suffer

Compton scatter off electrons in the disk. The more energetic power-law photons are rarely

absorbed, scattering back out of the disk and originating a broad hump peak at 20−30keV .
The result is a reflection component in the X-ray spectrum with some fluorescent lines. Due

to its abundance, when compared with other elements in the disk, the fluorescent iron line -

Fe Kα - at 6.4keV is the strongest feature of the reflection spectrum [56].

The fluorescent lines form when an inner shell electron, K shell, is ejected due X-ray

absorption of photons from the power law continuum component. Then, an electron from

a higher shell drops into the K-shell, releasing energy and originating a fluorescent line at

6.4KeV .

The line is intrinsically narrow in energy but gets skewed and asymmetric due to light
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bending, Doppler boosting and gravitational redshift.

The shape of the line depends on the spacetime background metric, the geometry of

the emitting region (mainly rISCO and some outer radius rout), the disk’s emissivity and the

disk’s inclination. Despite existing models for the disk’s emissivity, the most straightforward

approach is to consider it a free parameter to be determined by the fit.

Figure 4.4: Numerical simulation of Fe line profiles for different model parameters. Left:

The effect of the BH’s spin a∗ for an inclination of i = 45o and an emissivity region with a

width of rout − rin = 100M. Right: The effect of the inclination of the disk i = 45o for a
BH’s spin of a∗ = 0.7 and an emissivity region with a width of rout − rin = 100M. (Fig. 2
in [3])

The dependence of the Fe line on these parameters is well studied. Figure 4.4 represents

how the line profile changes as a function of the inclination i and spin a∗. We verify that

increasing the inclination parameter broadens the line, increasing its high-energy extent, which

is mainly conditioned by the disk’s inclination. On the other hand, the low-energy extent of

the line strongly depends on the position of the inner radius of the emitting region. This

happens as the red extent is mainly originated from the gravitational redshift in the inner

region of the disk. Increasing a∗ pushes the rISCO closer to the BH, resulting in a broader

line with a longer low-energy tail.
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Chapter 5

Newtonian boson stars as black hole

mimickers

In this chapter, we will discuss the properties and observational signatures of ADs around BHs

and NBSs. Then, we search for a parameter space of mass M and spin a∗ such that NBS

and BH disks have the same bolometric luminosities. Additionally, we compare if the study

of the disk emission spectra can provide some insight into the nature of the accreting object.

In conclusion, we analyse how well the models describe known supermassive BH candidates.

5.1 AD flux profiles

We are interested in comparing the properties of ADs around BHs with the ones of ADs

around NBS with the same mass M. In the weak field limit, the boson field Ψ and the

gravitational potential should be weak, verifying |Ψ| ≪ 1 and |U| ≪ 1, respectively. This
restricts both the M and the field’s mass µ considered µM ≤ 0.55.
We assumed a steady, geometrically thin and optically thick AD surrounding the central

compact object, such that its flux F is well described by the Novikov-Thorne model (4.28).
The inner edge of a disk around a Kerr BH is assumed to be at the ISCO radius r = rISCO
(2.17), while an AD around a NBS extends to r = 0. As discussed in section 3, this happens

since spacetime around a NBS is always regular and circular stable orbits can be found for

all radii.

We start by numerically computing F for an AD around a Schwarzchild BH (a∗ = 0) FBH
and for an AD around an equally massive NBS FNBS. The results are depicted in figure 5.1.
The two flux profiles exhibit a distinct behaviour for inner radii and asymptotically converge

for the outer regions of the disk. FBH has a peak closer to its inner edge rISCO = 6M,
rapidly decreasing and extinguishing at r = 6M with a cutoff for smaller radii. On the other

hand, FNBS also peaks close to its centre but extends smoothly to r = 0. Thus, providing
we have instruments with a good radial resolution, observations of the AD radial flux profile

from the inner region of the disk can indicate the presence of an ISCO.

The FBH profile peak location is related to its proximity to rISCO, this happens as the
model assumes that the viscous stresses, responsible for heating matter and making it making
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Figure 5.1: Radial flux profile of an AD around a Schwarzchild BH FBH and a equally massive
NBS FNBS with µ = 10−17eV and M = 6.7× 106M⊙.

radiate, vanish at its inner edge. The absence of an ISCO in the NBS spacetime suggests a

different physical motivation is at the origin of the peak. Analysing all physical quantities on

which the flux model depends, we concluded that the FNBS peak is located extremely close
to where the variation of the orbital velocity ∂rΩ is maximal. This result agrees well with

the Novikov-Thorne description of the disk dynamics as it is precisely the differential orbital

angular velocity the base of the friction mechanism, responsible for thermal emission.
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Figure 5.2: −∂rΩφ for an AD around a NBS with µ = 10−17eV and M = 6.7× 106M⊙.

