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Associated with an electromagnetic disturbance is a mass, the
gravitational attraction of which under appropriate circumstances
is capable of holding the disturbance together for a time long in
comparison with the characteristic periods of the system. Such
gravitational-electromagnetic entities, or "geons"; are analyzed via
classical relativity theory. They furnish for the first time a com-
pletely classical, divergence-free, self-consistent picture of the
Newtonian concept of body over the range of masses from ~103'
g to 10'7 g. Smaller geons are quantum objects whose analysis
would call for the treatment of characteristic new effects. Topics
covered in the discussion include: 1. Need for a self-consistent
formulation of the concept of "body" in classical physics; geons vs

free waves; electrical neutrality of geon; size and mass relations;
the quantum limit and electron pair phenomena. 2. Orders of
magnitude for toroidal geons; first estimates of leakage rates; a
"phosphor" model of a geon; attrition and attritivity; energy
action relation. 3. Idealized spherical geon; conditions required
for symmetry; instability relative to pairing of light rays; time
scale of instability long compared to vibration periods; spherical
metric; wave equation for electromagnetic potential; evaluation of
stress-energy tensor; its position as source of gravitation field; the
gravitational field equations; the three equations of the self-
consistent geon; simplification by scale transformation; first
analysis of the eigenvalue problem; further scale transformation
to get behavior of solution in active region of geon; further an-
alysis of eigenvalue dependence; electronic calculator integration

of equations of self-consistent geon; mass and radius values.
4. Transformations and interactions of electromagnetic geons;
evaluation of refractive index barrier penetration integral for
spherical geon; photon-photon collision processes as additional
mechanism for escape of energy from system; restatement in
language of coupling of characteristic modes; the thermal geon;
comparison of gravitation and virtual electron pair phenomena as
sources of coupling between modes; gravitational coupling and
collective vibrations of geon; fission of a geon; interaction between
two geons simple at large distances; orientation dependence and
exponential term at intermediate distances; violent transmutation
processes in closer encounters. 5. Influence of virtual pairs on
geon structure; description in terms of refractive index correction;
relation to photon-photon collision picture; more precise formula-
tion via Heisenberg-Euler electrodynamics; corrections to stress-
energy tensor and electromagnetic field equations. 6. Neutrino-
containing geons; general similarity to electromagnetic geons;
specificity of geon-geon interactions; the size subject to simple
analysis unexpectedly limited by neutrino-neutrino encounters
and the process v+v —+p+e; similarity of size limitation to that
for electromagnetic geons; comments on present status of neu-
trino theory of light. 7. Electricity, Gauss's theorem, and gravita-
tional field Quctuations. 8. Conclusions:. the geon completes the
scheme of classical physics; one's interest in following geons into
quantum domain will depend upon one's view of the relation
between very small geons and elementary particles.

1. INTRODUCTION AND SUMMARY

HE position of the concept of "body"' in the
general theory of relativity' has always been

interesting. A planet moving as a body along a geodesic

*The word "geon" is used here as an abbreviation for the phrase
"gravitational-electromagnetic entity" and in place of the name
kugelblitz or ball of light previously used in a survey of the prob-
lems of fields and particles: Am. J. Phys. (to be published); for
some other aspects of these problems, see also J. phys. rad.
(to be published); see also the point of view ascribed by
the author to Sugawara-no-Michizane in Proc. Phys. Soc. Japan
9, 36 (1954). The present article is part V of a study of classical
field theory. I is unwritten. In parts II, J. A. Wheeler and R. P.
Feynman, Revs. Modern Phys. 17, 157 (1945), III, J. A. Wheeler
and R. P. Feynman, Revs. Modern Phys. 21, 425 (1949), and IV,
in preparation in collaboration with Professor Gilbert N. Plass,
the emphasis is upon action at a distance, not as a way of under-
standing charged bodies, but as a way of understanding the fields
that act between them. In the present paper the emphasis is on
the fields interior to a classical body.

' The noun "body" is used here to connote an object possesed of
a mass and of three position coordinates, and subject both ex-
ternally and internally to a classical description, in contrast to
the notion of a particle, with at least the interior of which quantum
properties are associated.' By "general theory of relativity" is meant here that battle-
tested system of ideas and equations which Einstein developed in
1915 to describe gravitation and electromagnetism. I am indebted
to Professor Einstein for several interesting discussions of the
evolution of his ideas and of their relation to Newtonian concepts.
Excluded here from the phrase "general theory" is the cosmological
term, absent with good reason from the original formulation,
introduced only when it was found that the original theory could
not account for a static universe, and disowned when the universe
was found not to be static. Excluded also are varied modifications
of general relativity which attempt to "unify" gravitation and

is the idealization behind one of the most important
predictions of the general theory, and certainly the one
that has received the most thorough observational con-

electricity, the latest of which has been shown by Joseph Callaway,
Phys. Rev. 92, 1567 (1953) to predict that a test particle will
move as if uncharged, no matter how much charge is loaded upon
it. In the accepted formulation of general relativity —to use the
metric conventions of Pauli s treatise —the proper distance, ds,
or proper interval of cotime (c times time), dr, between two
neighboring events is given by

(ds)'= —(dr)'= g~pdx dna.

The state of the space time continuum is specified by giving in
addition to the ten gravitational potentials, g;I,=gj„., the four
electromagnetic potentials, A;. The electromagnetic field,
J";I,=BAJ,/Bx' —8A;/8x~, has six distinct components, whereas
gravitational eBects are expressed in a covariant way by the
twenty distinct components of the curvature tensor R,&,&,

. or by
the mixed components of the same tensor,

ffs;„=ar;p/ass —ar, ,s/ax~+r~sr;;s —r;&"r;&',

where the typical F is an abbreviation for

r; g,
=$(ag s/ax"'+ag;s/ax&' —ag;;/ax").

Of the twenty distinct components of R &.z, ten remain in the
contracted curvature tensor R;J,=R;6, J, , and of these one remains
in the curvature invariant R=g t R p. The Einstein tensor
G;&=R;&—&g;~ may be considered to be the translation into the
language of general relativity of the notion of d'Alembertian of
the gravitational potentials, g;J,. The gravitational Geld equations
thus have the form

G;s= (87rG/d)T;p,

where G=6.67X10 cm'/g sec' is the Newtonian constant of
gravitation, c=3.00X10' cm/sec is the speed of light, and T;q is
the symmetric stress-momentum-energy tensor of the electro-
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FIG. i. Regions of strong electric 6eld strength in a simple
toroidal geon of zero angular momentum. Two waves of equal
strength run around the torus in opposite directions to produce a
standing wave, with electric fields strong in the regions indi-
cated, and magnetic 6elds strong in the region between. The
gravitational field created by this disturbance, and required to
hold the disturbance together, is representable to a good approxi-
mation as static and independent of azimuth.

firmation. ' In recent years a great advance has been
made in the theory. The geodesic equation that de-
termines the motion of the object in a known field, and
the Geld equations that find the metric from the mo-
tions of the masses, have been shown not both to be
necessary, as they have been in every other formulation
of physics. Instead, the equation of motion of the body
has been shown to follow as a consequence of the field
equations. This circumstance, the fact that relativity is
the first description of nature that makes geometry a
part of physics, the absence of any acceptable alterna-
tive of comparable scope, and the battle-tested internal
consistency of the theory, all make it is necessary to
take seriously general relativity and explore further its
consequences and concepts. Of these concepts the no-
tion of body is in an unhappy state. Either one sticks
to general relativity as it is, and treats the object as a

magnetic field,
T;g= (8/Sg"")(1/gx)F pP P

Of the equations for the electromagnetic held itself, half are al-
ready automatically satis6ed by virtue of the way the 6elds are
expressed in terms of the potentials, A;. The other half are usually
written as inhomogeneous equations,

(—g) i(&98* )(—g)iP'"=4 &'

where g is the determinant of the g;s, or where (—g)& is the ratio
of an element of four volume to the product Cx'4x'2x'd'x4, and where
the four vector s' describes the density and flow of free electricity.
We omit this source term (a) because we do not need it in the
considerations of this article (b) because there is no self-consistent
classical theory for the existence of electric charge (c) because the
considerations of Sec. 1 and Sec. 7 suggest that the appearance of
free electricity is a quantum phenomenon. Thus limited to charge
free space, general relativity constitutes. a well defined, self-
consistent, self-contained whole.

s G. M. Clemence, Revs. Modern Phys. 19, 361 (1947); Proc.
Am. Phil. Soc. 93, 532 (1949).' L. Infeld and A. Schild, Revs. Modern Phys. 21, 408 (1949);
see also Einstein, Infeld, and HoRmann, Ann. Math. 39, 65
(1938);D. M. Chase, Phys. Rev. 95, 243 (1954); and a paper by
L. Infeld, Acta Phys. Polonica (to be published) for a perusal and
discussion of which I am indebted to Professor Infeld.

G,s = (8~G/c4) T,s,

TP= (1/47r)(F, „F" ,'F pF P8—P)—,

and

(—g) '(~/» )(—a)'F'"=0,

all derivable from the action principle:

(1)

(2)

( (1/167rc)F.pF P
t' (' f

J
—(cs/16sG)E}d (four-volume) =0. (4)

An order of magnitude discussion of the properties
of these entities appears in Sec. 2. Section 3 presents
theory and results of electronic machine solutions of
the self-consistent field equations for the particularly
simple but rather idealized case of a spherical geon.
The existence of geons would seem to impart to classical
general relativity theory a comprehensiveness for which
one had not dared to hope. This theory turns out not
only to account for the fields produced by bodies, and
the motions of bodies, but even to explain why there
should be bodies. In this sense classical relativity theory
would seem to be revealed as a logically self-consistent
and completed whole of unexpected comprehensiveness.

Having geons as model for the bodies of classical
physics, we can put into a new perspective some parts
of general relativity. First, the geodesic equation of
motion of a body displays itself clearly as an idealiza-
tion. To be able to give any meaning to the metric that
appears in this equation, we have to be able to speak
of the "background field"—the gravitational and electro-
magnetic magnitudes that would be present in the
absence of the geon. This will only be possible when
the total fields at some distance from the object vary
slowly over a distance comparable to the linear exten-

singularity in the metric, or one postulates that the
field is regular everywhere, and counts on quantum
theory somehow to explain how this can be so even in
the region of the body. Both approaches lead for the
time being to an impasse. For this reason it is interest-
ing to discover that there exists a third possibility.
On the basis of classical general relativity as it already
exists, and without any call on quantum theory, it
turns out to be possible to construct an entity that we
call geon. This object serves as a classical, singularity
free, exemplar of the "bodies" of classical physics. Of
such entities there exist in principle a great variety,
distinguished from one another by mass, intrinsic
angular momentum, and other properties. The simplest
variety (Fig. 1) is most easily visualized as a standing

electromagnetic wave, or beam of light, bent into a
closed circular toroid of high energy concentration. It
is held in this form by the gravitational attraction of the
mass associated with the field energy itself. It is a self-
consistent solution of the problem of coupled electro-
magnetic and gravitational fields, as de6ned by the
system of equations,
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sion of the geon. In this case the object will accelerate
coherently under the action of external forces. The
happenings 6t into the scheme of physics envisaged by
Newton and Maxwell: preexisting bodies generating
forces and being acted upon by forces. The appropriate
modihcations to pre-Einsteinian physics associated with
special and general relativity of course add themselves
automatically. On the other hand, when the fields
outside the geon approach non-uniform values, then
this entity does not react as a unit. Its internal degrees
of freedom are disturbed. When the external inhomo-
geneities are strong, the system will break into two or
more parts. There is nothing in what we know today
of physics that makes unreasonable the failure under
such conditions of the idealization of body. Evidently
there exist conditions where the idealization of "body"
loses all significance, and where there comes into play
a new kind of physics of geons —but a physics that is
still entirely classical (Sec. 4).

The existence of geon transformation processes makes
clear a second point about classical relativity physics,
that there exists in principle no sharp distinction be-
tween geons as concentrations of electromagnetic
energy, capable of break-up and integration processes,
and the "free" electromagnetic waves that pass through
the space between geons, and experience scattering,
absorption, or emission by geons. Legalistically speak-
ing, the state of the universe of classical physics is
described -by the singularity free electromagnetic and
gravitational magnitudes at every point, and by
nothing more.

Finally, physics as rounded out by the geon concept
forms the only fully comprehensive and self-consistent
system of classical physics that we possess. This picture
of bodies and fields leaves as little place for free electric
charges as for isolated magnetic poles: none at all. The
electromagnetic field is as free of singularity as the
gravitational 6eld. Lines of forces never begin and
never end. At most they form loops that shrink to zero
and disappear, or reappear, as time goes on and field
strengths change. No natural way is evident to escape
the conclusion that the quantum of electricity has to do
with the quantum of action and does not belong within
the framework of a comp/etc/y classical physics. Con-
sidering that our physical world extends at least from
10 "cm to 10"cm, and that in the face of these forty
decades or more e' divers from Sc by only two powers of
ten, it would also seem that one has some independent
reason to believe that free electricity is a quantum
phenomenon. Therefore it appears reasonable to accept
as a description of a classical body the always electrically
neutral geon.

What is the range of sizes of classical geons? These
objects obey a simple scaling law. From one self con-
sistent solution of the coupled equations of gravitation
and electromagnetism there follows another solution of
of (1/e)th the mass, by decreasing all distances by a
factor m, increasing all electromagnetic field strengths

mass density in
active region

peak field values '

in electrostatic
volts/cm or gauss

reasonable fraction of
(ac'/G' action)

reasonable fraction of
(ac'/G' action) &

The upper limit to the size of geons is the linear ex-
tension of the universe itself. This limit shows itself in
the following way. The self-consistent field equations
of the geon possess solutions, the properties of which
depend upon the boundary conditions. In simple geon
theory we impose the requirement that g;I, 's are asymp-
totic to a Bat metric at distances large in comparison
with the extension of the geon. This boundary condition
has to be modified when the size of the geon is com-
parable to the radius of curvature of a closed universe.
Then the relations (5) undergo characteristic correc-
tions, such that the mass of the geon can never exceed
the mass of the universe.

Incidentally it is interesting to notice that a purely
classical closed universe consisting of a large number,
3T, of geons of comparable size must consist mostly of
empty space. This conclusion follows from the fact that
the proportionality factor between radius and mass,

radius (G/c') mass= (0.74&(10 "cm/g) mass

is the same in order of magnitude for geons as for the
universe itself. Consequently a ratio 1/N between the
mass of the parts and the mass of the whole imples a
ratio E(1/Ã)'=1/N' between the volume of the
parts and the volume of the whole.

