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ABSTRACT 

Equations are given for the calculation of the equilibrium configurations of slowly rotating stars in 
the framework of general relativity. The rotation is treated to second order in the angular velocity, but 
no other approximation is made. 

I. INTRODUCTION 

Zee and Wheeler (1967) (see also Thorne and Meitzer 1966; Wheeler 1966) have sug- 
gested that the rotation of a neutron star may play an important role in the damping of 
its radial oscillations. In their picture the deformation of the figure of equilibrium which 
results from the rotation will couple the radial and quadrupole modes of oscillation per- 
mitting the energy stored in the radial mode to be radiated away gravitationally. Zee 
and Wheeler have estimated that such quadrupole radiation is a very efficient mecha- 
nism for damping vibrations. This view has been challenged by Tsuruta and Cameron 
(1967), who propose several mechanisms which may dissipate the angular momentum 
of a neutron star before the pulsations have been fully damped. 

The rotation of neutron stars has also been proposed (see Wheeler 1966) as a possible 
source of power in supernova remnants, although the mechanism for the release of this 
energy has not been spelled out. 

The rotation of supermassive stars has been investigated by Fowler and others as a 
possible mechanism to prevent their gravitational collapse before the onset of nuclear 
burning (see Thorne [1967] for a review of this subject). A non-rotating supermassive 
star cannot be gravitationally stable at the onset of nuclear burning if its mass is much 
greater than 106 Ifo (see Fowler 1966). However, calculations of the effects of rotation 
in the post-Newtonian approximation give a limit of at most about 108 Mo for a star 
which burns its nuclear fuel before undergoing gravitational collapse. The question 
naturally arises as to whether these limits involve the post-Newtonian approximation in 
any crucial way or whether the inclusion of higher-order relativistic corrections could re- 
sult in a supermassive star of higher mass whose collapse is delayed beyond the time 
necessary for nuclear burning. 

To pursue all these issues in more detail it is, therefore, of interest to determine what 
are the equilibrium configurations of a rotating star in general relativity. The equilibrium 
configurations of a cold star in general relativity have been calculated for cases in which 
the star is not rotating by a number of authors. They obtained their results by numerical 
integration of the general relativity equation of hydrostatic equilibrium using equations 
of state for “cold, catalyzed matter.,, (See Harrison, Thorne, Wakano, and Wheeler 
[1965] for a review of this work to 1964 and Thorne [1967] for a review of subsequent 
work.) Models of non-rotating supermassive stars have been calculated by Fowler 
(1964, 1966) and Tooper (1966) by integrating the equation of hydrostatic equilibrium 
using a poly tropic equation of state of index 3. 

To extend these results on neutron and supermassive star models to arbitrarily 
relativistic stars rotating with arbitrary angular velocity is a problem which, while 
presenting no difficulties of principle, is numerically complicated. Instead of one radial 
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dimension, one now has two or three dimensions. Instead of two ordinary differential 
equations to solve, one has the equivalent of an infinite system of ordinary differential 
equations—one for each coefficient of an expansion of all relevant quantities in spherical 
harmonics. Approximate solutions of this problem may be obtained from the variational 
principle suggested by Hartle and Sharp (1967), but an exact numerical solution for 
arbitrary angular velocities seems formidable. 

If, however, the star is rotating slowly, the calculation of its equilibrium properties is 
much simpler, because then the rotation can be considered as a small perturbation on an 
already-known non-rotating configuration. It is appropriate to begin a discussion of rota- 
tion in massive stars by a treatment of this case. We therefore consider in this paper the 
following problem : 

a) A one-parameter equation of state is specified : (pressure) = (known function of the 
density of mass-energy). 

b) A non-rotating equilibrium configuration is calculated using this equation of state 
and the general relativity equation of hydrostatic equilibrium for spherical sym- 
metry. The distribution of pressure, energy density, and gravitational field are 
thereby known. 

c) This configuration is given a uniform angular velocity sufficiently slow so that the 
changes in pressure, energy density, and gravitational field are small. 

d) These small changes are considered as perturbations on the known non-rotating 
solution. The field equations are expanded in powers of the angular velocity and the 
perturbations calculated by retaining only the first- and second-order terms. 

In this paper the equations necessary to solve this problem are obtained. Their 
numerical solution for particular equations of state and the analysis of the stability of 
the resulting configurations will be discussed in subsequent papers of this series. 