However, FNBS may be larger if one takes into account the energy radiated from the
interaction between the disk particles and the NBS field, neglected in the Novikov-Thorne

description.
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5.2 AD flux dependencies

The AD flux strongly depends on the location of its inner edge, close to which the largest

amount of radiation comes from, and on the properties of circular geodesic orbits of the sur-

rounding spacetime, which are determined by the metric. The Kerr spacetime is completely

described with the BH mass M and spin a∗, while the NBS spacetime only depends on its

mass M and the boson field’s mass µ.

To understand how F varies with the mass of the central object M, we numerically
computed the AD flux for different M values for BHs and NBSs, the results are represented

in figures 5.4 and 5.3, respectively.
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Figure 5.3: Radial flux profiles of ADs around

NBS FNBS with different M values and µ =
10−17eV .
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Figure 5.4: Radial flux profiles of ADs around

Schwarzchild BHs FBH with different M val-
ues.

We verify that FBH decreases with the BH mass as FBH ∼ 1/M. Let us now assume
that matter in the disk locally behaves as a black-body with a temperature T , obeying the

Stefan–Boltzmann law FBH = σT 4. This mass dependency implies that ADs around stellar-
mass BHs are hotter than the ones around supermassive BHs. Experimental observations

from ADs around BH candidates have determined that the thermal radiation from ADs

around supermassive BHs peaks for the optical/UV band, while the ones around stellar-

mass BHs normally peak for more energetic frequency bands as the X-ray, corroborating this

dependency.

The BH angular momentum determines the geometry of the disk by determining the

location of its inner edge which is defined to be at rISCO. The Novikov-Thorne model relies

on the Bardeen formula to establish the dependence of rISCO on the BH spin a
∗. Figure 5.5,

represents how the FBH profile changes when varying the spin parameter a∗.
We verify that increasing a∗ pushes the inner edge of the disk toward the BH, increasing

the BH flux. This happens in part because the BH gravitational field is stronger for inner

radii increasing the particle’s orbiting angular velocity responsible for the shearing motion

mechanism, making them radiate more. Besides, as we increase a∗, particles will complete

more orbits before plunging the BH from rISCO, dissipating more potential energy as radiation.

NBSs have been widely discussed in the context of fuzzy DM models for massive fields

of µ ∼ 10−20 − 10−22eV [61]. However, the mass spectrum of a boson field theory is yet
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Figure 5.5: Radial flux profiles of ADs around Kerr BHs FBH with M = 5.3 × 106M⊙ for
different a∗ values.

to be determined and other mass values could be considered. To understand how µ affects

FNBS, we numerically computed the AD flux for different µ values. The results are depicted
in figure 5.7.
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Figure 5.6: Radial flux profiles of ADs around NBSs FNBS with M = 6.7 × 106M⊙ for
different field’s mass µ values.

Analysing figure 5.7, we verify that FNBS is very sensitive to small variations of µ, a
small decrease of the field mass reduces the flux and moves its peak toward larger radii. This

happens as decreasing µ dilutes the NBS spacetime solution, weakening the gravitational

potential responsible for the disk accretion resulting in fainter radiation emission.
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5.3 NBS as BH mimickers: a luminosity analysis

Current observational methods do not have enough angular resolution to solve an AD flux

profile accurately. Thus, one usually analyses the total photon flux as a function of the

energy. The bolometric luminosity L of the AD (4.29) is a measurable physical quantity
which depends on the properties of the flux profile. Given the mass of the central compact

object, obtained from different experimental methods, L may allow us to conclude about its
nature.

Assuming that the central compact objects have the same mass M, if the luminosity of

a disk around a BH LBH is the same as the one of a NBS disk LNBS, their ADs could be
harder to distinguish observably. We are now interested in finding a central mass M, a scalar

field mass µ and a BH spin a∗ parameters such that the luminosities of the BH and NBS

disks are the same LNBS = LBH = L.
Figure 5.7 represents the luminosity L for a NBS and a static BH as a function of µM.

LBH a
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Figure 5.7: Luminosity curves for an AD around NBS LNBS/ and a static BH LBH as a

function of µM.

We verify that as we increase the mass of the central compact object the disk’s luminosity

increases, L goes with M for the case of a BH (5.1) and with M3 for a NBS (5.2).