To find the lower limit to the size of classical geons,
we have to investigate in turn the several physical
magnitudes that characterize this object, and see which
of these magnitudes, with decreasing geon size, first
passes out of the domain of application of classical
theory. (1) Is action the critical magnitude? Certainly

by a factor e, and leaving all the gravitational poten-
tials g;A, unaltered in strength. In this change the classi-
cal action integral, J, associated with the field disturb-
ance falls to 1/n' of its original value. Such a scaling
law must exist because the field equations contain only
the gravitation constant and the velocity of light, out
of which one can form no quantity with the dimensions
either of a length or a mass or a field strength or an
action. Consistent with the scaling law, but even more
specific, are the order-of-magnitude formulas of Sec. 2
for the simplest circular toroidal geons, with a number
of standing waves around the circumference equal to
an integer or azimuthal index number, a:

mass a& (action c/G)&,

major radius a' (action G/c')'*,

minor radius small multiple of X,

X= (wavelength/2n) g '* (action G/c')'*,

frequency a'' (c'/G action) l,
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one will be in the quantum domain when the action is
comparable to the quantum of angular momentum,
5=1.054X10 "

g cm'/sec. Inserting this value into
the formulas (5), we find

mass a'2. 18X10 '
g,

major radius a'1.63X10 "cm.

We can stop here with the evaluation. We are evidently
far below the limit where it might have been right to
use classical theory, and quite outside the domain of ap-
ptication of Eqs. (5). Electron theory allows no possi-
bility to deal with distances smaller than the reduced
Compton wavelength, k/me=3. 87X10 " cm, without
taking into account complex and specifically quantum
mechanical Quctuations in the distribution of pairs
and in the electromagnetic field. What about Ructua-
tions in the gravitational fields They appear to be
negligible on any ordinary scale of distances, as one
sees from the following reasoning. In a region with
space and cotime extensions of the order of I. the rele-
vant fluctuations in the electromagnetic field' are of the
order hh (kc)'/L', and DA (Ac)&/L in the potentials.
The similarity in character of the gravitational and
electromagnetic field equations, and the difference in
the way they contain the various fundamental con-
stants, indicate that the corresponding formula for
the fluctuation in a typical gravitational potential is

Dg (SG/c') '/L. (6)

These fluctuations will be inappreciable in comparison
to typical average values of the metric, g 1, so long
as the distances, I., under consideration are substantial
in. comparison with the characteristic length,

L*=(AG/c')*'=1. 63X10 "cm. (7)

This is exactly the distance in comparison with which
we have just concluded that classical geons must be
enormous.

(2) Is distance the critical magnitude? We set the
reduced wavelength in Eqs. (5) equal to 5/mc and
solve for the action and other physical magnitudes,
finding

action a(5c/m'G)h =a5.72 X10'4A,

mass-a(5. 69X10~)12.15X10 ~
g
12X10"g

major radius a3.87X10 "cm,

minor radius small multiple of 3.87X10—"cm,

(wavelength/2s) 3.87X 10-"cm,

frequency mc'/It,

all of which is so far acceptable; but the mass density
in the active region,

geon density a reasonable fraction of
(c'/G) (mc/fi) '= 0.90X10' g/cm'

~ N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab. ,
Mat-fys. Medd. 12, No. 8 (1933);Phys. Rev. 78, 794 (1930).

is obviously fantastically in excess of the density of
nuclear matter,

nuclear density 1836m/((4n. /3) (e'/2mc')'g
= 1.4X 10'4 g/cm'. (8)

Consequently we still find ourselves in a domain where
the classical geon relations (5) cannot be applied

(3) Is density the limiting magnitude? Taking this
time nuclear densities, (8), as the reference point, we
find from (5) values of the action, mass, radius, and
frequency of the geon which are safely outside the
obvious quantum limits; but the field strength in the
active region,

(c'1.4X 10"g/cm') & =3.6X 10'

(gauss or electrostatic volts/cm),

is then 8000 times greater than the critical value met in
the quantum electrodynamics of the vacuum,

S.„i,=m'c'/eh =4.42 X10"
(gauss or electrostatic volts/cm). (9)

Thus, when an electric field 8, working on an elemen-
tary charge e over the localizability distance k/mc, can
impart to an electron an energy of the order mc', then
this electric field will bring forth from empty space
pairs of positive and negative electrons. Under such
conditions the geon requires for its description the
specification of the state of the pairs as well as the state-
ment of the electromagnetic and gravitational Geld
strengths. Again we find ourselves outside the range of
validity of the classical geon equations (5).

(4) We conclude that the critical field strength, h„;,,
of pair theory marks the lower limit of classical geons.
Thus, simple toroidal electromagnetic geons are only
then purely classical entities, when their magnitudes are
on the large geon side of the following limits:

action reasonable fraction of ac"/G'8„;P
=aa(e'/Gm')'(ae/ )e
=2.38X10'~aA

mass reasonable fraction of ac'/G&h. „~
=a1.065X10"g,

major radius reasonable fraction of ac'/G&h. „&
=a0.79].X10"cm,

minor radius 0.791X10"cm,

(wavelength/2m) 0.791X10" cm,

frequency~1 vibration/16. 6 sec,

mass density b, ;t/c =2.16X10' g/cm',

peak electric field 8„;,of Eq. (9).

One has only to compare these critical dimensions with
the properties of the sun, mass=1. 97X10" g, radius
=6.9SX10" cm, to conclude that even the lightest
classical geons form entities enormous in comparison
to the objects studied in the laboratory. But the critical
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dimensions are still small compared to the scale of the
universe. There is ample room between 10"cm and 10"
cm to talk of classical geons and their motions, inter-
actions and transformations. In this sense we continue
to regard classical general relativity as a completed self
contained subject with a well-de6ned scope of its own.

Having surveyed the boundaries of the classical
theory of geons, we can touch on a few of the implica-
tions of quantum theory for these objects. First, as to
the general situation, it is clear that the critical magni-
tudes of Eq. (10) prevent us in no way whatever from
considering geons of lower mass. It is only required that
we take quantum effects properly into account. It is
also clear that these sects will be of various kinds. As
we move down in mass, 6rst one effect, previously
unimportant, will become decisive, then another effect,
and so on. In each region certain idealizations will be
appropriate. In each region the formulas connecting
mass and other geon properties with the quantity of
action will have characteristic forms of their own.
Presumably the investigation of each region will present
successively greater difhculties. Second, the quantum
region earliest encountered (Sec. 5) will lie between the
realm of classical electrodynamics and the domain
where fields are so strong that substantial numbers
of pairs appear. In this intermediate "Region II," the
6elds vary in space and time fantastically slowly in
comparison with the characteristic distances and times
of electron theory. Moreover, they are strong enough
to produce only virtual pairs. These pairs give rise to
charges and currents that make a substantial contribu-
tion to the total fieM, as first analyzed in detail by
Euler and Kockel and Heisenberg. ' In quantum lan-
guage, if two opposed photons of high frequency can
produce a.

,pair, then two opposed photons of low fre-
quency can produce a virtual pair. With the reannihila-
tion of the pair the photons go oG in altered directions;
hence a scattering of light by light' and an electively
nonlinear electrodynamics. The consequence of this
nonlinearity for a simple toroidal electromagnetic geon
is most simply envisaged as an increase of refractive
index in the region of concentration of electromagnetic
energy. The effective value of the speed of light is
reduced. Geon mass no longer scales in proportion to
the square root of the action variable. Instead, as the
action of the system diminishes, the mass appears to
fall faster than linearly LKq. (81)g. However, soon we
are into Region III, where real pairs 6rst appear in
large numbers. Here new studies must be made before
any results can be stated.

As third circumstance in the relation of the quantum
to the geon, there exist neutrinos: entities apparently

s H. Euler and B.Kockel, Naturwiss. 23, 246 (1933);W. Heisen-
berg and H. Euler, Physik 98, 714 (1936).

7Low-frequency cross section in reference 6; high-frequency
cross section in A. Achieser, Physik Z. Sowjetunion 11, 263
(1937); forward scattering at all frequencies calculated by R.
Karplus and M. Neuman, Phys. Rev. 83, 776 (1951);derived from
dispersion relation by J. Toll (to be published).

coordinate with photons in the description of nature.
Their Fermi-Dirac statistics, unlike those of photons,
makes it impossible for more than one to be accommo-
dated in a state of definite wave number and polariza-
tion. From them no disturbance can be built up of a
classical magnitude, describable in correspondence prin-
ciple terms. They have an inescapably quantum
character. Apart from this circumstance they can be
used in the construction of geons just as well as photons.
In addition to purely electromagnetic geons there
consequently also exist in principle (Sec. 6) purely
neutrino geons, and geons of mixed type. Thus half
integral as well as integral spins are permitted to geons.

As last implication of the quantum for geon physics,
the Auctuations in the gravitational metric are inescap-
able, little as one can say (Sec. 7) about their conse-
quences for the validity of Gausses theorem and for the
existence of free electric charge.

Details of the discussion follow.

2. ORDERS OF MAGNITUDE FOR SIMPLE
TOROIDAL ELECTROMAGNETIC GEONS

The gravitational deflection of a pencil of light into
a torus is no different in principle from the deAection of
light by the sun. Apart from factors of the order of
two' one can estimate the deQection by equating a
kinematic acceleration to a gravitational acceleration:

c'/R GN'/R'.

Thus the radius E. of the torus and the mass M are con-
nected by the relation

R (G/c')M = (0.741X10 "cm/g)M', (11)

This formula is familiar in another connection, for it
supplies the well known relation between the mass of
an object and its so called gravitational radius, a meas-
ure of the distances at which the gravitational poten-
tials depart significantly from the values appropriate
to Rat space. This circumstance makes it evident that
any accurate treatment of geon properties has to be
carried out within the framework of general relativity.

Near a section of the torus the gravitational field will
resemble approximately the 6eld due to an in6nitely
long cylindrically symmetrical distribution of mass.
It will increase inversely as the 6rst power of the dis-
tance, p, from the center of the cylinder, until the point
of observation m, oves into the region of strong energy
concentration. There the gravitational potential will
no longer continue its logarithmic increase.

The narrowness of the pencil of light, or of the region
of strong energy concentration, will depend upon the
wavelength. Define by a large integer a an azimuthal
index number, and let the wavelength constitute the
small fraction, 1/a, of the circumference:

(wavelength/2e. )=)1 R/a.
See for example R. Tolman, Relativity, Thermodynamics, and

Cosmology (Oxford University Press, Clarendon Press, 1934),
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The pencil of light cannot be concentrated into a region
smaller in lateral extension than the order of magnitude
of X by any type of variation of refractive index with
distance. Owing to the logarithmic variation of gravita-
tional potential and eGective refractive index near the
cylinder, the lateral extension of the disturbance in the
case of the torus will be a small multiple of X, say FX,
where the dimensionless factor F will be approximately
represented by a simple power of ln(R/)t) =1na. Even
if a equals 10", this 1ogarithm is only 23.

The circumstance that the minor radius of the torus
is signi6cantly larger than X implies that the gravitation
field can be taken to be static in a reasonable approxima-
tion. Thus the source of the gravitation 6eld, in ac-
cordance with the principle of equivalence of mass and
energy, is the electromagnetic stress-energy tensor.
This tensor varies rapidly over a distance of the order
of X. But the elementary contribution to the gravitation
field is essentially a 1/r', or long-range, field. The Geld,
even in the most active part of the geon, comes mostly
from distances of the order of the minor radius, FA.
Consequently local variations in gravitational source
strength are relatively unimportant. What does count
is the source strength averaged over a wavelength.
In other words, the gravitational field may be regarded
as depending upon p and s, to use cylindrical polar
coordinates, but not on p and t.

Of course nothing prevents consideration of toroidal
geons of small azimuthal index, a, but then it is no
longer such a good approximation to treat the gravita-
tional field as static, and the situation is much more
complicated to discuss. Moreover, such geons disinte-
grate rapidly.

Even for the case of large azimuthal index number
there is a difference in simplicity between those toroidal
geons that carry equal electromagnetic waves going in

the positive and negative senses around the ring, and

those where the disturbance runs all one way, or there
are two disturbances of diGerent magnitudes. In the
6rst case we have to do with a system of zero angular
momentum. The electromagnetic disturbance is a
simple standing wave. Many components of the metric
tensor vanish when expressed in cylindrical polar coordi-
nates. ' Significantly more distinct components of g, &

have to be considered when the system has angular

momentum. "Particularly interesting is the case when

the disturbance is unidirectional. Then the angular
momentum of the system is of the order

angular momentum cVcR (c'/G)Rs. (13)

In the active region of a simple classical toroidal
electromagnetic geon the field strengths will be of the

'Frederick J. Ernst, Jr., "Cylindrically Symmetric Fields in
General Relativity, " Junior Independent Paper, Princeton, 5
May 1954 (unpublished).

"For examples of gravitational sources endowed with angular
momentum, see for example, G. E. Tauber, Ph. D. thesis, Uni-
versity of Minnesota, 1952 (unpublished),

order of magnitude b, where

PR (AR)'- Mc'. (14)

Consequently bDE, the order of magnitude of the
typical diGerence of potential between two sides of the
pencil of radiation, will have a universal value,

potential difference (Mc'/R) ' c'/G&

=3.49X10s4(gauss cm or electrostatic volts), (15)

enough to impart to a particle of electronic charge and
mass an energy greater than its rest energy by a factor
(e'/Gm')&. This factor is the root of the ratio of the
electric and gravitational forces between two electrons,
and has the value (4.17X10~)'*=2.04X10".

Through the symmetry axis of the torus pass a
typical meridian plane, and note the point in this plane
where it intersects the region of maximum field strength
in the torus. Then over a circle of radius DR centered
on this point the 6eld strength has values smaller than
the peak magnitude by a factor of only one or two
powers of two. At distances from the most active point
several times the magnitude AR, the held strengths
fall oG exponentially with a characteristic decay length
of the order of magnitude of X. This type of decay is
familiar from the study of the propagation of light along
the length of a long thin solid glass rod. The disturbance
in the space surrounding the rod also has a characteristic
decrement length of the order of X. In the case of the
geon we deal with a medium whose eGective refractive
index is nonuniform. The gravitational 6eM has fallen

oG substantially at distances from the symmetry center
of the geon of the order of magnitude of 2R and greater.
Consequently the electromagnetic disturbance suK-
ciently far from the geon 6nds itself once again in an
allowed region, where it can propagate normally. The
strength of the electromagnetic field outside is an ex-

ceedingly small fraction of the strength inside, the ap-
proximate value of this fraction being given by an
algebraic function of the large number R/)i=e multi-

plied by an approximately exponential factor of the
form e(—constant a).