In § II the solution of the above problem in Newtonian gravitational theory is briefly 
reviewed. In Newtonian theory the presence of a massive body does not affect the de- 
termination of an inertial frame. In general relativity, however, a rotating massive body 
tends to drag the inertial frames along with it (Brill and Cohen 1966). The rate of rota- 
tion of the inertial frames inside a massive body (the ^dragging rate”) is calculated in 
§ IV. The difference between the angular velocity and this dragging rate governs the 
centrifugal forces acting on the star. In §§ V and VI the perturbation of the field equa- 
tions and their expansion into spherical harmonics is given. In §§ VII and VIII the 
equations are obtained which determine the entire structure of a slowly rotating rela- 
tivistic star. A prescription to find the relation between mass and central density from 
these equations is given in § VII. In § VIII we find the general relativistic generaliza- 
tion of Clairaut’s equation, which determines the ellipticity of the surfaces of constant 
density and hence the shape of the fluid. 

At the outset we wish to discuss some of the assumptions made in this work. 

a) One-parameter equation of state.—The matter in the equilibrium configuration is 
assumed to satisfy a one-parameter equation of state, (P = (P(£), where (P is the pressure 
and 8 is the density of total mass-energy. In general situations the pressure is also a 
function of temperature. This restricted form of the equation of state is appropriate 
when the temperature is a known function of the density inside the star. For example, 
this is the case when (1) all the matter is cold at the end point of thermonuclear evolu- 
tion (see Harrison et al. 1965) or (2) when the star is in convective equilibrium so that 
changes in state are adiabatic (see, e.g., Chandrasekhar 1939). 

b) Axial and reflection symmetry.—Attention is limited here to configurations which 
are axially symmetric. A configuration can be in equilibrium in general relativity only 
if it is not radiating gravitational waves. A sufficient condition for the absence of radia- 
tion is the absence of time-dependent moments of the mass distribution (see, e.g., 
Landau and Lifshitz 1962). This is guaranteed by axial symmetry. We also assume that 
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the configuration is symmetric about a plane perpendicular to thé axis of rotation. From 
one’s experience with the Newtonian theory of figures of equilibrium it is plausible that 
both of these assumptions are really consequences of the slow rotation of the configura- 
tion and not restrictions at all. 

c) Uniform rotation.—Only uniformly rotating configurations are considered here. It 
has been shown previously that configurations which minimize the total mass-energy 
(e.g., all stable configurations) must rotate uniformly (see Hartle and Sharp 1967). 

d) Slow rotation.—By slow rotation we mean angular velocities Í2 small enough so 
that the fractional changes in pressure, energy density, and gravitational field due to the 
rotation are all much less than unity. From simple dimensional consideration this re- 
quirement implies 

Û2« 
/ g N2 GM 

\RJ Rc2 1 (i) 

where M is the mass of the unperturbed configuration and R its radius. The expression 
on the right is the only multiplicative combination of M, R. G, and c which goes over into 
the Newtonian expression for the critical angular velocity as c becomes large. For the 
unperturbed configuration the factor is less than unity (Buchdahl 1959; Bondi 
1964). Consequently the condition in equation (1) also implies 

Rti <3C c . (2) 

In other words, every particle must move at non-relativistic velocities if the perturba- 
tion of the geometry is to be small in terms of percentage. 

II. SLOWLY ROTATING STARS IN NEWTONIAN GRAVITATIONAL THEORY 

The theory of the equilibrium configurations of slowly rotating self-gravitating bodies 
has long been known in Newtonian gravitational theory (see, e.g., Jeffreys 1959; 
Chandrasekhar and Roberts 1963). It is reviewed here briefly as a guide to formulating 
the same problem in general relativity. 

In Newtonian gravitational theory the equilibrium values of pressure, p, density, p, 
and gravitational potential, 4>, of a fluid mass rotating with a uniform angular velocity ß 
are determined by the solution of the three equations of Newtonian hydrostatic equi- 
librium. These are (1) the Newtonian field equation: 

V2^ = 47rGp ; (3) 

(2) the equation of state which, following our discussion in § I, we have assumed to have 
a one-parameter form 

P = P(p) ; G) 

(3) the equation of hydrostatic equilibrium which can be summarized in the case of uni- 
form rotation and a one-parameter equation of state by its first integral 

constant = ¡jl = f — — ^ ( Q X r )2+ <£. (5) 
Jo P 

The problem posed in § I to find the properties of a configuration of given central 
density and angular velocity can be phrased here as follows. A solution <f>(0), pi0), and 
p(0) of the Newtonian equations in the absence of rotation is known. This solution is the 
leading term in an expansion of the solution including rotation in powers of the angular 
velocity Í2. It is clear from the symmetry of the configuration under reversal of the direc- 
tion of rotation that only even powers of the angular velocity will appear in this ex- 
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pansion. The equations of Newtonian hydrostatics are now expanded in powers of Í22, 
and the equations which govern the second-order terms in the solution determined. 