LBH ∼ 1034
(

M

4.3× 106M⊙

)
[W ] (5.1)

LNBS ∼ 6× 1033
(

M

4.3× 106M⊙

)3 ( µ

10−17eV

)2
[W ] (5.2)

Assuming the Novikov-Thorne model, an AD around a Schwarzchild BH has the same

luminosity as an AD around a NBS for µM ≈ 0.42 which corresponds to a central mass

M ∼ 5.7× 106
( µ

10−17eV

)
M⊙. (5.3)

However, BH candidates are thought to be well described by Kerr’s spacetime. Thus, a
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more realistic approach needs to take the BH spin into account. As LBH increases with spin
a∗, the only possibility for having LBH = LNBS, while respecting the NBS regime constraints,
is to restrict our analysis to the mass interval 0.42 ≤ µM ≤ 0.55.
For each mass value µM in 0.42 ≤ µM ≤ 0.55, we numerically computed LBH and found

the BH spin a∗ such that LNBS, for an equally massive central object. Figure 5.8 represents
a∗ as a function of the central mass M such that LNBS = LBH.

0.42 0.44 0.46 0.48 0.50 0.52 0.54

0.0
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a
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Figure 5.8: BH’s spin as a function of µM such that the luminosity of an AD around a NBS

is the same as an equally massive Kerr BH.

We conclude that for the mass values in 0.42 ≤ µM ≤ 0.55 it was possible to find a Kerr
BH such that the luminosities of the disks are the same. We verify that the greater the mass

M of the central compact object the higher the spin a∗. The BH spin values obtained verify

a∗ ≤ 0.655, which is compatible with the cosmic censorship conjecture and agrees well with
some spin values obtained from X-ray spectroscopy [46].

Despite having the same bolometric luminosities, we have shown that the geometry and

properties of ADs around BHs and NBSs are expected to be considerably different closer to

the inner edge of the disk. To better understand these differences, we will now analyse the

flux profiles of ADs around BHS and NBSs with the same mass M and the same bolometric

luminosity L, considering a static BH and a Kerr BH. Figure 5.9 represents F for the case
of a static BH and a NBS with a mass of M = 5.6 × 106M⊙. Figure 5.10 depicts F for
M = 7× 106M⊙ and a BH’s spin of a∗ ≈ 0.6.
The two profiles are completely distinguishable by the presence of the BH ISCO. We

observe again that most of the BH disk emission occurs close to its inner edge while the flux

for a NBS disk is smoother and dominates for larger radii. In fact, the peak of FBH is 4
times larger than the one of FNBS, for the static BH, and 5 times larger, for the Kerr BH.
The profiles converge asymptotically for the farthest regions of the disk. We also notice that

for the cases considered, NBS disk emission for inner radii, i.e., smaller than BH rISCO, is

considerably faint. This suggests that imaging of ADs may not be enough to conclude about

their nature, especially when we take into consideration other effects such as light bending.

Assuming the black-body model applies locally in the disk, the temperature profiles would
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Figure 5.9: Flux profile F of an AD around a
Schwarzchild BH FBH and an equally massive
NBS FNBS with µ = 10−17eV andM = 5.6×
106M⊙.
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Figure 5.10: Flux profile F of an AD around
a Kerr BH FBH with a∗ = 0.6 and around an
equally massive NBS FNBS with µ = 10−17eV
and M = 7× 106M⊙.

also be considerably different as a disk around a BH is expected to be much hotter than one

around NBS. The temperature of the disk matter is a critical factor for thermal emission,

determining which frequency bands dominate the flux. Thus, there could exist underlying

signatures on the emission spectrum L(ν) (4.18) even when the bolometric luminosity L is
the same. This happens because L is computed by integrating energy flux from all different
frequency bands, not differentiating band contributions. Figures 5.11 and 5.12 compare the

emission spectrum of the disks for two cases considered.
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Figure 5.11: Emission spectra of an AD

around a Schwarzchild BH and an equally

massive NBS with µ = 10−17eV and M =

5.6× 106M⊙.
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Figure 5.12: Emission spectra of an AD

around a Kerr BH with a∗ = 0.6 and around

an equally massive NBS with µ = 10−17eV

and M = 7× 106M⊙.

We observe that the spectra look identical for lower frequencies and start to diverge for

frequencies larger than ν ≈ 1015Hz (UV range). The spectra of a disk around a BH dominate
for the highly energetic UV band, with some emission in the X-ray band. This happens

because ADs around BHs get considerably hotter than the ones around NBSs. Thus, the

disk spectra may be used to better understand the nature of accreting BH candidates as one

expects a higher prominence for the most energetic bands for a Kerr background spacetime.
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Figure 5.13 represents the disk spectra for different BH spin a∗. Given a central accreting

mass M, increasing the BH’s spin a∗ shifts the high energy tail toward higher frequencies

(more energetic UV/ X-ray). As the disk inner edge is pushed closer to the BH, particles

need to lose more energy to reach those radii, increasing the flux from the hotter regions of

the disk.
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Figure 5.13: Emission spectra of disks around BHs with different spin values a∗ and M =

5.6× 106M⊙ and the emission spectrum of an equally massive NBS with µ = 10−17eV .