The geon is thus not in principle an isolated entity.
The object in question, and every other classical geon
in a classical universe, are nothing but manifestations
of the same all pervading electromagnetic field. But
the field outside is so extremely small in comparison
with the fieM inside that for most purposes the geon

has the character of a well-de6ned body.
%hether the held outside the geon is an outgoing

wave or an incoming wave or a standing wave depends

upon the initial conditions. It will be most relevant to
consider here, as in most problems of physics, an ir-

reversible dissipation of energy. The external wave then

has no incoming component. It describes a continual

transport of energy —and mass —out of the geon. Ke
are faced with a purely classical analog to the Gamow-

(,ondon-Gurney theory of radioactive alpha decay.
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It seems appropriate to give the same name of radio-
active decay to the geon process, though for our present
purposes this process is to be regarded as having ab-
solutely no quantum character. Of course, were we
temporarily to abandon the ground of classical physics,
we would describe the emission process in the language
of quanta.

As a model showing the slow decay characteristic of
a relatively stable geon, one can consider a sphere of
highly transparent glass with a radius of the order of ten
wavelengths of light. A high-speed electron which
enters the sphere produces ions and excites electro-
magnetic disturbances including modes of vibration of
visible wavelength. Of many of these modes the energy
will leak out of the refractive index barrier quickly
because of the nearly normal incidence of the equivalent
ray system upon the air interface; but those described
by spherical harmonics of the highest order, and there-
fore represented by the most nearly tangential rays,
will be endowed with lives as long as 10 ' sec. The
exponential fall of the relevant modes in the air just
outside the sphere "phosphor" will be similar to the
behavior in the air above a totally internally reQecting
prism. In that case the decay continues indeGnitely with
distance; but in the spherical case the decay ceases, and
free oscillation commences, at a distance comparable to
the radius of curvature of the surface.

As the geon slowly loses mass, it shrinks in accordance
with the similarity law for these bodies. At the same
time the circular frequency, co, of the emerging electro-
magnetic disturbances goes up in inverse proportion
to the radius and mass. Consequently the ratio of the
loss per unit time to what remains at that time is not a
constant, as in the usual theory of radioactive decay,
but is proportional to the current frequency scale of
geon processes:

dM/M =dR/R = —d(u/a) = —nrudh. (16)

Here e is a dimensionless constant, the "attrition, " or
fractional loss of mass per radian of the electromagnetic
vibration. Integration of (16) gives

1=1/n&o;— (17)

the mass of the geon decreases linearly with time.
The negative sign distinguishes the time at which the
geon is observed to have the frequency ~ from the time
at which it collapses (quantum modifications in the
later stages of the decay process being overlooked).
Thus the reciprocal of the attrition measures the time
to collapse in units of the present time per radian.

What has been said here refers to a geon energized
by only a single mode of electromagnetic vibration.
When several disturbances are present of different
frequencies, they will in general leak out at different
rates. Moreover, nonstatic components of the gravita-
tional Geld will furnish a weak nonlinear coupling be-
tween the modes, so that relative amplitudes and fre-

= ( *) ' " p( *)d *.
~ neighborhood

of co+

(19)

In the case of a geon energized by several modes of
electromagnetic vibration, the frequencies and ampli-
tudes of which are continually changing by reason of
their mutual interaction, the relevant quantity for the
description of the slow leakage of energy out of the
system is the attritivity.

When a simple monochromatic toroidal geon leaks
an amount of radiation energy dE, then its reduced
action, /=action/2~, decreases by an amount that
satisfies the general relation

c'dM =dZ= (udg. (20)

quencies on this account also will change gradually
with time. The evolution of the system in time is no
longer describable as a simple scale transformation.
Now it is appropriate to divide up the output of energy,
or mass, dM, in the elementary time interval dt, into
elementary parts, ad%, each of which refers to that
part of the loss which occurs in a speciGc interval of
circular frequency, Ro.

(bdM)/M = Pb(o—dt.

Here p is again a dimensionless quantity, the "attri-
tivity" (attrition constant) of the geon. The attritivity
is of course a function of the frequency in question;
or more conveniently, it depends on the dimensionless
measure of frequency, ar~=MGa&/c'. The fact that a
general geon changes the form of its spectral output as
time advances prevents us in no way from considering
two geons of quite distinct sizes, one of which can be
obtained from the other by a simple scale transforma-
tion. Both geons then have the same dimensionless
attritivity function, p =p(&u*).

The frequency of the outgoing radiation, even in the
case of a simple unimodal geon, can only be defined
within a latitude of the order her mo. An analysis of
the external electromagnetic Geld in time, and an
analysis in terms of frequency, stand to each other in
principle in a mutually exclusive relation. It is only
the smallness of n that allows us to speak approxi-
mately of the frequency as a function of time. This we
do when we go beyond simple transliteration of the
function 8=constant cosL —n 'ln( —t)j to the form
8= constant cosfcomdt, and give co(t) = —1/nt the name
of "frequency. " On this account it is really optional
whether the emission spectrum is regarded to be a
sharp line of slowly changing frequency, or to be a
continuous spectrum concentrated within a region of
the order n about a center of gravity of gradually shift-
ing location. In this sense we have a choice whether to
describe the decay of a unimodal geon. by way of a
single number, the attrition, e, or by way of an attri-
tivity function, p(~*):



or
Gd (M') acdg,

M a'(cg/G) '. (22)

Thus it is not the mass values themselves, but the
squares of the mass values, that are separated in pro-
portion to the intervals of action.

From the mass value (22) follow at once the Eqs. (5)
of the introduction for the other physical quantities of
the geon as a function of action.

3. THE IDEALIZED SPHERICAL GEON

The simple toroidal geon forms the most elementary
object of geon theory much as a simple circular orbit
constitutes the first concept of planetary theory. But
the simplest physics does not go in the geon case with the
simplest mathematics. Toroidal geometry and general
relativistic field equations each have their complica-
tions, and the mixture requires some time for its an-
alysis. ' On this account it is natural to look for a geon
with spherical symmetry: a rotation-invariant gravita-
tional field, and a spherically symmetric distribution of
gravitational source strength, or of stress-energy.
Temporarily to adopt a photon point of view, we
recognize that each photon orbit is a great circle. There-
for spherical symmetry in the density and Aux of
photons requires spherical symmetry in the distribution
of their angular momentum vectors.

The different elementary disturbances must have
diGerent frequencies. If all had the same frequency,
they would add coherently to form a single mode of
distribution of electromagnetic field strength. But
there is no such thing as a nonzero source-free spheri-
cally symmetrical electromagnetic Geld disturbance,
Incoherence is essential for sphericity. Let the distribu-
tion of field strength be symbolized by the expression

S=QE,(x) sin(cv, t+8,),
and the distribution of stress-energy by

h2=+ h;(x) hI, (x) sin(co, t+8;) sin((ojt+b~).

Then distinction of frequencies and randomness of
phases is essential to justify the approximation

h'=-' Q, h,2(x).

When the decrease becomes substantial in comparison
with the original values, then the frequency co changes
substantially. On this account we cannot apply to a
geon the special relation, E=g&u, valid for a harmonic
oscillator. Instead, we can note that the circular fre-
quency of the electromagnetic disturbance rises in
inverse proportion, co c/X c/(E/a), as the mass and
radius of the system diminish:

GM/c' R ac/co. (21)

Multiplying together from (20) and (21) the left- and
right-hand sides, respectively, we find

The distribution of stress-energy being thus approxi-
mately static, it can also be made spherically symmetri-
cal by properly coordinated choices of the elementary
solutions h, (x).

A geon spherically symmetric in the sense just de-
scribed is in principle unstable with respect to trans-
formation into a toroidal geon. Tolman showed long
ago' that two nearly parallel pencils of light attract
gravitationally with twice the strength one might have
thought when their propagation vectors are oppositely
directed, and when similarly directed attract not at all.
Consequently a system of randomly oriented circular
rays of light will drop to a state of greater stability when
half of the angular momentum vectors orient themselves
parallel, half antiparallel, to a certain direction in
space. Then the number of attractive bonds between
orbits will be maximized, and the nullity of the angular
momentum will be conserved. Simultaneously there will

occur a readjustment in the orbital radii.
The spherical geon, though thus unstable, is in un-

stable eqlilibrilnz. We can compare it to a pendulum
standing the wrong way up. To envisage such a situa-
tion would not be of much use if one had it in mind to
discuss the oscillations of the pendulum about its point
of support, but is quite acceptable if our aim is to dis-
cuss the rigidity of the pendulum rod. Likewise the
periods of the various electromagnetic modes of vibra-
tion of the geon must be judged very short in compari-
son with the time of turnover of the system into a
toroidal system. In this sense we can talk of the proper-
ties of the spherical geon in a reasonably well defined
way. It is not necessary to treat all questions of geon
stability in order to undertake the problem of the
structure of a spherical geon.

The assumed sphericity of the system might appear
to be a self-contradictory notion. Spherical symmetry
of the static gravitational field, or of the effective re-
fractive index, implies degeneracy of the modes of
electromagnetic Geld oscillation. However, identity of
frequency of the various modes, h, (x), will rule out the
incoherence of the various disturbances so necessary
for a spherically uniform mass distribution. Two
factors allow us to avoid this degeneracy: slight diBer-
ences in the scale of the excited modes, and slight de-

partures from spherical symmetry. We consider a dis-

turbance with no radial nodes, and characterize it by
the order, 3, of the relevant spherical harmonic, and by
the azimuthal index number a, of this spherical har-
monic. The mode of azimuthal index a=l is concen-
trated in a toroidal region of major radius E lX and
minor radius hR /'X. The angular dependence of the
intensity, for example, shows itself simply in the
.expression

constant
~

P~'" (8)e"~
~

2= sin"8
= (1—cos'8) '= P1—(60)'1'=' exp/ —(t'*&M)'g,

which falls to (1/e)th of its value in a distance
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FIG. 2. Case of simple idealized spherical geon; distance de-
pendence of factors in the differential equation for the electro-
magnetic vector potential,

d'R/dr*'+ )fP—l (i+1)e"/r'gR =0.

The proper solution, R, of lowest circular frequency, 0/c, for a
given high order of spherical harmonic, /, has the qualitative be-
havior indicated by the dotted line in the diagram. This solution
rises exponentially with r in region I, has a single maximum in
region II, falls off exponentially in region III, and in region IV
oscillates with a very small amplitude (leakage wave). There
exist also solutions of the same order, t, but of higher frequency, 0,
corresponding to a higher position for the horizontal line in the
figure. The square of the wave number is represented by the dis-
tance measured positively upwards from the curve to the hori-
zontal line. An increase of i*=0(1+1)]&and of 0 by the same
factor leaves all turning points unchanged. However, the height
of the barrier against leakage is increased as l*', so that the ex-
ponent of the penetration factor is proportional to l*. The size of
the active region is very small on the scale of the diagram, being
proportional only to P&; hence the enlargement of this region,
presented more in detail in Fig. 3. In the present figure the left-
hand section of the curve up to I= b =: -', is given by the ex ression
b'/Ns& and the right-hand region by (1/zP)L1 —b(1—b'/e) .

DR= 868 R/lI, measured angularwise. Radialwise let
us consider a fixed and pre-existing metric (Fig. 2).
Then for each angular order of 3 there exists a minimum
circular frequency, co=cQ&, ;„, such that the corre-
sponding mode shows only a single radial maximum in

the active region. For diferent l's the maxima overlap
one another. Relative to the coordinate, r=E, of this
maximum, the quantity 1/0—=t has a value of the order
of R/E. The width of the region of maximum activity
is of the order of Rl)tI IIX E/fI, as follows by simple

JWKB analysis from the circumstance that the square
of the wave number changes linearly with departure
from the point of maximum wave number with a slope,
d(wave number)'/dr, of the order of 0'/E P/R'. Thus a
sequence of / values yields a family of modes, of which
the stress-energy is all concentrated in the same region,
r=E. To have the spatial spread of energy also nearly
the same for all modes, we have only to ask that the

range, hl, of the orders of the activated modes should

not exceed some reasonable fraction of / itself. As the
other factor freeing the oscillations from degeneracy we

must admit some departure of the average gravitational
Geld from exact spherical symmetry. A slight ellipticity
will split up into 1+1 separate frequencies the other-
wise (21+1)-fold degenerate vibrations of order /.

Counting together both possibilities at our disposal,

we have of the. order of P modes with distinct frequen-
cies. On the other hand, to obtain a distribution of
energy that is completely symmetric in angle it is
sufficient to add the squares of the (21+1) normalized
spherical harmonics of order l, according to the well-
known completeness theorem of spherical harmonics.
Moreover, we do not demand for the geon a completely
smooth distribution of the energy over the surface, for
the long-range character of the law of gravitation
smooths out in the field the minor irregularities that
were present in the mass density. Consequently we can
actually do with disturbances having considerably
fewer than 23+1 values of the azimuthal index, a.
Comparing 21+1 with P, we conclude that we have
more than adequate margin to obtain the postulated
uniformity of energy distribution with nondegenerate
modes.

For the purposes of calculations it is justifiable to
idealize the picture we have just formed. The radial
distribution of energy does not diGer importantly from
one of the excited modes to another; consequently we
treat the radial factors in all the distributions as iden-
tical to that calculated for a single fixed value of l.
The total angular distribution is nearly uniform, so
we take it to be exactly uniform; i.e., we take the oscil-
lations of the 21+1 values of a belonging to the given
order, /, as normalized to identical energy contents.
The only consequence of exact spherical symmetry
that we do not accept is coherence of the 2l+1 modes.
In the actual "spherical" geon, we know that the fre-
quencies are distinct; so in the idealized spherical geon,
where legalistically the frequencies come out identical,
we disregard this circumstance, and add energy densi-
ties according to the law for incoherent disturbances.