Care must be exercised in choosing the coordinate system in which these expansions 
are carried out. For example, an expansion of the density as a function of the ordinary 
polar coordinates r, 6 is not valid throughout the star. Such an expansion could be valid 
only if the fractional change in density at each point in space were small. This condition 
cannot be met near the surface of the star as the surface of the configuration will be dis- 
placed from its non-rotating position and the perturbation in the density may be finite 
where the unperturbed density vanishes. 

i 

Fig. 1.—Definition of the coordinates R, 0, and the displacement £. The surface (a) is the surface of 
constant density p (R) in the non-rotating configuration. The surface {b) is the surface of constant density 
p(R) in the rotating configuration. 

To avoid this difficulty the points of space in the rotating configuration will not be 
labeled by the usual coordinates r and 6. Instead two coordinates R and 9 defined as 
follows will be used: Consider a point inside the rotating configuration. This point lies 
on a certain surface of constant density. Ask for the radius of the surface in the non-rotat- 
ing configuration which has precisely the same constant density. This radius is defined to 
be the coordinate R. The coordinate 0 is defined to be identical with the usual polar 
angle 6. These definitions are given pictorially in Figure 1 and mathematically by the 
following equations: 

0 = 0, p[r(R,0),0] = p{R) = p«»(R) . (6) 

The function r(Æ,0) then replaces the density as a function to be calculated in the rotat- 
ing configuration. The expansion of r(Æ,0) in powers of the angular velocity will be 
written 

r = R+k{Rß)+0{W). (7) 
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The quantity £(#,0) is the difference in radial coordinate, r, between a point located by 
polar angle 0 on the surface of constant density p(R) in the rotating configuration and 
the point located by the same polar angle on the surface of the same constant density 
in the non-rotating configuration (see Fig. 1). 

For small angular velocities, the fractional displacement of the surfaces of constant 
density due to the rotation is small at the surface and in the middle of the star, 

£(Æ,0)/R«1. (8) 

It will also be small at the center of the star if the rotating configuration is chosen to 
have the same central density as the non-rotating configuration so that £ vanishes at 
R = 0. We are always free to consider the rotating configuration as a perturbation on a 
non-rotating configuration of the same central density; so that equation (8) can be 
satisfied throughout the star. 

In the R,Q coordinate system the two functions which characterize the rotating star 
are r(R,Q) and the gravitational potential $(i?,0). The density and pressure are known 
functions of R related by the equation of state 

p(R) = p(o)(R)y p(R) = p(0)(R) . (9) 

The expansion of r to terms in ß2 is given by equation (7) and the expansion of <i> is 
denoted by 

$(£,0) = <i>(o)(tf) + <i>(2)(£?e) + o(ß4) . (io) 

These expansions are to be inserted in equations (3) and (5) written in the coordinates 
R,Q with only terms of order Í22 retained. The calculation of £ and <I>(2) from the resulting 
equations is greatly simplified if these functions are first expanded in spherical harmonics 
since only a few terms in this series will remain in the final result. The reflection sym- 
metry of the configuration implies that only spherical harmonics of even order will 
appear in this expansion if the polar axis is taken to be the axis of rotation. 

£(£,0) = 2*£*(£)Pz(0) , (ii) 

$<2>(£,0) = ^^i^(R)Pi(e) . (12) 

These expansions are to be substituted into the three equations of Newtonian hydro- 
static equilibrium (eqs. [3]-[5]) and the equations governing £z(R) and í>¿

(2)(R) derived. 
When the expansions contained in equations (7), (10), (11), and (12) are substituted 

into the integral of the equation of hydrostatic equilibrium (eq. [5]), only those equa- 
tions corresponding to the l values 0 and 2 are found to contain the angular velocity, 
Í2, in any way. This is because the centrifugal potential term in equation (5) has the 
angular dependence sin2 0. The Newtonian field equation when expanded in this way 
couples together only quantities with the same value of l. The equations for £;(/?), 
^^(R), with l > 4 are thus independent of O and their solution is 

£ = 0, 4>*<2> = 0, Z > 4 . da) 

There remain only the quantities with Z = 0 and Z = 2 to be determined. This reduction 
in the number of Z values from infinity to 2 is the central simplification of the slow rota- 
tion approximation. In place of a system of partial differential equations one now only 
has ordinary differential equations for the four unknown functions ^(R), ^(R), £o(Z?), 
and £2(R). 