X-ray spectroscopy could be crucial in determining whether the AD flux behaves consid-

erably differently for NBSs and BHs for the inner regions of the disk, it would be interesting

to consider the effects of both spacetime solutions when modeling Fe line profiles.

We will now briefly discuss how well NBS describe known supermassive BHs candidates,

more precisely, AGNs. We are interested in finding which boson field mass µ needs to be

considered to account for the observations. To achieve this, we will rely on measurements

of the AGNs bolometric luminosities Lobs and of their mass M, usually inferred from obser-
vations of gas dynamics and nearby stars movement. Most of the time, Lobs needs to be
approximated from the optical luminosity or the X-ray luminosity. This allows us to avoid

problems related to the deficiency of frequency band coverage and data variability.

Using (5.2) and assuming Lobs has an associated uncertainty factor of 10 we compute a
field mass interval µ which agrees with the observations. Table 5.1 presents the data related

to the 4 AGNs considered, which are commonly used in the literature for calibration methods

[66].

Object M/106M⊙ Lobs [W ] µ[eV ]

NGC 4151 45 1033.3±1 10−18 − 10−17

3C 120 55 1035,48±1 10−17 − 10−16

MRK 79 52 1032±1 10−19 − 10−18

M87 6500 1034.18±1 10−19 − 10−18

Table 5.1: AGN data: object name, mass M, observed luminosity Lobs and the field mass
interval µ compatible with the NBS accretion dynamics (5.2)
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The values of µ obtained sustain that light boson fields could potentially be used to

describe supermassive BH candidates. However, we verify that the field mass spectrum

compatible with the AGNs luminosities is considerably broad, ranging from µ = 10−16eV to

µ = 10−19eV . There is no single value of the scalar mass µ compatible with all observations.

39



5.3. NBS AS BH MIMICKERS: A LUMINOSITY ANALYSIS

40



Chapter 6

Conclusions

Understanding what happens in extreme gravity conditions such as the ones close to BHs

is, ultimately, a test of the general relativity description of the universe. The pathological

behaviour of gravity inside the BH horizon suggests that the Kerr solution may only be a grasp

at the full explanation. The answer may include a quantum theory of gravity or undiscovered

DM particles to be added to the standard model. Deepening our description of the intricate

accretion phenomena for different compact objects helps us lift the veil and get one step

closer to understanding the universe.

In this work, we studied if compact objects made out of light boson fields, as is the case

of NBSs, could mimic the accretion of a Kerr BH for a geometrically thin disk described with

the Novikov-Thorne model.

We numerically solved Poisson-Schrödinger equations for a self-gravitating object made

of light boson fields to obtain the metric of NBS spacetime. We found a mass limit for the

NBS mass compatible with the Newtonian approximation of µM ≤ 0.55. We studied the
properties of equatorial circular orbits for NBSs, concluding that stable orbital motion can

always be found. These results were incorporated into the Novikov-Thorne model to describe

NBS accretion dynamics.

We obtained flux profiles for NBSs, which are distinguishable from the ones of Kerr

BHs due to the absence of an ISCO. Most of the emission of BH disks occurs close to the

ISCO radius, while the NBS disk flux is smoother and extends for larger radii. Then, we

discussed how the flux of an AD around a NBS peaks for the portion of the disk where

particle differential rotation Ωφ, required for viscous stresses, is higher. Furthermore, we

analysed the flux dependence on the central object mass, BH spin and boson mass.

To compare the AD flux profiles for NBSs and equally massive BHs, we computed their

luminosity as a function of µM and concluded that an NBS accretion flow could mimic the

one of a Kerr BH for 0.4 ≤ µM ≤ 0.55. Then, for each µM, we computed the BH spin such
that the disk luminosities were the same and verified the values obtained a∗ < 0.66 agree

with the cosmic censorship conjecture. Finally, we compared the emission spectra of disks

with the same luminosities for central masses of ∼ 106M⊙. We verified that a NBS disk is
colder than a BH one, emitting more weakly for the highly energetic UV/X-ray band. Thus,

observations of disks emission for high frequencies may be used to assess the nature of the
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accreting object.

Finally, we briefly discussed the boson field mass required to match the luminosity of a few

AGNs. The mass interval obtained was quite extensive µ ∼ 10−16 − 10−19eV . Our results
suggest that NBSs could potentially be considered in describing some AGNs but there is no

single boson field mass which could account for all supermassive BH candidates considered.

The AD emission profile differs considerably whether the accreting object is a Kerr BH

or a NBS. Thus, the study of Fe Kα line profiles in X-ray spectroscopy, very sensitive to

differences closer to the inner edge of the disks, could provide other observational signatures

to distinguish NBS and BHs.
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