To proceed to details, we make Schwarzschild's
choice of polar coordinate system, r, 8, p, such that
elementary distances at right angles to the radius
vector are represented by the usual geometrical formula.
Then dr gives proper distances, ds, in the radial direc-
tion only after correction by a certain r-dependent
factor. Likewise dt, or rather the cotime, dT=cdt, gives
correctly intervals of proper cotime, d7, only after
multiplication by another r-dependent factor. Both
correction factors are independent of T because the
gravitational Geld is static. One factor is the reciprocal
of the other in the well-known Schwarzschild solution
for the metric about a point mass, but no such simple
relation holds in the interior of an object with the dis-
tributed mass of a geon:

(ds)'= —(dr)'= g sdx~dx&= e"&'& (dr)'
+r'[(d8)'+ (sin8d y)'J —e""(dT)' (23)

As solution of the electromagnetic field equations it is
reasonable to look for a periodic function of time,
multiplied by a function of r, multiplied by a func-
tion of angle generated from the spherical harmonic
(sin8)' exp(ilq). Such a disturbance is easily visualized
in terms of a toroidal concentration of electromagnetic
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Z„Fr"=—e "(r sin8) 'BA,/BT)
Hg-F" ~ =—e—"(r sin8) —'BA „/Br,
H„F'& = (r'sin8) 'BA /B8 (25)

In principle we should consider modes which di6'er

from (25) by the interchange of the role of electric and
magnetic vectors. To do so would make no difference
in the final averaged energy and stress densities, for
divergence-free relativity is, despite its appearance,
completely symmetric between electricity and mag-
netism. Consequently we do not need to sum over
polarizations. We deal with a standing wave with Row

of energy back and forth from north to south pole of
the sphere, concentrated in the present case in an active
region between E and F+DF. We have the superposi-
tion of a number of toroidal disturbances, each passing
through the north and south poles, with all azimuths of
orientation of the tori weighted equally. In line with
this picture, A„ is stronger in the region of overlap
near the poles than it is at the equator.

Of the electromagnetic field equation (3), three com-
ponents unite in saying that A „should be independent
of p, and in saying only this: while the remaining, or p,
component, makes the statement

(B/Br) expr () —X)/27(sin8) 'BA „/Br
+(B/B8) expt (r+'A)/27(r' sin8) 'BA „/B8

—exp[ —() —X)/27(sin8) 'B2A „/BT'=0,

energy. The other elementary disturbances that we need
to give a spherically symmetric distribution of energy
are readily generated from this mode of vibration by
the operations of the rotation group. This circumstance
means that we can consider as starting point one mode
as well as another. Mathematically simplest is not the
choice just named, with a = 1, but the spherical harmonic
azimuthal index a=0, for in this case the dependence
upon q disappears. Thus we look for a solution of the
form

A„=Ay=AT =0;
A „=(sinQT)R(r) sin8(d/d8)P)(cos8), (24)

where either group theory or the relevant differential
equation tells us at once the form of the angular factor.
The electric field points always in the p direction and
the magnetic field and the Poynting vector lie always in
the meridian plane:

&T"...) ' -d-dp.

This result cannot depend upon 0 and q, because of the
spherical symmetry. Consequently the point of evalua-
tion can be taken to lie at the original location of the
north pole, 8=0. Here the energy density of disturbance
D is the same as was the energy density of disturbance I
at the polar angle 8=n. Consequently (27) reduces to
the form

(Tr') = (X/2) (Tr'(i)) sin8d8. (28)

Similarly we obtain for the radial tension

(T„")= (cV/2) ~t (T,"&i)) sin8d8. (29)

In evaluating the tangential components of the tension
we have to proceed more carefully, for the definition of
the relevant directions divers between the original
mode and the rotated modes. Consequently we have to
employ the standard rules for transformation of the
components of a tensor. Fortunately all the transforma-
tions are carried out in the local tangent space, and the
rules for Cartesian tensors apply:

(Tq') = (X/4m) L(Te') cosp cosp
J

+(Tg"&i)+T„'ii)) sinp cosp

+(T„"&z))sinP sinP7 sinndndP

frequencies excited, all of about the same strength and
properties as mode I, but diGering from it in orientation.
Let the distribution of stress, momentum, a'nd energy
in a typical one of these disturbances be visualized by
mapping out on a rigid sphere the distribution of mode I,
and then rotating the north pole of this sphere to an
angle o. with respect to its original position, and to an
azimuth P. Thus (T,~&D)), for a typical disturbance, D,
is a tensor function of r, 0, and q, the functional de-
pendence being completely known in principle as soon
as we know the angles n and P associated with the mode
D. Let us sum the values at a typical point, 0, p, of the
energy density over all N modes, obtaining

whence the radial wave equation

d'8/dr*'+ LQ' —l (l+ l) e"/r'7R =0.

Here dr* is an abbreviation for

(26) = (&/4) t (Tg &i)+T~"&r)) sin8d8 (30).
dr*= LexpP. —) )/27dr.

Let us imagine that we have calculated the time-
average value, (T,"ii)), of the electromagnetic stress-
momentum-energy tensor of the disturbance under
discussion: mode number I. This tensor depends only
On r and |I.Let there be altogether cV modes of diBerent

The expression for (T„&) is identical to this. All other
components of the total stress-energy tensor have
mixed indices and must vanish on account of one or
another symmetry argument. Thus (T&r) and (T„r)
describe the tangential Row of energy, which has to
vanish; the shears (T,'), (T,"), (Tg&) must be null; and
the component (T,r) represents the net radial flow of



energy, which in a static situation must also be zero.
Whether the geon leaks no energy at all, or only a very
little energy, depends upon whether we impose upon
the electromagnetic held at large distances the require-
ment that it be a standing wave, or a pure outgoing
wave. Which choice we make has negligible eGect upon
the structure of the geon. We already made our choice
when we took the circular frequency, cQ, to be real and
assumed the product representation (24) of the vector
potential. From the radial equation (26) it then follows
automatically that R(r) must represent a standing wave,
and that the radial flux must vanish. In summary, we
have for the nonzero components of the average value
of the total electromagnetic stress-energy tensor (2)
the following values:

(T;)= (1V/2) t sin0d0(Sm. ) '({rp}—{Ty) {0q})—

=[«] [T~] —[0~]—
(Te')=(T„&)=(1V/2)) sin0d8(Sm) '{0p)

(Try)= (1V/2) sin8d8(8m) '({Tq}—{rp) —{0y))

= [T~]-[r~]-[«]. (31a)

Having an equation for the influence of gravitation
upon the electromagnetic disturbance (26), and expres-
sions (31) for the stress-energy density of this dis-

turbance, we can now complete the circle of the self-
consistent system and write down the equations

Here we used as abbreviations:

{rq&)=—(F«F"&)=e ~(r sin8) '((BA „/Br)') (HP);

{0y)=(Fe„F'&)=(r'sin8) '((BA /08)') (H').

{Trp)—= (Fy„Fr")= e "(r sin0) '—
X ((&&,/0T)')- —(Z 2)

and

]= (1V/16~)~t { ) sin0d8; thus

[ry]= (1V/167r)l(l+1)(2l+1) 'e "(dR/rdr)';

[0q]= (1V/167r)P(l+1)'(2l+1) '(R/r')';

[Tq]= —(1V/16m)l(l+1) (2l+1) 'e "(QR/r)'. (31b)

e ~(r 'dv/dr+r ') —r 2=[l(l+1)G1V/2(2l+1)c4]
X [e "(dR/ydr) 2+e v(QR—/y) 2 l(l+ 1)(R/y2)2]. (34)

e &(r ' r'd&/dr) r—'= [l(l+1)G—1V/2(2l+1)c4]
X[—e "(dR/rdr)' —e "(QR/r)' —l(l+1) (R/y2)2]. (35)

The scale invariance of classical geon theory shows
itself at once. For geons of the same index /, but
diferent sizes and masses and therefore different circu-
lar frequencies cQ, we introduce the same dimensionless
measure of radial coordinate, p=Qr. Also we define the
dimensionless measure of potential

f(p) = [l(l+1)GiV/2(2l+1)c4]'*QR(r). (36)

Furthermore we recall that the Schwarzschild solution
for the field of a point mass has the form e—"=e"
= 1—2r 'Lo, where Lo GM/c' is a measure——of the mass
of the object. We have to expect a similar result for the
metric around the geon at distances where the elec-
tromagnetic field has fallen exponentially to negligible
values, but where the gravitational field may be still
quite strong. Consequently we shall write

e
—~= 1—2p

—'I (p),
e"+"—=P (p)

e"=
I

1—2p 'L(p)]Q'(p) (37)

Here the dimensionless measure, L(p), of mass inside
the radius r is nearly zero from p=0 to a value of p
close to the inner surface of the active region of the
geon, a value of the order of

p P—=[l(l+1)]&;

gives T4' a sign opposite to T44), we have"

G "=e "(r 'dv/dr+r ') r'—
Gtt~=G~~= ', e —"[d'v/dr'+ '(d—v/dr)'+r 'dv/dr

r'—d'h/dr ,' (d—v/—dr) (dX/dr) ],
G r r e "—(—r —' r —'d—X/—dr) r—
The field equation G&'= (SmG/c4)Tq' is identical with
the equation for G„& and can be disregarded, for it
says nothing in addition to the equations for G&~ and
G„".One has only to differentiate with respect to r the
equation for G„", add to it a proper linear combination
of the equations for G„"and G&~, and employ the wave
equation (26) to get the content of the equation for G&'.
This result only says that the tangential tensions in
a spherical shell have to be balanced by the radial
pressure gradient. We therefore end up with two equa-
tions of the first order for the two unknown functions
X (=twice the number of napiers of change of scale in
radial distances) and v (= twice the number of napiers of
change of scale in time measurements):

G,A;= (SAG/c4) T,I, (32) then L (p) rises quickly over a range of p of the order

for the determination of the gravitational potentials.
In the mixed covariant-contravariant notation (which

"See for example L. Landau and E. Lifschitz, The Classical
Theory of Fields, translated by M. Hamermesh {Addison-Wesley
Press, Cambridge, 1951).
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I.=bl.g,

f= &'fi (42)

Now g„„=e" is already so normalized, according to
Eq. (37), that it goes over to the Euclidean value of 1

at very large distances. Consequently we wish the
corresponding cotime factor, e", also to go to unity.
Another value is perfectly possible, but it would corre-
spond to an unhappy choice for the value of the speed
of light. Thus, according to (37), we want the factor

Q to go to unity at large distances. This normalization
means, according to the law (41) of increase of Q, that

Q must start off at the origin with a value less than
I. But how much less we do not know until we have
integrated the differential equation. Accordingly, we

distinguish between the solution Q, L, f that we want
and the solution Qi, Li, f, that we get from our numeri-

cal integration of the equations of the self-consistent
field. In both solutions the mass factor, I.or I.j, and the
field factor, f or fi, start at zero and are well behaved
at large distances. In the former Q starts at a value
less than one and rises to unity; in the latter we start,
for convenience, at Qi ——1 and arrive at large distances
at a value greater than one. This value then defines
the scale factor required in (42) to go from the pre-
liminary solution to the desired solution:

&=1/Q ( ) '
Q (0) =1. (43)

In preparing for the numerical integration of the
geon equations we note that the behavior of the solu-

hp P&; and then L(p) stays essentially constant from
this point to very large distances. The correction factor,
Q, is likewise essentially constant inside and outside
the geon, and only makes a sudden rise in the active
region. In these notations the geon is described by the
self-consistent solution of three equations: the wave
equation

d'f/dp* + t 1—(PQ/p) (1—2L/p) jf=0, (38)

where dp* is an abbreviation for

dp*=Q '(1—2I./p) 'dp. (39)

and the two Geld equations, of which the first gives the
change of mass with distance:

dLldp*= (1/2Q)Lf'+(dfldp')'
+ (l*Qflp)'(1 —2L/p)3 (40)

and the second gives the variation of the factor Q:

dQ/dp*= ( 2L) 0—'+ (dfldp*)'3 (41)

It is an interesting feature of the system of equations
(38), (40), (41) that they still permit the possibility
of a change of scale of distance without a change of form:

P = 6Py)

Q=bQi

P =P&s

tions near the origin is obvious and not very interesting

f Pp i+1+. . .
Li=2 '(l+1)F2pi2'+'+

Qi —1+(2l)—i(l+1)2P2pi2i+. . . (44)

What is important is the circumstance that there is no
adjustable constant except the starting value of the
field strength. This field strength, or the constant E,
must be so chosen as to give the geon stability. Ke have
to do with an eigenvalue, but an eigenvalue of a non-
linear system of equations.

The key to the eigenvalue problem is the wave
equation (38). Where the expression in square brackets
is positive, there the solution is oscillatory; where it is
negative, there the solution rises or falls approximately
exponentially. This expression has the following be-
havior when the factor F in the field strength has been
chosen to give the geon stability. (1) At distances less
than those that characterize the active region of the
geon, Li=.'0, Qi='. 1, and the bracket has the approximate
form L1—(P/pi)'$. Thus, in moving out from pi =0 to pi
near P, we have until the very end a strongly negative
bracket, and therefore a solution that rises approxi-
mately exponentially. Consequently we have yet to
arrive at the zone of maximum activity. (2) In the
active zone near P~=l' there occurs a quick rise in

Qi and Li, with very little change in the radial coordi-
nate. When the field strength is properly chosen, these
changes that follow from (40) and (41) are such that
the square bracket is positive over a limited range of p.
Thus f rises to a maximum and starts to fall off ex-
ponentially as P& passes out of the region of oscillation,
provided that the field strength is great enough to give
the geon the requisite mass for stability in a single
wave zone. (3) For values of pi just slightly larger than
l*, the mass factor Li and the quantity Qi have attained
essentially constant values. These values are such that
(1—2Li/l*) is much less than unity, but Qi2 is much
greater than unity, and the product of these two factors
also exceeds unity by a considerable margin. Moreover,
as pi increases, the factor (1—2Li/pi) evidently rises
rapidly percentagewise at first, then levels off to a
saturation value. The factor (Qil*/pi)', on the other
hand, falls oG in a more nearly uniform way. Conse-
quently the product of these two factors rises as we
leave the active zone behind, reaches a maximum when
the increase, P~

—P, of the radial coordinate is some
substantial fraction of P, then falls oB and passes
through the value unity for p&

—P of the order of /*

(Fig. 2). The product of factors under discussion in the
present classical problem evidently plays the part of
the potential in a typical problem of quantum mechan-
ics. The analogy with the theory of alpha decay is
complete even to topological identity of the two forms
of barrier to be penetrated. In the barrier in the present
problem the field factor f of an eigenfunction falls off
exponentially by a number of napiers of the order of /"'.
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(4) With further increase of the radial coordinate be-
yond the point of emergence from the barrier, oscilla-
tion sets in. The amplitude is of course exceedingly
small compared to the amplitude inside the geon.
The wavelength is at 6rst long but eventually settles
down to the value appropriate to a disturbance of the
given frequency in f'ree space:

f/constant=.
'

sin(p +5)= sin(Qi(~) pi+8)
=sin(p+5) =sin(Or+8). (45)

To go further, we seem to have to obtain for each
conceivable value of the index number l a self con-
sistent numerical solution of three nonlinear equations.
However, there exists in addition to the exact scaling
law already exploited another and distinct scaling law,
valid asymptotically for large I*, which reduces all
these problems to a single one. Similar scaling laws are
familiar from other parts of mathematical physics. In
quantum mechanics one reduces all hydrogenic atoms
to one problem by appropriate choice of scale of length.
However, then the radial wave function for the lowest
state for each value of / has a diGerent mathematical
expression, {[(1+1)/2]~'+'(2l+2)!I '*p'exp[ —p/(1+1)].
Yet simple analysis of the behavior of this function in
the neighborhood of its maximum, p=l(1+1), shows
that it has a form,

—[ml(1+1)'] l exp[ —(Dp)'/2l(l+1)']
which is the same up to a scale change for all values of l.
A similar scaling principle applies to the geon, with two
differences: the'reduced field factor, f, de onsot ha've

the form of a harmonic oscillator wave function; and
the relevant length variable is not x= Dp/l1(l+1), as in
the hydrogenic problem, but

*=(p*—t*)t*-~. (46)

The whole of the active region of the geon will be
described by a range of x of the order of unity.