Two problems of major interest are to determine (1) the relation between mass and 
central density for a rotating star, and (2) the shape of the star. The differential equa- 
tions for ^(R), 4>2(R), £o(R), and £2(R), which completely determine the equilibrium 
configuration, will now be given in forms suitable for solving these problems. 
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a) Relation between Mass and Central Density 

The relation between mass and central density may be determined from the / = 0 
equations alone. The mass can be found from the term in <i> which is proportional to 
1/r at large distances. All components except 1 = 0 vanish more strongly than this. 
Similarly near the origin all components of the density except l = 0 vanish, so only the 
/ = 0 component contributes to the central density. It is convenient to display these 
Z = 0 equations in a form in which they resemble the equation of hydrostatic equilibrium. 
To do this we make the definitions 

p'iR) Ço(-R), M{R) = f\^B?p{R)dR. (i4) 

The / = 0 equations of structure are then 

MW= f RdRivR2 4^- pp*, 
Jq dp 

dp* 

dR 
§Î22Æ 

GMW(R) 
R2 (15) 

These equations show the balance between the pressure, centrifugal, and gravitational 
forces per unit mass in the rotating star. The correspondence with an equation of hydro- 
static equilibrium may be made more explicit by considering a region of the star where 
an Eulerian expansion of the pressure and density are legitimate: 

pO,0) = pW(r) + p[2]M) + 0(Û4) , P(r,0) = p[0](r) + P[2](r,0) + 0(i24) . (i6) 

The quantities p* and M[2] may then be written 

p* = />oI21/p[oí , MW= frdATr2po[2], (17) 

where a subscript zero denotes an Z = 0 component. It is irrelevant here whether the 
quantities are written as function of r, 6 or R,ê since they are already second order in fí. 
Equations (15) are then seen to be the equations of hydrostatic equilibrium which 
govern the Eulerian changes in pressure, density, and mass. Near the surface where the 
Eulerian expansion is no longer valid the equations remain formally the same, but the 
identification oí p* with the ratio of the change in pressure to the unperturbed density 
can no longer be made. This circumstance in no way impairs the usefulness of the equa- 
tions for p* and M{2] as employed in the rest of this section for calculating £o. 

The total mass of the rotating configuration is given by the integral of the density 
over the volume. Writing this out in the coordinates jR,0, expanding to order 122, and 
performing an integration by parts, one finds for the change in mass bM of the rotating 
from the non-rotating configuration, 

5M = 47t-U(R) ^|)RdR = ilfW{a). (is) 

To calculate the relation between mass and central density for the rotating star one 
now proceeds as follows: (1) Pick a value of the central density. Calculate the non-rotat- 
ing configuration with this central density. (2) Integrate equations (15) outward from 
the origin starting with the boundary condition which guarantees that the central 
density of the rotating configuration will have the same value. 

Æ->0 . (19) 

(3) The value of M[2] at the radius of the unperturbed star gives the change in mass of 
the rotating star over its non-rotating value for the same central density. 
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b) The Shape of the Star 

The calculation of the shape of the rotating star involves the 1=2 equations as well 
as those with / = 0. If the surface of the non-rotating star has radius a, equations (7) 
and (11) show that the equation for the surface of the rotating star has the form 

r = 0 + £0(0) + £2(0)-£*2(0) . (20) 

The value of £0(a) is already determined in the / = 0 calculation 

£0(0) (21) 

where M is the mass of the non-rotating configuration. The quantity — 3£2(i?)/2R is 
the ellipticity of the surface of constant density labeled by R. This will be denoted by 
e(R). It may be calculated by the 1=2 equations obtained by substituting equations (7), 
(10), (11), and (12) in equations (3) and (5). These are equivalent to Clairaut’s equation: 

A .LA 
dR R* dR 

[e(R)M(R)R2] = 4:ire(R) 
dp 

dR' 
(22) 

Here both M and p are known functions of R. The ellipticity must be regular at small R, 
and equation (22) shows that it approaches a constant at R = 0. With this boundary 
condition equation (22) may be integrated to find the shape of eÇR) but not its magni- 
tude. To find the magnitude of e(r) the as-yet-unused boundary condition <ï> —* 0 as 
r —» co must be incorporated. The interior solution of the field equation for $ must be 
matched on to that exterior solution which vanished at large r. If we denote by $2

[2] 

the Eulerian change in the 1 = 2 component of <î>, that exterior solution will be 

$2[2i = const./r3, r > a . (23) 

This boundary condition at the surface, together with the condition of regularity at 
the origin and the differential equation (22) uniquely determine the ellipticity of the 
surfaces of constant density as a function of the coordinate R. Equivalently it deter- 
mines the ellipticity as a function of the coordinate r since e(r) and e(R) are identical in 
the limit of slow rotation considered here. To calculate the parameters in the equation 
(20) for the surface of the rotating star one proceeds as follows. 