To bring this similarity transformation into evidence,
we consider large values of /*, and expand the relevant
quantities in inverse powers of /*':

dp*=t*~Cx,

pi=1*+1*'i0(x)+
1. =l9, (x}+V*X (x)+VV, (x)+ ~

Q.=[1/k(»+1 -1~.(*)+~*-:&.(*)+
fi l*&q (x)+ q, (——x)+P 'q2(x)+

[1—(Qi1*/pl)'(1 —21-i/pi)] =1* *j(*)k(x)+ . (47)

Inserting these expressions into the system of equations
(38), (40), (41), and identifying coeflicients of like
powers of P, we find from the lowest relevant terms the
wave equation

d'q/dx'+ j(x)k(x) p(x) =0, (48)

and. the two 6eld equations:

dk/dr+ y'= 0, (49)

dj/dx= 3—[1+(d p/dx)']/k'. (50)

'i

If we can 6nd by integration of these three equations
the reduced field factor p(x) and the supplementary
time scale correction factor k(x) and the reduced oscil-
lation factor j(x)k(x), then we can determine the other
leading terms in expressions (47) by simple calculation:

dro/dx = k(x),

Xo ——(1—k')/2. (51)

thus,
d'rp/dx'= 2xp.

q =.
'

A (—2x)—l exp[ —(—2x)'*/3].

(52)

(53)

Here the constant 2, the "amplitude factor, " is the sole
quantity at our disposal in selecting the character of
the solution of (48), (49), (50). If 2 is chosen very small
in comparison with unity, then (49) says that k(x)
stays close to 1 for a long range of x, and (50) says that
j(x) continues to behave nearly as 2x for a considerable
range of positive values of x. There likewise (52) remains
a good approximation, and the solution, essentially

We seek a solution of (48), (49), and (50) with the
following properties. The field factor p(x) tends to zero
both for large positive x and for large negative x. The
contraction factor k(x) is unity for large negative x,
and falls in the active region near x=0, and for large
positive x approaches a value which is less than (1/3)'*
=0.577 but still positive. The quantity j(x) is very
large and negative for large negative x. It rises with
increasing x with a positive slope of two until x reaches
the vicinity of the active region. There j succeeds in
becoming positive for a limited range of x in the neigh-
borhood of x=0. For larger x, the slope dj/dx ap-
proaches the negative value 3—k '(~). Thus j falls
o8 again to —. The oscillation &,ctor, the product
j(x)k(x), is positive in only a limited range of x.

There exist a number of solutions having the desired
behavior, distinguished from one another by an integer,
s, which represents the sum of the number of maxima
and minima in the field factor, q(x), in the active
region. This integer has the value one for the simplest
type of idealized spherical geon. Higher values of s
also represent physically acceptable geons. We make
the choice between one solution and another when in the
integration of the equations we pick one starting mag-
nitude of p(x) or another. The solution s= 1 is charac-
terized by the largest field strength, for in one-half
wave enough energy and mass has to accumulate to
hold the geon fogether. A comparable amount of mass
belongs to a geon of higher s, but the energy is dis-
tributed over a larger number of half waves and on this
account the concentration of energy and the field
strength are weaker.

We can summarize the eigenvalue characteristics of
our system of equations as follows. Ke accept that for
large negative x, the factors j and k have the form
k(x)=: 1 and j(x)=:2x, and that p(x) is approximately
the exponentially rising solution of
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jp= —8. (56)

Figure 3 presents the results of the integrations. The
6rst eigenvalue was found to lie between those ampli-
tude factors, A, that correspond to initial values, at
x= —4, between pp=1.03000X10 ' and pp=1.03125
&(10 '. The active region (jk)0) did not begin until
x=4.05, and reached only to x=6.12. The 6eld factor,
q (x), reached a peak value of 0.59 for x about equal to
5.1. The scale factor, k(x), approached an asymptotic
value, k(~), of approximately 0.33.

These curves and numbers give us essentially all the
information we need to determine the structure of a
simple idealized spherical geon with only one maximum,
s= 1, in the electromagnetic potential and with number
of nodes over the surface equal to any arbitrary large
number /. Thus, having chosen an 1, we calculate
P=[l(l+1)]&. This quantity represents the approxi-
mate radial coordinate, pg, of the active zone. Then,
from our curves and Eqs. (47) and (51) we find the
relation between the dimensionless measures of distance,
p~, of mass out to a given distance, I.~, of metric correc-
tion factor, Q~, and of potential, f~. In particular
we have for the asymptotic value of Q& the value
1/b=:1/0. 33 and for the asymptotic value of L& the
value L~——P(1—b')/2=: 0.45P. Next, we make the scale
change of Eqs. (42) and (43) in order to have a metric

A. 8k', +40

8k, ~-(~iai(y, + y )

k( = 8k(~+kp

81~ e sg-2g(k( ~ko) '[I+(8pka/g) ]
~

j) Sjq~+ jp

8$~ ~ 8$k -g j) k,

FIG. 4. Flour. diagram of numerical integration. In the last
term in the last equation there should appear —and did appear
in the numerical calculations —a factor &1.

tion and first proper value. Thanks are due to Mr.
Arthur Komar for checking the algebra and to Mr.
Robert Goerss for carrying out the computations on an
International Business Machines card-programmed
electronic calculator. The logical scheme of the integra-
tion is outlined in Fig. 4, where each line symbolizes a
successive stage in the calculation, and where d repre-
sents the size, 0.05, of the interval of x used between
one step and the next. The integration was started at
x= —4 with values derived from the asymptotic
formula (53):

q 0= q (—4) =arbitrary,

~v;=8"v p~,

kp
——1,

The mass is
M=: 0 15c'l*/. GQ (58)

Let an observer far from the geon have a clock that
flashes every second, and let an identical clock be
placed at the center of the geon. The Gashes of light
from this second clock will reach the observer, not
every second, but about every b '=: (0.33) '=3
seconds.

The mass, circular frequency, and radius of the
spherical geon can be expressed in terms of the reduced
action, g(=action/2~), by way of the relation

thus:
c'dM = c()dg,

M=: 0.54 (Pgc/G) l;
cQ=: 0.27 (Pc'/Gg));
Z=:1.2(PGg/c') ~.

(59)

(60)

The root-mean-square value of the electric field, aver-
aged with respect to time and with respect to polar
coordinate over a sphere of that radius r which goes
with the dimensionless coordinate x is,

E, ,= (—Sm[Tyj)'= (c'f'e "/Gr')j'
=c'()G &b iP *y(x)
= (c'/gG') 'P '~'[(1—b') &/2b7p(x)

with a peak value

Ep„k, ,=0.461""c'/G&M.

4. TRANSFORMATIONS AND INTERACTIONS OF
PURE ELECTROMAGNETIC GEONS

Energy leaks out of a simple idealized spherical geon
at a rate easily estimated by the methods of the theory
of alpha decay. Were the refractive index barrier re-
moved, the energy would disappear from its present
region of concentration in a time of the order of one
vibration period. The attrition, e, in the equation of
definition

dM/M = ncudt, — (61)

that approaches the Euclidean values at large distances.
The scale factor is b=:0.33. In the new dimensionless
units the radial coordinate of the active zone is about
0 33.P T.he metric correction factor Q has the value
b=:0.33 in the inner inactive part of the geon, rises in
the active zone, and has outside a value 1.00. The
corresponding new dimensionless measure of mass, I.,
is essentially zero in the inner inactive region, and
outside the active region has the value L=: (b/2) (1—b') P
=0.151*.Finally, we transform to cgs units of measure
via (36) and (37) and the related discussion. A clock
ticks at the center of the geon at only about 33 percent
of the rate of an identical clock far away from the geon.
In terms of the frequency, Qc, of electromagnetic radia-
tion observed to come from the geon, the radius of the
active zone of the system is described by a coordinate

r =E=: 0.33P/Q.
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would have a value of the order of unity. Owing to the
presence of the barrier, the attrition is cut down to a
value of the order

n exp( —2P), (62)

where I' is the barrier penetration integral determined

by Kq. (38):

~= ~L(d'f!d*p')!f]'dp*

L
—1+(PQ/p)'(1 —2L/p) 3'*

XQ '(1—21./p) 'dp. (63)

The integral extends from the outer edge of the active
zone to the point of reemergence from the barrier. The
relevant range in p is of the order of l*=[l(l+1)j'*,

whereas the thickness of the active zone is only of the
order hp P . For this reason it is legitimate to use
for Q and I. in the evaluation of the integral (63) the
constant values that apply outside the active zone. The
error made in the penetration exponent by this approxi-
mation will be only of the order of P', whereas the ex-

ponent itself will be of the order P. Thus in accordance
with the results at the end of the last section we write

=1
~~inner Plower limit

L= (b/2) (1—b')P=: 0.15P, (64)

and find. by algebraic examination of the roots of the
bracket in (63) that the outer turning point is

Qfo~~-= p~pp. g lj~jt:= l*{—(b/2)+ I 1—(3b'/4) 7'}
BP=: 0.79P. —(65)

leakage process as single photon emission. In addition
to such processes there will occur what can temporarily
describe as double photon processes (Fig. 5): two
quanta moving tangenially collide and go oG in two
new directions, not far from parallel or antiparallel to
the radius vector, and thus escape from the system
simultaneously. To follow the terminology of light rays
a little further, we can speak as is well known, of a
critical angle required for escape. For rays whose angle
of inclination, 0, to the radius vector is greater than this
critical amount, there exists a maximum distance to
which the ray can go before it falls back on the geon.
This maximum distance is obtained by calculating the
appropriate root of the equation

P' sin'8~ Pb (1—b')—1— — —1=0.
Q2p 2 nr

(68)

The quantity on the left-hand side of this equation
evaluated for the case sin8= 1, came into the argument
of the barrier penetration integral, another illustration
of the close connection between the Hamilton-jacobi
analysis of rays and the diGerential equation for waves.
It provides a simple interpretation of expression (68)
to think of l* sin8 as a measure of the angular momen-
tum of the ray: either a ray on the inside trying to get
ou't; or a ray coming from infinity and trying to get in.
The turning points for these two cases undergo merger
when we have zero not only for the left-hand side of
(68), but also for its derivative with respect to r This.
happens when

sine= (3'/2) b (1—b') =: 0.77 = sin50. 4', (69)

and the double root then lies at

The penetration integral has the value
r = (3t~/20) b(1 —b') =: 0.44P/Q, (70)

&& 'L1—(1—b') (b/&) j—1&'

X t 1—(1—b') (b/~) j 'dx

TABLE l. Leakage of radiation from simple idealized spherical
geons: illustrative examples. The last column gives the factor of
change of scale for a similarity transformation which leaves the
geon a classical object.

=0.760, (66)

where the variable of integration is x=p/P= Qr/P; and
the attrition has the rough value

n exp( —1.52P). (67)

Mass

Radial coordinate of
active zone (58)

Spherical harmonic
index l~ =I l(l+1))&

Geon I
104' g

1.67 X1014 cm

10

Geon II
1042 g

1.67 X10&4 cm

8.43 X10o

Scale
factor

x
Xzz

X1

As examples, .consider two simple idealized spherical
geons not very far—on a logarithmic scale—above the
limit where quantum effects come in by way of pair
production. I.et both have masses of 1042 gram and only
one-half wave of disturbance in the radial direction in
the active zone, but let the wavelength, and therefore
the thickness of this zone, have quite diGerent values in
the two cases, as indicated in Table I. It is evident from
the numbers given there that geons, even systems of the
same mass and radius, can have fantastically diferent
rates of radiation leakage.

To switch to quantum language, we can speak of the

Circular frequency of
emergent radia-
tion (57)

6.00 X10 4 rad/sec 5.06 X105 rad/sec X (1/I)

Wavelength outside 3.14 X10'4 cm

Approximate at tri-
tion (67)

2.5 X10 7

3.72 X10b cm

10 osvooooooo

Time to collapse as-
suming leakage only
and classical behavior
throughout

Rms electric field in
most active region
PEq. (60) Gj

Critical field for pair
production

212 years

4.66 X10«esu/cm 4.41 X10» esu/cm K (1/zz)

4.41X10»esu/cm 4.41X10» esu/cm a constant
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FIG. 5. Photon-photon collisions provide one of the mechanisms
for escape of energy from the active region of a geon. The same
mechanism is describable from the wave point of view in terms
of a coupling between otherwise independent modes of oscillation
of the electromagnetic Geld. The two sources of the nonlinear
coupling are virtual pair phenomena and the nonstatic parts
of the gravitational field.

that is, at the peak of the barrier in Fig. 2. This dis-
tance should be compared with impact parameter, or
distance of closest approach in the absence of gravita-
tional forces, of a photon with the same energy and
angular momentum:

impact parameter =P sin8/Q =0.770/Q. (71)

In contrast, the rays that hold the geon together have
in this sense an impact parameter equal to 1.000/Q,
and have the inner and outer turning points,

r=.
' 0.33'*/Q and r='. 0 79P/Q . (.72)

Rays with an impact parameter less than 0.77 P/Q have
a component of motion in the radial direction suKciently
great to pass freely from the inner region to the outer
region.