1. Solve the 1 = 0 equations for p*(r) and calculate £0(a) through equation (21). 
2. Solve Clairaut’s equation with the boundary conditions discussed above to find the 

remaining parameter £2(0) = —%ae(a). 

III. NON-ROTATING RELATIVISTIC STELLAR MODELS 

The equilibrium configurations of non-rotating fluid masses in general relativity have 
been investigated by many authors beginning with K. Schwarzschild in 1916. Some of 
their results are briefly summarized here (for details see Landau and Lifshitz [1962] or 
Harrison et al. [1965]). This summary contains those properties of the non-rotating con- 
figuration which we will need in calculating how the configuration is changed by a 
small rotation. 

The stress-energy tensor of a perfect fluid will be written as1 

T/ = (S + + (9b/ . (24) 

1 With slight changes in the labeling and c — G = 1 we follow the notational conventions of Landau 
and Lifshitz (1962) in general relativity, except that Greek tensor indices range over space and time 
variables while Latin indices run over the space variables. 
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Here, u11 is the 4-velocity of the fluid; <P is the total pressure and 8 is the total density 
of mass-energy. The pressure and energy within a non-rotating equilibrium configuration 
will be denoted by P and E, respectively. 

A non-rotating equilibrium configuration is spherically symmetric. The metric which 
describes its gravitational field has the form originally written down by Schwarzschild 

ds2 = —e^dt2 + e^dr2 + r2(dd2 + sin2 6d<p2) , (25) 

Here, v and X are functions of the radius variable, r, alone, and we shall often write for 
eX(,), 

¿-X(r) = I 2M(r) 
(26) 

r 

The results of Bondi (1964) show that M(r)/r < 0.485 for any physically realizable 
equilibrium configuration so that ex is never singular. If the surface of the fluid sphere 
is at r = a, then outside of this radius the functions v and X are given by 

ev = (27) 

where the constant M is the total mass of the fluid in units of length. Inside the fluid, 
the distributions of z'(r), X(r), E(r), and P{r) are determined by the four equations of 
general-relativistic hydrostatics. For a non-rotating configuration these may be taken to 
be: (1) the equation of hydrostatic equilibrium 

dP ^ (E-\-P)(M kir rzP) 
dr r(r — 2M) ' 

(2) the equation of state in the form discussed in the introduction; and (3) and (4) two 
field equations to determine M (r) and v(r) : 

dM ( r) 

dr 
47t r2E, 

dv _ 2 dP 
Jr~ ~E+PTr' 

(29) 

These equations completely determine the equilibrium configuration once, say, the 
central density has been given. We now turn to the investigation of the effects of a slow 
rotation on these configurations. 

IV. ROTATIONAL DRAGGING OF INERTIAL FRAMES 

In general relativity as in Newtonian gravitational theory the magnitude of the cen- 
trifugal forces acting on a fluid element is governed by the rate of rotation of the fluid 
element relative to a local inertial frame. In contrast to Newtonian theory, however, the 
inertial frames inside a general-relativistic fluid are not at rest with respect to the distant 
stars. Rather, the local inertial frames are dragged along by the rotating fluid. This 
general-relativistic effect was first analyzed by Thirring (1918) and recently in more 
detail by Brill and Cohen (1966), who clarify its connection with Mach’s principle. The 
calculation of the rate of rotation is then essential for the determination of the equi- 
librium between gravitational, pressure, and centrifugal forces. It is considered in this 
section. 

How is the dragging of inertial frames manifested in the metric which describes the 
gravitational field of the slowly rotating equilibrium configuration? The metric of a 
stationary, axially symmetric system may be written in the form (see, e.g., Hartle and 
Sharp 1967, § V) 

ds2 = -H2dt2 + Q2dr2 + r2K2[dd2 + sin20(</*> - Ldt)2], (so) 
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where Hy Q, K, and L are functions of r and 6 alone. The quantity L(r,6) is the angular 
velocity (d(p/dt) acquired by an observer who falls freely from infinity to the point 
(r,0). We will, therefore, call L(r,d) the rate of rotation of the inertial frame at (f,0) 
relative to the distant stars.2 The dragging of the inertial frames thus appears in the 
metric as the non-vanishing of the gt<p metric component for a rotating configuration. 