Everything just stated in ray language can be re-

phrased more appropriately in terms of waves. In the
quasi-static gravitational field of force of the geon we

have already found a solution of the wave equation
for the electromagnetic potential which has only one
maximum in the active region, varies with angle as a
spherical harmonic of order /=:P ——'„has a proper cir-
cular frequency cQ. In addition to waves of such a kind
excited to a strength sufhcient to hold the geon together,
we can have proper solutions of weak amplitude with a
great variety of values for the number, s, of radial
maxima and minima in the active region and of values
of the indices t and m of the spherical harmonic. A

typical disturbance of this type will be characterized by
a proper value, Q,, ~, and an amplitude factor A, , ~,

Let the wavelength of this mode be small compared to
the dimensions of the geon. Then it is appropriate to
characterize this mode, too, by an equivalent ray-
optical impact parameter, P= f, (l/Q, , &) times a qu—antity
having the significance of sinter and to be calculated via
appropriate analysis from the relative values of s and 7) .
The motion of the trapped ray will have an outer bound

equal to the next to the largest solution of the equation

(P/r~) $1 (—l*b/Qr) (1—b') )—1=0. (73)

Outside of this distance the strength of the mode in
question falls oG exponentially through a refractive
index barrier. A standing wave of this kind is the
proper transcription of the idea of photon with a radial
component of motion too small to allow escape. Evi-
dently the prohibition of escape is not absolute. There
will be leakage through the barrier to an extent the
greater, the closer E falls to the critical impact param-
eter for escape, P=0.771*/Q. For smaller values of the
impact parameter we have no proper solutions with an
exponential region of fall oG. Instead, we have solutions
capable of transporting energy freely from the inside of
the geon to outer space, and endowed with a continuum
of frequency values. These waves correspond to the
notion of photons able to escape from the system.

Instead of speaking of photon-photon collisions, we
can talk of excitation of secondary waves by the waves
that carry the primary energy supply of the geon. Such
excitation is not envisaged in a linear wave equation,
derived from a Lagrangian function that contains the
fields to the second order. The differentiation of a quad-
ratic Lagrangian gives a time rate of change of the field
strength proportional only to the first power of field
quantities. However, the Lagrangian actually contains
correction terms of the fourth order and higher. They
give in the expression for the time rate of change of a
field quantity supplementary terms containing the
product of three or more field quantities. These terms
constitute a nonlinear coupling that takes energy slowly
out of the primary modes and redistributes it over
secondary radiations. Some of this energy is picked up
in characteristic modes. In any such mode the energy is
reQected back and forth in a standing wave limited by
two values of r. Other parts of the energy go into un-
bounded waves and are lost to infinity. The existence
of the barrier leakage phenomenon means of course that
the distinction between the stationary modes and the
unbounded waves is only approximate. The stationary
modes will themselves leak some of the energy that they
get. Moreover these vibrations can transfer energy
via nonlinear couplings to still other modes, and also
to still other waves that escape.

The relative importance of simple leakage, and of
transfer of energy to free-running waves, depends upon
the relative strength of excitation of the various modes
of the geon. The detailed specification of the state of a
general geon is so complicated that there exists the
greatest variety of objects, showing amongst them the
greatest extremes of behavior.

In a geon where nonlinear terms make the more im-

portant contribution to the energy dissipation, we
evidently face a problem so complicated that statistical
arguments are needed to make any headway. We have
to take into account the totality of the stationary
modes of the geon in an approximately static gravita-
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tional 6eld, and the distribution of energy among these
modes. But their number is in6nite, as in Rayleigh s
paradox of blackbody radiation. No proper account of
the distribution can be given without taking into ac-
count the quantum of action. We are therefore invited
to assign to each mode of characteristic frequency co an
energy A&a[exp(ku/O~ —17, where O~, expressed in energy
units, has the significance of a temperature. We can
also idealize the energy of each unbounded wave as
zero in a 6rst approximation, these waves being most
easily distinguished by the criterion (73). The very
number of the modes of vibration simplifies the prob-
lem. To 6nd in each mode the radial distribution of
field strength, and stress and energy, it is no longer
necessary to integrate the wave equation numerically.
The JWKB method gives the answer in terms of purely
algebraic operations. Thus the system of three equations
of the theory of spherical geons reduces to two differen-
tial equations of the first order for the metric quantities
X(r) and v (r), or I.(r) and Q(r), with the temperature 0
as parameter of integration. No attempt is made here
to solve this pair of equations for the "thermal geon. "

The thermal geon is obviously an idealization that
suggests itself for following out the consequences of
the nonlinear interactions between different modes of
vibration. In the next approximation one has to make
further allowance for the effects of the intermodal coup-
lings, by way, of radiation losses through photon-
photon collisions. Here the picture will be very different
according as the mean free path of the most relevant
photons is large or small in comparison with the dimen-
sions of the system. In the second case it becomes
necessary to analyze the effective opacity of the system,
and to take account of the variation of temperature with
radial coordinate in a fashion familiar from stellar
theory —a problem again not investigated here.

The nonlinear couplings arise from two sources: the
electron pair field, and the gravitational 6eld. The
second is classical. The source of the gravitation 6eld-
the stress energy tensor —has a reasonably smoothly
varying average value, but on top of this are superposed
fIuctuations due to the fact that the electromagnetic
6eld does after all vary in space and in time. A typical
constituent of the fluctuation will have a character quali-
tatively of the form A&f&(x,y, s) sin(co&t+g&) A2f2(x, y,s)
Xsin(ca2/+g2). This term will give rise to a fluctuating
component of the gravitational field. Consequently in
the differential equation for the electromagnetic Geld
the coefficients of metric origin will not be exactly
static functions of position alone, but will have small
alternating terms with circular frequencies, (~&+~2)
and (or~ —co2), and with amplitudes proportional to A ~A2.
Let the uncorrected amplitude of the mode under con-
sideration be Aaf3(x, y, s) sin(aoat+ga). Then the wave
equation for this oscillation has to be- visualized as
containing four supplementary source terms, with
frequencies co&&co2&co3, and with amplitudes propor-
tional to the product A~A2A3. Thus the primary dis-

turbances in the geon inevitably generate secondary
waves.

For an order of magnitude estimate of the strength
of the effect, let X denote the general scale of the space
variations in the relevant primary modes, and let 8
denote the order of magnitude of the associated electro-
magnetic fields. Then a typical inhomogeneity in the
distribution of stress and energy will possess a mass
of the order of PX'/c'. The fluctuations in the gravi-
tational metric will have the general magnitude
Ag Ghm/c'X (G/c')lt'h'. The square of this dimen-
sionless factor, multiplied by a dimensionless function
of the geometry of the geon —depending upon ratio of
typical wavelengths to the size of the system, and upon
other details —will determine the fraction of the energy
of the system lost per cycle via nonlinear coupling
processes of gravitational origin.

The correction effects due to virtual production of
electron pairs by slowly varying but intense fields bring
in a coup1ing which has the same qualitative conse-
quences as that due to gravitational fields, except that
the governing dimensionless factor, Ag, of the previous
paragraph is to be replaced by (e'/5c)[Be(k/mc)/
(mP)7'. Thus the pair effects depend upon the electric
field itself, whereas the gravitational effects depend
upon the electric potential, A XB. The two effects
become of the same order of magnitude for wavelengths
of the order

X- (e'/Gm') (GS/c') &

= (4.16X104')(1.60X10 "cm) =0 67X10"cm. (74)

To justify the classical analysis of geon structure, we
already know that we have to deal with radii of the
order of the limit (74) or greater. On the wavelengths
we have not previously had any limit, except inferiority
to the radius. However, in dealing with geons in which
many modes are excited, or especially with a thermal
geon, it will ordinarily be reasonable to consider wave-
lengths quite small compared to the limit (74). Then
for most purposes gravitational transfer of energy
between modes can be neglected in comparison with
the coupling due to the charges and currents of virtual
pairs.

In analyzing the behavior of a geon classical in the
sense of being large compared to the limit (74), we en-
counter both a large scale static gravitational field and
small scale rapid variations in this average. There will
exist in addition long scale periodic or secular changes
in the con6guration of the system, some of which will
in certain cases describe significant mechanisms for the
disintegration of a geon. It is easy to visualize a slow
vibration in the case of a simple toroidal geon. The
shape of the torus changes from circular to elliptical
6rst in one sense and then in the other, with the ele-
mentary electromagnetic disturbances, or ray tracks
if one will, adjusting themselves adiabatically to these
slow readjustments in the distribution of refractive
index. The gravitational interaction between the various



elementary electromagnetic oscillations imposes upon
their readjustments of shape a collective character.
In these collective motions the coupling between the
electromagnetic oscillators by way of gravitational
interactions will exceed the coupling via virtual pair
effects, so long as we are in the classical domain of
geon sizes.

The same mode of vibration of a simple toroidal
system, endowed with enough energy, will lead to
deformations not far in form from a figure eight, and
with still further excitation of this mode scission will

occur. Whether the two separate rings then completely
break their association depends upon the magnitude
of the kinetic energy of recoil from the act of scission.
When this energy exceeds the gravitation potential
energy of attraction between the two objects, they fiy
apart to make two distinct systems, and we have a
complete act of fission. When the recoil energy is less
than the binding, the two rings separate to a limiting
distance, reverse their motion, collide, pass through
each other, again separate, and so on. At each act of
collision some of the energy of relative motion will be
redistributed. Some will go into excitation of the elec-
tromagnetic modes of the one ring, some into modes of
the other ring, some into modes that owe their existence
to the combined gravitational 6.eld of the pair of rings,
some into collective vibrations and rotations of the
individual rings, and some will escape into space as
free radiation. Ultimately the relative motion of the
two tori will be damped down and they will come to-
gether to form a single geon with a smaller mass, and .

a much more complicated distribution of energy among
modes, than characterized the original system.

Fission can in principle take place spontaneously in

any classical geon. The principal requirement is ade-
quate time for the exchange of energy between the
various modes of the system, so that ultimately, by a
statistical fluctuation in the distribution of energy,
enough becomes concentrated upon a collective mode
of distortion to lead to a critical deformation followed

by fission. As between the mechanisms of energy dissi-

pation, and compared to radiation leakage and non-
linear coupling to free running waves, the probability
of fission will vary in a complicated way depending
upon whether the distribution of energy among modes
is finegrained or coursegrained, whether the gravita-
tional field is symmetric or has large scale irregularities,
and whether the total angular momentum is small or
large. These circumstances will also affect the distribu-
tion in size of the fragments from fission in those classes
of cases where this process occurs with appreciable
probability.

A geon is characterized not only by its internal
structure and by the genetics of its radioactive decay
processes, but also by its interaction with other geons.
When the. two systems pass by each other at a separa. -
tion large compared with the size of either of them,
they will act on each other like the bodies of classical

physics. The interaction is the relativistic generalization
of the simple Newtonian law of force, F= —GM, M /2r, ~

The electromagnetic interaction between the two sys-
terms will give rise to an additional force which is
enormously weaker than the gravitational force. Thus,
the Aux of outgoing leakage radiation from one of the
systems undergoes scattering by the other geon and
gives rise to a radiation force of the order

( c'd—M /cdt)t R'/4 r ']
(CMiQi(di) $R2 (GM2/c')/ri2'j

(GMiM2/ri2') (niliR2/Ri). (75)

An additional force will arise from the pressure of the
radiation emitted by the other body. In expression (75)
the attrition, n&, is an exponentially small function of
the order, l&,

. thus the dimensionless product o.~l~ will be
extremely small for all stable geons. Of course, if the
two geons are exceedingly unlike in size, or one of them
is decaying so fast as to constitute an explosion, then
the radiation force between the objects can become
comparable to the gravitational force,

When two geons have large intrinsic angular mo-
menta, the forces depend upon orientation as well as
upon distance. Let two simple toroidal geons be oriented
with their principal planes perpendicular to the line
that connects their centers. When the rays of light in one
geon all go around one way, and those in the second go
around the other way, then the attraction is stronger
than it is in the case of parallel orientation of the two
angular momentum vectors. This circumstance is a
reminder that a gravitational field is described by quan-
tities more complicated than a static potential. The
supplementary orientation-dependent forces constitute
in this case a fraction RiR2/ri2' of the total gravita-
tional force.

As one geon Qies by another at the minimum separa-
tion r» and with a relative velocity v perpendicular to
this line, it not only sets up in the other geon a bulk
gravitational field of the order GiMi/ri~', but also
creates tide producing forces of the order GMiR2'/ri~'.
Both forces have frequency components ranging from
~=0 to ~ e/ri2. The first acts on the center of mass,
a degree of freedom with zero natural frequency, and
produces a bulk motion in accord with the classical
concept of "body. " The second acts on a mode of de-
formation with a natural frequency of the order c/R2,
very much higher than that of the driving force. Con-
sequently the response will be adiabatic and a negligible
part of the energy of motion will be left in internal de-

grees of freedom after the two geons have gone far apart.
When two geons pass by each other at a distance

which brings the outer boundaries of their active regions
to a separation, AE, small in comparison with geon radii,
then the interaction between the two objects becomes
more complicated. First, on account of the tidal de-
formations the gravitational forces will experience
fractional increases of the order Rm'/ri2' and Ri2/riP.
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hg fg 'G&Mi/RP, (77)

and the expression for the electromagnetic force be-
tween the two systems will have the character

F (fq 'f2 'X/R) (GM~M2/r&2') exp( —DR/X). (78)

As the first dimensionless combination of factors will

be of the order of unity for many classes of geons, it
follows that the interaction (78) is of the order of the
gravitational force, multiplied by a characteristic ex-
ponential function of distance.

Two geons which almost touch as they pass will

display not only an anomalous interaction but also
energy exchanges and energy losses. Where the refrac-
tive index barrier between the two systems is thinnest,
radiation will leak across from one body to the other.
Some modes previously excited weakly or not at all
will gain energy, and other important modes will lose
energy. Thus the two bodies will part company with a
relation of masses diGerent from what they had when
they met. Their total mass will be diminished at the
same time, both via momentary stimulation of the
leakage of radiation to the outside, and by way of local
perturbations of the gravitational field that deQect
some light rays to the outside from orbits that previously
were relatively stable.

Let two geons collide still more directly, so that they
pass through each other. It will be rare for the two
systems to emerge from the encounter without much
loss of mass or redistribution of mass. The frequency
spectrum of the perturbations experienced by one of
the geons during the encounter will range from tidal
forces of frequency c/R at one end of the spectrum,
through strong components of frequency c/(thickness
of active region), to fluctuations with the scale of wave-
lengths and frequencies associated with the individual
electromagnetic modes themselves. As a result almost
everything that can happen ordinarily will happen.
There will be a substantial loss of energy in the form of
free radiation. Collective modes of motion will be ex-
cited. Individual electromagnetic modes will have quite

Second, there will come into being fluctuating forces
of electromagnetic origin, of the order of magnitude of
the product of typical 6eld strengths, 8& and 82, in the
active regions of the two geons, multiplied by an expo-
nential decrement factor of the character exp( —DR/X),
multiplied by an area of contact factor of the order RX.
Here we have assumed that the important wavelengths
in the two geons are of the same general magnitude.
Also we have used R to represent the radius of the
smaller of the two geons; or better, E can be identi6ed
with the reduced radius, R~R~/(R~+R2). Let f~ denote
the fraction of the volume of the first geon occupied by
its active region, so that

hP fag/c' Mg c'Rg/G. (76)

Then the electric 6eld in the active region of this geon
will be of the order

new amplitudes. Moreover, forces will be at work to
induce 6ssion of the original geons into smaller frag-
ments. In view of all these circumstances, it is not
appropriate to describe the close interaction of two
classical geons in terms of an eGective law of force, or
potential curve. Instead, one has to use the much more
complicated language of transmutation physics, and to
try to describe the distribution in mass of the products
of a geon reaction. Evidently the geon decay processes
and interaction mechanisms form an extensive subject
for a more detailed investigation, not undertaken here.

S. INFLUENCE OF VIRTUAL PAIRS ON GEON
STRUCTURE

As we go down in the mass and size spectrum of
geons, we eventually pass out of the purely classical
realm (Region I) into conditions (Region II) where the
field strengths are no longer negligible compared to the
critical field, h„;~——m'c'/Ae, of the theory of electron
pairs; and from here it is but a short step to Region III,
where the Qelds are strong enough to turn a problem of
virtual pairs into one where real pairs are present in
large numbers. About III we say nothing; and about II
our considerations are very primitive. The induced
charges and currents of the virtual pairs alter the elec-
tromagnetic properties of the medium, so that it
acquires a refractive index, m. It will be reasonable to
consider all the electromagnetic modes of the geons
under consideration to have wavelengths very long in
comparison with the Compton length, 5/mc. Under
these conditions the refractive index will be independent
of frequency but will be dependent upon field strength, b:

e—1 (e'/Ac) (h/h .~)' (79)

To be more specific, let the geon be a simple toroid of
azimuthal index number a. Then the relevant 6eld
strength in (79) is some appropriate average over the
active region. The speed of light around the torus is
reduced to c/n. The connection between radius of
the geon and frequency of its leakage radiation will be
altered to the form ca-mac/R, where the integer, a,
represents as before the azimuthal index number. The
general relation between changes in energy and changes
in reduced action, /=action/2m, becomes

dM=c 'cod/ nadg/cR= [1+a(g„;&/$)7adg/cR. (80)

In the last line for convenience we have translated ex-
pression (79) for the refractive index correction from a
field strength dependence to an action dependence,
according to relation (5) between the two variables,
the uncorrected formula (5) being legitimate in the
evaluation of a 6rst order correction. The deflection of
the radiation in the gravitational field is more difBcult
to discuss. In lieu of an accurate analysis, for which
only the bare formalistic bones are presented below,
the following order of magnitude analysis is presented,
which may well be in error through oversight of some
significant factor. A photon which outside has a fre-
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quency ~ has inside a mass of the order ha&/cs, and ex-
periences in the gravitational 6eld of the geon a force
of attraction of the order (GM/R') (5&v/cs). This expres-
sion should equal the time rate of change of the momen-
tum of the photon: the product of its momentum,
etude/c, by the angular rate of revolution in its orbit,
c/eR; that is, hen/R. Equating the gravitational and
dynamic terms gives the same relation that we had in
the absence of a refractive index correction:

M (c'R/G)(?).

Multiplying this formula by (80), we have

MdM (acd8/G) 31+8(8orit/g)](?) ~ (81)
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Here the question mark indicates that the relation in
question is subject to possible correction. If this relation
is correct, it states that the square of the geon mass,
though nearly a linear function of action for values of
the action large in comparison with a certain charac-
teristic value, nevertheless for lower values of the action
curves towards a steeper dependence on g. The region
where (81) should apply is too small on the scale of
Fig. 6 to allow showing this curvature there.

The dependence of effective refractive index incre-
ment upon the square of the 6eld strength lets itself
be seen in two different ways. "From the photon point
of view the torus is a channel 6lled by two streams of
quanta moving in opposite directions. The space density
of photons going one way is of the order

n, r B'/k(u (82)

The photons travelling the other way are not able to
make pairs by the process'" fuu2+5"&~e++e through
want of energy: k~&=kco2(&mc', but could do so were
their quantum energies greater than ka&*=(mc2)2/Mr.
For this process the absorption cross section starts at
zero at the threshold A~~=kco*, rises to a peak value
o (e'/mc')' at a small multiple of this frequency, and
then falls oG. The absorption presented by the medium
at high frequencies implies a contribution to the refrac-
tive index, e, at low frequencies, according to the
formula

Io
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FlG. 6. Mass and radius as functions of action for classical geons
(slanting full lines in upper right hand portion of diagram).
Kith diminishing mass and radius, the electric fields active in an
electromagnetic geon increase to a point, 1, where electron pairs
are produced, below which point a classical analysis of geons
completely fails (dot-dash line in diagram). For pure neutrino
geons it may be possible to carry a simple analysis down as far
aspoint 2 in the diagram beforepair eRects appear (Sec. 6 of text).
Point 3 indicates where densities of the nuclear order of magnitude
would be attained in either electromagnetic or neutrino geons were
extrapolation of simple geon theory justified, which it certainly is
not. Neither is any further extrapolation of the curves for mass and
radius atallallowed(Terrafaeoglfta) Masses. andradiiofelectron
and proton are indicated on the diagram for orientation as to
magnitudes. The representation of geon mass or radius by a single
line, or the action variables of the system by a single number,
gives a rather oversimpli6ed picture, as is clear from Eqs. (5)
for even the simplest variety of toroidal geons. The numbers in
the present diagram may be thought of as applying to simple
toroidal geons with azimuthal index number, e, equal to 10 or less.

forward direction,

(d&/d") forward

~(e /A 2)(ce/mc')'(Ares/mc')'(5"&/mc')2, (84)

makes a contribution to the refractive index given by
Rayleigh's formula,

e((os) —1=(c/w)
J

N,o(~2')d(os'/(&us" —(F22) e—1=er2~(C/"2)'(do/dQ) &forward j (85)

-(CB2/~1) (e2/mC2)2/~a

(e'/Ac)LBe(A/mc)/(mc')]' (83)

in agreement with (79). Alternatively stated, there
exists a process of scattering of light by light, ' for which
the differential cross section at low frequencies in the

ts John S. Toll, Ph.D. thesis, Princeton University, 1952 (un-
published); J. S. Toll (to be published); J. S. Toll and J. A.
Wheeler, Phys. Rev. 81, 654 (1951) and more detailed account,
to be published."G. Hreit and J. A. Wheeler, Phys. Rev. 46, 1087 (1934).,

this contribution is in agreement with (79).
This analysis of the nonlinear behavior of a strong

electromagnetic field makes it clear that the corrections
to be applied in Region II will be very diferent for a
toroidal geon according as it has an angular momentum
of zero, so that half the photons go each way, or has
the maximum possible angular momentum, so that the
photons meet no counterstream. In the second case the
onset of strong pair corrections will evidently be post-
poned to higher field strengths and smaller bodies.

The picture of photon-photon collisions and a refrac-
tive index is not suitable for a precise evaluation of the



pair corrections. For example, in a simple toroidal geon
of zero angular momentum the standing electromag-
netic wave with which we deal will, if strong, produce
changes in the properties of the medium with twice the
periodicity of the wave itself. This phase relation means
that no simple averaging of the properties of the me-
dium is appropriate. For a detailed treatment of the
corrections it is therefore appropriate to go back. to
first principles, as typified by the variational principle
(4) of classical relativity theory. Heisenberg and Euler"
have analyzed the case of slowly varying but strong
fields and have shown that the charges and currents of
the virtual pairs have the same eGect as if there were no

pairs, but instead the Lagrangian of the variation
principle of the electrodynamics of special relativity
theory were corrected from 2, where

the other is the stress-energy tensor, T;&,

7 '~=2( —g) '~[( —g)'L*5/~a'"

= 2 (8Z*/85) (85/bg'")

2F,—sg «F„b„; (aZ, */85)

g,s(P—BZ*/OP+ 2*). (90)

Thus the gravitational field equations take their usual
form, G,&

——(strG/c4)T, &, with only the change (90)
in the form of the stress energy tensor. Similarly the
coefficient of the variation, 8A;, of a typical electro-
magnetic potential, equated to zero, gives the ith
electromagnetic field equation,

—Z = (E'—8')/S~= (1/8~) b.„,sS,

to Z~, where

(—2*)—(—Z) = (1/8~') (e'/hc) h„;P I dxe *x '

(86) 0=4~(—g)
—i(B/()x )[(—g)&BZ*/8(BA /Bx )]

=4~(—g) '*(d/» ){(—g)'(d~*/dS)

X (2F&~/h . ~) y (—g/2) (b . -~tip+/t)P)e~&7&F $}
(91)

cos[x (S+2iP) '*]+conj.
X ix'P —(x'5/3)+1 . (87)

cos[x (S—2iP) l)—conj.

Here S represents the scalar, (E'—E')/h„, „is and P
represents the pseudoscalar, (E 8)/b. „;is. For small
field strengths,

—8&g*/h. „„a=St~-'(e'/hc)
&({(5'+7P')/45+(26P'S+4S')/315+ }. (88)

t,
'5= —-'F

pg &g~'Il g

b 'P= '( g)4»'F„sF -s. — (89)

Here g represents the determinant of the g;I,. The quan-
tities e»' do not form a tensor. They are defined
instead by the statements that e"'4=I and that &

changes sign on the interchange of any two indices. To
correct for the effect of virtual pairs in geon theory we
have only to replace 2/c=(1/16irc) F sF ~ in the
variational principle (4) of general relativity by
g*/c, calculated as just defined. In taking the varia-
tion of the integral, which includes the volume factor
(—g)-'*dx'dx'dx'dx', we regard as the quantities to be
varied the 16 gravitational potentials g'~ and the
four electromagnetic potentials A, in F,s= (BAs/Bx')
—(BA;/Bx"). The coefficient of 6g'" contains two parts,
of which one is the Einstein. analog, G;I,=E;I,—~g;j,E,
of the d'Alembertian of the gravitational potential, and

"W. Heisenberg and H. Euler, Z. Physik 98, 714 (1936); see
also V. 'Weisskopf, Kgl. Danske Videnskab. Selskab. , Mat. -fys.
Medd. I4,¹.6 (I936-7).

In general relativity the appropriate scalar and pseudo-
scalar quantities are

where the I's are considered to be expressed in terms of
the A' s. Equations (90) and (91) define the theory of
geons in Region II.

NEUTRINO-CONTAINING GEONS

There is little diGerence between the theory of a geon
built out of neutrinos, and one built out of electro-
magnetic fields, apart from the fact that each neutrino
state will accommodate only one quantum of energy.
The general relativity version of Maxwell's equations
is replaced by the general relativity form of Dirac's
equation" for an entity of zero rest mass. The stress-
energy tensor for Dirac particles of zero rest mass forms
the source term in the gravitational field equations.
The equation GM/c'R~1 still connects mass and radius
of the object. The modes of dissipation of energy are
still leakage through the refractive index barrier,
coupling through nonlinear eGects to waves that run
freely to infinity, and various forms of fission. Conse-
quently there is little point to reformulating in terms
of neutrinos our discussion of the properties of electro-
magnetic geons.

One difference appears in the process of interpenetra-
tion of two geons. When both are made of neutrinos,
the overlap of the active regions of the two objects will
force a promotion of their constituent neutrinos to
states of higher momentum and energy, in accordance
with the Pauli principle. The uptake of energy implies
a strong eQ'ective repulsion compared with the forces
that would otherwise have been at work, as for example
in the collision of an electromagnetic geon and a neu-
trino geon, or the impact of a neutrino geon on an anti-

'~ See for example Marcel Riesz, "L'equation de Dirac en rela-
tivits generale" (to be published). I ain indebted to Professor Riess
for the opportunity to see this paper in advance of publication.
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neutrino geon. Thus there is a certain interesting speci-
ficity about the interaction of geons.

A second and fundamental difI'erence shows between
pure neutrino geons and pure electromagnetic geons
when one asks how small the object can be before
quantum effects come in. In the neutrino case quantum
effects are of course in principle present right from the
start, in the action of the Pauli exclusion principle.
But no other quantum effects are evident, and one does
not at first sight see any reason why one should not be
able to follow the properties of neutrino geons down to
very small sizes, enormously less than the limit ~10"
cm placed on classical electromagnetic geons by the
onset of virtual pair phenomena. However, one at least
knows where the limit is in the electromagnetic case,
while in the neutrino case the critical limit could be
anywhere, as indicated by the following analysis. Just
as the nonlinear phenomena of electromagnetic geons
commence when photon-photon collisions become im-
portant, so neutrino-neutrino collisions represent a
potential critical mechanism to set a lower bound on the
size, and an upper limit on the density, of those pure
neutrino geons that are susceptible to simple analysis.
The penetrating power of a neutrino through ordinary
matter is so enormous" that it seems at first sight
ridiculous to consider the collision of neutrino with
neutrinos. However, if the continuous spectrum of
electrons from p-meson decay is correctly interpreted
in terms of the simultaneous emission of two neutrinos
(or a neutrino and an antineutrino) then it necessarily
follows that two neutrinos of the appropriate character
running towards each other with sufficiently high en-

ergy, Pico&) (k4o2) &~ (207mc'/2)', will necessarily be
capable of provoking the reaction 4+i~fr +e+; and
from the Fermi type of beta-decay theory it follows
that the reaction cross section will vary at sufficiently
high energies as

firk4or Piaca/g2) [1/ln(54o„», „/100 mc') ]
1047 erg/cm'

(10"g/cm') c'. (97)

To yield such a density, neutrino states must be occu-
pied up to momenta of the order p, or energies of the
order cp, where

1042 erg/cm'~ (CP) 2 (42rP2dP/h') (98)

or

is easily seen to diverge logarithmically,

(d0/df12)forward
~(~ ~ 2g2/$2c6)2 ln2Pg~ /100 mc2) (95)

unless one inserts for the indicated upper limit of in-
finity a finite upper limit, A~„»„, for which one so far
has no evidence. Similarly, the refractive index pre-
sented by a medium containing per unit volume m&

neutrinos of circular frequency co& divers from unity,
according to (83), by the amount

n (d'or)
—1 (g'/Ii'c') (firkror) ln(A4o„»„/100 mc'), (96)

again a divergent expression.
In view of the divergence of the neutrino-neutrino

interaction as evaluated from Fermi beta theory and
the dispersion relation, we really have no basis to dis-
cuss neutrino geons at all, much less to set a lower limit
of masses at which the theory takes a new form, as in
the case of electromagnetic geons. Nevertheless, it is
still of interest to see what we can say if we assume
that the logarithm, instead. of diverging, has a value of
the order of 10' or less. In this case we can employ (96)
to draw two conclusions. First, it will be beyond the
scope of simple neutrino theory to analyze geons in
which the refractive index correction is of the order of
unity, or the energy density exceeds

0'~ (g /AC )4or402,

where the coupling constant is of the order

(92) cp (Iiac2104' erg/cm') '
~1 erg~106 mc~. (99)

g 10 "erg cm'.