The density and metric of a stationary, axially symmetric system will behave in the 
same way under a reversal in the direction of rotation as under a reversal in the direction 
of time. An expansion of the density or of H, Ç, and K in powers of the angular velocity 
12 can, therefore, contain only even powers ; while an expansion of L will have only odd 
ones. If one is interested in calculating all effects up to order !22 it is then sufficient to 
include only terms of order 12 in L. To first order in the angular velocity only the co- 
efficient L changes from its value zero at 12 = 0. This first-order term is denoted by 
“0,ö), 

L(r,d) = co(r,0) + 0(S23) . Oi) 

The calculation of this first-order term then requires only one field equation which is con- 
veniently taken to be 

Ry = SttTV . (32) 

To find the first-order rate of rotation of the inertial frames, a>, one expands both sides 
of equation (32) and retains only the lowest order term in the angular velocity, 12. The 
left-hand side of this equation may be expressed by the identity3 

{-gyms = [(-gyt2gtar*«vh. (33) 

With the metric of equation (30) this can be written 

(-gyi>Rv‘ = - gHgt«Æ ■ «4) 

The coefficients gt<p and gt<p are at least first order in the angular velocity so that the other 
terms may be replaced by their zero-order values 

— 2r2 sin d e^+'V^Rv1 = [ e"'(,'+x)/2r4 sin3 0oor ]r+ [ sin3 0co0] 0 + 0(123), (35) 

where we have introduced the convention that df/dxa may be written/a. 
If 12 is the angular velocity of the fluid, the 4-velocity which satisfies the normaliza- 

tion condition = —• 1 is 

ur =z UB — 0, u* = Ul = [—(gii + 212g<v, + !22g^)]1/2 . (36) 

For the uniformly rotating configuration considered here 12 is a constant throughout the 
fluid. With this 4-velocity the component of the stress-energy tensor on the left of 
equation (32) may be expanded as 

TJ = (8 + (PVí^ = (8 + (P)(w02(gi*> + 12g*,*,) 
(37) 

= {E + P)e-V(ti - œ)r2 sin2 0 + 0(123) . 

Now, 12 is the angular velocity of the fluid as seen by an observer at rest at some point 
in the fluid. The quantity co(r,0) is the angular velocity acquired by an observer 

falling freely from infinity calculated to first order in 12. Their difference, 12 co, is, there- 

2 This definition of the rate of rotation of inertial frames is to be distinguished from that given in 
terms of the Coriolis force (see, eg., Landau and Lifshitz 1962, p. 295). Appreciation is expressed to 
Kip S Thorne for a discussion of this point. 

3 For the proof of an analogous identity see Landau and Lifshitz (1962), p 348. 
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fore, the coordinate angular velocity of the fluid element at (rfl) seen by the freely falling 
observer to this order. This is the quantity of interest and will be denoted by w(r,0) : 

— co(r,0) . (38) 

Retaining only first-order terms in Í2 the field equation (eq. [32]) is now 

JL A 
r* dr [ 

r4ß-(v+X)/2 dcö"! , e(X d 
dr\ y2 sin3 B dB 

0 if) - 16* (£+P) = 0 . 
d BJ 

(39) 

Use may be made of the zero-order field equations (28)-(29) and the definition 

j(r) = exp [-(*' + X)/2] (40) 

to express the coefficients of œ in equation (39) completely in terms of the unperturbed 
metric 

JLAf * • j 4 _ g(x~y)/2 1 d 
r4 dr \ J dr) r dr ^ r2 sin3 B dB ( 

sin3 0 
dec 

dB 
) = °. (41) 

An expansion of cc(r,B) in Legendre polynomials will not separate equation (41) because 
g t<p, and hence co, transforms under rotations not like a scalar but like a component of 
a vector. To solve equation (41) by separation of variables, an expansion in vector 
spherical harmonics must be used. The relevant angular functions may be found directly 
or from the group-theoretic arguments of Regge and Wheeler (1957): 

(42) 

The radial functions ¿3;(r) then satisfy the equation 

I d 

»4 
Arr4i(r) 
dr L 3K ’ drA^lr dr 

e(\-.)/2 [ii+il ]¿h = 0. (43) 

We now examine the behavior of the solution to equation (43) at small r where we 
demand that the geometry be regular and at large r where we demand it be flat. At 
small r,j(r) is a regular function so that the differential equation admits a small r be- 
havior of the form 

ici{r) —> const. rs+ + const. rs~ , 

5 
¿a+1) -2-|1/2 

¿(0) J ’ 

r 0, 

(44) 

The function J(r) is positive everywhere since ev and ex are both positive. If the geometry 
is to be regular at the origin we must demand that the coefficient of rs~ vanish. 