The existence of this absorption mechanism for high
energies implies that even low-energy neutrinos can
produce virtual p, e pairs, which reannihilate and send
the neutrinos off into new directions. The cross section
for this neutrino-neutrino scattering process, evaluated
in the forward direction by use of the dispersion
relation"

(d0'/d&2) forward

(402 /27r c) ' 0'absa (Co2 ) (402 ro2 ) dro2
& (94)

0

M See, for example, F. Reines and C. Cowan, Phys. Rev. 92,
830 (1953}.

This energy is so great that it carries us beyond the
domain of virtual p, e processes to real production- of
pairs of this kind. This circumstance leads to the
second conclusion, that the energy density of any geon
which can be analyzed in terms of simple neutrino
theory can at most be equal to the right-hand side of
(98), evaluated for a maximum neutrino energy, cp,
of the threshold value, 100 mc'.

energy density 22r(cp)4/krc2

=3 62X1024 erg/cm'
= (4.02 X10"g/cm') c', (100)

corresponding according to (96) to a refractive index
correction of only one part in 10".This estimate impIies
a mass density considerably less than a typical estimate
for nuclear matter, 1.4)&10"g/cm'. It is conceivable
that there is some limitation of which physics is not
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aware that puts a bound to the density of pure neutrino
geons much smaller than (100). However, if real pro-
duction of p, e pairs sets the only limit, then it is possible
in principle to treat in terms of existing theory objects
built up solely out of neutrinos and gravitational
forces down to a radius

and mass

Z= &(m/Z) (3/4~) (4wZs/3m) j&

P(cs/G)1. 69X10"g/cm')]&

= 2.83X10' cm

M (c'/G)R =3 82 X. 10"g. (101)

This lower limit for pure neutrino geons is less than the
corresponding limit (10) for pure electromagnetic
geons (10" cm, 10's g) by not more than a few powers
of ten. In one case the bound comes from the limiting
electromagnetic field strength, or field energy density,
at which pairs of positive and negative electrons begin
to appear; in the other case, electron-mu-meson pairs.

Mixed geons, energized by a combination of neu-

trinos and electromagnetic fields, will have properties
similar to either kind of pure system, and hardly need
separate consideration here. However, the presence
of neutrinos and photons on an equal footing does
raise again the question of the neutrino theory of
light, developed by Jordan, Kronig, and others, and
brought to a halt by the discovery of Pryce that the
theory in its then existing form did not possess proper
relativistic invariance. '~ The theory assumes that there
exists between neutrinos a physical interaction, never
introduced explicitly and never discussed, such that a
photon is described by a pair consisting of one neutrino
and one antineutrino; or rather, by a quantum-mechan-
ical linear superposition of very many such pairs of
states. The description implies an unavoidable com-

plementarity, such that a statement of the occupation
numbers of the photon states, and a prescription of the
occupation numbers of the neutrino states, stand to
each other in a mutually exclusive relation. When only
neutrino states are occupied, the theory speaks of a
pure neutrino field. When in addition a few antineutrino
states are filled, a mixture of light and neutrinos is said
to be present. With equal numbers of neutrinos and
antineutrinos a pure photon field is considered to exist;
and so on, up to the case of a pure antineutrino Geld.

Such a description would evidently subsume geons of
purely electromagnetic character, of purely neutrino

type, and of mixed constitution, all into a unified class
of systems.

Regarding the status of the neutrino theory of light,

"P. JordanErgeb, . exakt. Naturwiss. 7, 158 (1928);Z. Physik,
numerous papers ending with 105, 229 (1937); R. de L. Kronig,
several papers ending with Z. Physik 100, 569 (1936) and Physics
3, 1120 (1936);M. H. L. Pryce, Nature 141, 976 (1938).See also
de Broglie, Heisenberg, and Kramers in I.. de Broglie, Physicierl, et
Pensee (Editions Albin Michel, Paris, 1953). I am indebted to
Professor Arthur Wightman for several discussions of the present
status of Jordan's idea.

I am kindly informed by Professor Eugene signer that
the conceivable mechanisms for the combination of the
spinors and momentum vectors of the neutrino and
antineutrino states to form in an invariant way the
vector magnitudes of the photon states are far from
having been explored in a comprehensive way in the
literature, so that is not necessarily clear that the ob-
jections of Pryce will forever retain their force. Second,
recent studies of the decay of the p, meson" show that
the lifetime and the form of the electron spectrum" are
together consistent with a universal Fermi interaction
of the kind met in beta decay only if the two neutrinos
are of opposite character. This result suggests, though
it does not prove, that p decay produces one neutrino
and one antineutrino. The consequences are the exist-
ence of the v+v*—+p+e reaction at high energies, and
v, v* scattering at low energies. In other words, a physical
background for the interaction of the neutrino theory
of light does not have to be postulated; it exists. Third,
no 'such argument exists for an interaction between two
neutrinos of the same character. Consequently it is
conceivable that the theory of pure neutrino geons, or
pure antineutrino geons, can be carried without meet-
ing new physical effects to energy densities larger, and
sizes smaller, than the limits of (100) and (101).

In summary, if we assume the existence of a cutoB
in the Fermi interaction at high energies in Eqs. (95)
and (96), then the door is open to analyzing the proper-
ties of neutrino geons over an enormous range of sizes
without going outside the scope of existing theory; but
below an uncertain critical limit of sizes interesting and
fundamental physical questions raise themselves.

"I. ELECTRICITY, GAUSS' THEOREM, AND
GRAVITATIONAL FIELD FLUCTUATIONS

What of free electricity? Consistently to complete
the scheme of classical physics we find no alternative but
to regard the geon as exemplar of the concept of body;
but neither in this object nor in the divergence free
theory behind it is there any place for charge. All lines
of force continue without end. Let a sphere be drawn
around the immediate neighborhood of a point. Then
as many lines of force go in as out.

In applying the theorem of Gauss we have tacitly
assumed space to be simply connected. One knows,
however, that the notion of Riemannian manifold by
itself places no such requirement upon the space-time
continuum. One can consider a metric which on the
whole is nearly Qat except in two widely separated
regions, where a double-connectedness comes into
evidence as symbolized in Fig. 7. The general diverg-
ence-free electromagnetic disturbance holding sway in
the space around one of these "tunnel mouths" will send
forth lines .of force into the surrounding space, and
appear to have a charge. However, an equal number of
lines of force must enter the region of disturbance from

's L. Michel and A. S. Wightman, Phys. Rev. 93, 354 (1954).
's J. Vilain and R. W. Williams, Phys. Rev. 92, 1586 (1953).



GEONS

FIG. 7. Schematic representation of lines of force in a doubly-
connected space. In the upper continuum the lines of force behave
much as if the tunnel mouths were the seats of equal and opposit~
charges.

the tunnel. Consequently the other mouth of the tunnel
must manifest an equal and opposite charge. In such a
doubly-connected space it is evidently a matter of
definition whether we say that divergence-free field
equations do or do not permit the existence of electric
charge. It will be convenient to say yes if the width of
the tunnel is small compared to the separation of its
mouths. So far we have inquired only after the behavior
of the electromagnetic field in a metric assumed to be
pre-existing. However, in classical relativity theory the
metric cannot be taken arbitrarily, but must be found

by solution of the gravitational field equations. No
investigation is known to have been made of the possi-
bility of a self-consistent solution that is double-
connected. Yet one would not be surprised to find that
no reasonable choice of boundary conditions would
permit such a classical solution.

Let one pass from the classical theory defined by the
action principle (4) to the corresponding quantum
theory, either by the prescription of Feynman, "

all conceiv-
able relevant
field histories

exp[(i/h) (classical action for each
field history)], (102)

or by any other standard method. Then one is forced to
recognize the existence of Quctuations in all fields. Their
magnitudes depend upon the size, I., of the space-cotime
regions under consideration, and are given under suit-
able conditions by formulas of the form DF (hc)&/L',
hA (hc)&/L; and 0 g (hG/c')'/L. So long as one deals
with distances large in comparison with (hG/c')' 10 "
cm, one can disregard for most purposes the Quctua-

tions in the metric, and consider space to be simply
connected. But in deriving Gauss' theorem one is
driven to consider an integral over the whole of the
region in question, including regions of the very smallest

spatial extension. Here the inevitable Auctuations force
on space time a most complicated structure. Because it
is the essence of quantum mechanics that all field

histories contribute to the probability amplitude, the

~ R. P. Feynman, Phys. Rev. 76, 769 (1949).

sum (102) not only may contain doubly and multiply
connected metrics; it must do so. General relativity,
quantized, leaves no escape from topological complexi-
ties of which Fig. 7 is only an oversimplified symbol.
In this sense the door is open for the existence of
charges in the quantum version of a theory that con-
tains no charges.

Little progress has so far been made in studying the
quantization of general relativity. " (1) It is not yet
certain whether the method of summing over configura-
tions gives in the case of nonlinear theories results that
are identical to those derived from other methods of
quantization. (2) It is not certain that the action func-
tion of general relativity can be given a well-defined
meaning for those field configurations, classically un-
realizable, that make the factor (—g)& in the action
function a pure imaginary. This square root recalls the
similar factor in relativistic electron theory, (—dx„dxl') &,

where likewise similar di%culties of interpretation arise
for nonclassical paths, and where the root has been
replaced by Dirac's matrix expression, F„dx&, asso-
ciated with half-integral spins and Fermi-Dirac sta-
tistics. Thus, as of today we cannot exclude that
charges will show themselves naturally and inevitably
in the spinor quantization of the only comprehensive
and divergence-free classical theory of fields that we
possess.

8. CONCLUSION

Taking seriously and following out the consequences
of the forty year old theory of general relativity, we
have been led to recognize the relative stability of
certain types of electromagnetic 6eld disturbances held
together by gravitational forces. These geons furnish
for the first time a completely classical, divergence-free,
self-consistent picture of the Newtonian concept of
body over the range of masses from 10"g to 10"g.
Two such geons interacting at a distance large compared
to their characteristic dimensions behave as elementary
objects. However, when one geon is followed for a long
time or is allowed to interact closely with another it
undergoes interesting and characteristic transformation
processes.

Classical geons are not objects for study in the
laboratory, nor is there any evident reason to believe
that geons of the classical range of sizes now exist in
nature, or ever did exist. Even were such large geons
once present, a sufhcient lapse of time would guarantee
the decay of all but extraordinarily stable ones to a mass
below the limit where these systems are capable of
classical analysis.

On entry into the quantum domain of sizes, electro-
magnetic geons build up field strengths strong enough
to produce pairs of electrons. At not very diAerent sizes

2'I am indebted to Professor James Anderson and Professor
Peter Bergmann for instructive discussions of the literature of this
problem.
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neutrino geons commence to give birth to p meson-
electron pairs. Consequently the projection of geon
theory to objects of dimensions less than 10" cm to

10' cm requires the analysis of new phenomena.
In conclusion, the geon makes only this visible con-

tribution to science: it completes the scheme of classical

physics by providing for the first time an acceptable
classical theory of the concept of body.

One's interest in following geon theory down into
the quantum domain will depend upon one's considered
view of the relation between very small geons and
elementary particles.
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It is paradoxical that a Geld oscillating in a mode which on grounds of symmetry contains no angular
momentum should carry angular momentum when quantized. This angular momentum is shown to result
from zero-point oscillations in other modes. The operator for the square of the angular momentum of the
6eld is discussed.

~ 'HE angular momentum of a second quantized
real field has been discussed a number of times in

the past in connection with liquid drop oscillation' and
multipole expansions of the electromagnetic held. '
These articles discuss the s component of the angular
momentum in a satisfactory fashion but the discussion

.of the square of the angular momentum seems to have
been first carried out in a proper way only recently. '
It would hardly seem necessary to raise again the
question of the angular momentum of a second quan-
tized held, but there seems to be considerable confusion
in the literature as regards to the square of the angular
momentum. Also in at least three of these references'
there are remarks which are not quite correct. The fact
that there is a good deal of evidence that this old but
important question is still not properly understood
has convinced the author that someone should write
still another note on this subject even if it does not
contain very much that is new.

In order to illustrate the type of question that we
wish to consider, we discuss first a liquid drop oscillating
in a surface mode given by the spherical harmonic I= 2,
m=0, namely an oscillation back and forth between
prolate arrd oblate spheroidal shapes. It is obvious from

symmetry arguments that such a mode of oscillation
should carry no angular momentum. How then in
second quantization for a one-quantum state of this
mode, does one expect to get a squared angular momen-

r M. Fier» r Helv. Phys. Acta 16, 365 (1943).
s W. Heitler, Proc. Cambridge Phil. Soc. 32, 112 (1936);

W. Heitler, QNaecara Theory of Radiatiorc (University Press,
Oxford, 1949); J. B. Blatt and V. 6'eisskopf, Theoretical Nuclear
Physics (John Wiley and Sons, Inc. , New York, 1952); B. Stech,
Z. Naturforsch. 7a, 401 (1952); R. G. Sachs and J. G. Brennan,
Phys. Rev. 88, 825 (1952).' C. M. DeWitt and J. H. D. Jensen, Naturforsch. 8a, 267
(1953). It is proposed to consider here questions not covered in
this reference.

turn of 6h' rather than zero? The usual answer which
one encounters is that this result of /= 2 for the quantum
number of squared angular momentum of the excited
mode follows in an elementary way from the fact that
the excited mode is described by a spherical wave with
that index. This, however, is not in accord with the
facts. In classical field theory the square of the angular
momentum is given by the square of the nz index of the
spherical mode which is excited. It might be expected
that after the inclusion of quantum Auctuation eGects
the angular momentum of the field for a one particle
state would be ssr(m+1)5'. However, in second quanti-
zation for a one-particle state it becomes a function of
the / index rather than the m index for reasons which
are quite subtle. The easiest way to get the correct
result is to remember that an alternative description of
the quantized field is a first quantized many-particle
system where for one particle the square of the angular
momentum is, of course, given by the 1 index of the
P Geld. However, in Geld theory the problem is much
less transparent.

To come back again to the example given above, the
symmetry arguments (reflections in x, y, and s planes)
which show that classically there should be zero angular
momentum associated with this mode, somehow be-
come invalid when the system is described in quantum-
mechanical language. Since each of the normal modes
of oscillation constitutes a separate dynamical system
quite independent of the others, it is clear that their
symmetry properties exist independent of their level
of oscillation or of possible zero-point fluctuations in
other modes, and that the angular momentum of this
mode should, in fact, be zero. If this seems parodoxical,
it is, in part, because of a confusion in terminology.
For a classical field it is possible to speak of the angular
momentum of a normal mode of oscillation in an