At large r,j(r) becomes unity and co* has the form 

<ci{r) —» const. r~l~2 + const. rl~l. (45) 

The behavior has already been fixed at the origin. Consequently the ratio of the two 
constants in equation (45) is determined and neither will vanish unless they both do. 
If space is to be flat at large r, cc must decrease faster than 1/r3, so that w(r) = Í2 — co 
approaches Í2. From equation (45) it is then clear that all coefficients in the Legendre 
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expansion of Ö) vanish except l — 1. Consequently œ is a function of r alone. It obeys the 
differential equation 

1_J_ 
r* dr 

(46) 

This equation is to be integrated outward starting with w(0) = const. Outside the 
starj(^) == 1 and the solution has the form 

2J 
w( r ) = Í2 r, r > a . (47) 

r3 

The constant / can be identified with the total angular momentum of the star (see 
Papapetrou 1948). 

One consequence of the linearity of equation (46) for ¿> is that the angular momentum 
is linearly related to the angular velocity for slow rotation: 

J = I(M,v)Q . (48) 

The constant of proportionality I(M,v) defines the relativistic generalization for slowly 
rotating systems of the usual Newtonian concept of moment of inertia. As defined here, 
the moment of inertia arises not only from the particulate content of the star, but also 
from the mass associated with the energy required to compress the matter to its given 
density and the effective energy of the long-range gravitational interaction of different 
parts of the star with one another. 

A single integration of equation (46) is enough to calculate /. The moment of inertia, 
as defined here, is a functional of the metric of the non-rotating star and of this metric 
alone. It is remarkable that a quantity so complex in its origin can be calculated so simply. 

It is instructive to see how the Newtonian expression for the moment of inertia arises 
from the definitions in equations (47) and (48). Multiplying the differential equation for 
œ (eq. [46]) by r3 and integrating out to the radius of the star the moment of inertia may 
be expressed (reinserting the correct factors of G and c) as 

The Newtonian limit of this expression is calculated by expanding the right-hand side in 
powers of (1/c) and retaining only the lowest-order term. In that limit the non-rotating 
configuration may be described by the line element 

ds* = -[1 + 2$(r')/c2]dt2 + [1 - 2$(rf)/c2] [dr'2 + r,2{d62 + sin2 Qd<p2)] , (50) 

where $ is the Newtonian potential (see, e.g., Landau and Lifshitz 1962). This line ele- 
ment is not of the form given in equation (30), but may be brought to that form by the 
coordinate transformation 

/ = r(l + <3>/c2) . (5i) 

One finds for the line element to order l/c2: 

¿j2= _^l+Í|^¿¿2 + (l-Í^^¿r2+r2(íf02+sin2 0^2). (S2) 

The function y(r) may then be expanded as 
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To lowest order in 1/c the angular velocity of the fluid relative to a local inertial frame 
co is just 0. The Newtonian limit of equation (49) is, therefore, 

Newtonian 
_ _2_ ra 

~ 3G Jn 
dr r‘ (■ 

d23> 2 d$\ 
\dr2 r dr)* 

(54) 

Use of the Newtonian field equation (eq. [3]) then yields 

■^Newtonian ^ r^p{r)J 
(55) 

in agreement with the classical result. 
Some of the general properties of co(r) may be obtained from the following integral 

equation which is equivalent to equation (46) and its boundary condition 

cô(r)=cô(0)+ f G(r,r')û(r') dr'. (56) 
•''o 

Here, 

G(r,rl) = r^jf-/lq(r)-q(r')], (S7) 

with 
rœ 

q(r) = I dr'/r'^jir). (58) 
J r 

The integral equation (eq. [56]), is of Volterra type so that its solution may always be 
found by iteration if G(r/) is bounded4 (see, e.g., Smithies 1958). We write it as 

w ( r ) = cö ( 0 ) + ^ côn ( r ), (59) 
71 = 1 

where 

¿j0( r) = ¿(0), con(r) = f dr'Gir^^oin-iir'). (eo) 

We can now show that the kernel G(r,r') is positive for r > r'. To see this we note first 
that, since the unperturbed configuration is assumed to have > 0, ex > 0, we have 

j(7) =exp[ —(^tA)] >0. («i) 

Further from equations (27)-(29) we may write 

—dj/dr = Airre~v{E P)/j > 0 . (62) 

Finally as a consequence of equation (61) we have 

q (r) — q (r') = — f dx/xáj(x)<0, r'< r . (63) 
Jr’ 

Equations (62) and (63) lead directly to the conclusion thatG(r,r') > 0 for r' < r. This 
property of the kernel is reflected directly in the solution through equations (60). 

¿j(r) = cö(0)[l + (sum of positive terms)] . (64) 

4 We exclude thereby the case of where all of the matter is concentrated in an infinitely thin spherical 
shell already treated by Brill and Cohen (1966). 
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If w(0) > 0 then cö(r) > 0; if ¿(0) < 0 then co(r) < 0; and if co(0) = 0 then œ(r) = 0. 
At large r, œ(r)-^Q so that the sign of ¿>(r) is the same as the sign of the angular velocity. 
We then have the following conclusions: 

1. The local rate of rotation, œ(r), is in the direction of the angular velocity and never 
vanishes, thus at no point does the local rate of rotation of an inertial frame equal or exceed 
the angular velocity of rotation. 

2. The rate of change of cö(r) is given by 

dih 
dr 

dj_±_ 

drf r4j 
à(r') (65) 

and always has the same sign as Í2. Therefore, | ¿>(f) | is an increasing function of r. 
Correspondingly, |o>(r) | is a decreasing function so that the largest rate of dragging of 
inertial frames always occurs at the heart of the fluid. 

V. ROTATIONAL PERTURBATIONS IN GENERAL RELATIVITY AND 
THEIR EXPANSION IN SPHERICAL HARMONICS 

In the next four sections we seek the general-relativistic equations needed to calculate 
the shape of a slowly rotating relativistic star, the relation between its mass and central 
density, and its internal structure. These equations are the generalizations in Einstein’s 
theory of the equations of Newtonian theory discussed in § II. 

It has already been argued in § IV that the lowest-order contributions to the changes 
in density and pressure brought about by the rotation are second order in the angular 
velocity. They are determined by solving the Einstein equations to this order. As input 
information for this computation not only the parameters characterizing the non-rotat- 
ing configuration are needed but also those which characterize the^tf-order changes in 
the metric. How to obtain this additional input information—rate of rotational dragging 
of the inertial frame inside the fluid—has already been spelled out in § IV. Consequently 
it is assumed in the following that co(r) is known as well as the functions which describe 
the non-rotating configuration. 

The metric for the rotating configuration is given in equation (30). The second-order 
terms we will compute are denoted by h{rfl), w(r,0), and k{rfi). They are defined by 
the following expansion: 

ds* = -ev{\ + 2h)dt2 + ex[l + 2m/(r - 2M)]dr2 + r2(l + 2k)[dd2 

(66) 
+sin2 0(d<p — udt)2] + 0(Q3) . 

If an expansion of the metric in spherical harmonics is also made, it takes the following 
form because H, K. and O all transform like scalars under rotations (see Regge and 
Wheeler 1957) 

h{rfl) = h(r) + h2(r)P2{B) + . . . , (67) 

m(rfl) = m0(r) + m2(r)P2{S) + . . . , (68) 

k(rfl) = h{r) + k2{r)P2(d) + . . . . (69) 

One further and convenient simplification of the metric may be made here. Transforma- 
tions of the type r—>/(r) do not change the form of the metric given in equation (30). 
Such a coordinate transformation may, therefore, be used to guarantee the additional 
condition 

h(r) = 0 . (70) 

This will be assumed in the following. 
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An expansion of the metric as a function of r and 0 in powers of fí2 is legitimate because 
the fractional change in any metric coefficient caused by the rotation will be much less 
than unity throughout space. In contrast, this would not be true for an expansion of the 
pressure or density as a function of r and 0 for the reasons given in the discussion of the 
analogous expansion in the Newtonian case. As in the Newtonian theory we, therefore, 
introduce new variables i?, 0 defined by 

0 = 0, SK^,0),0] = £(£) , (7i) 
and put 

r = £ + £(£,0) + 0(Û4) . (72) 

The pressure and density are now known functions of R common to both the rotating and 
non-rotating configurations. 

To calculate the Einstein’s equations to order Í22 we must evaluate the G/ = R/ — 
to this approximation using the metric given in equation (66). This calculation is 

carried out in the Appendix. The corrections to of order Í22 are functions of h, k, m, 
and co and will be denoted by To obtain these corrections in the new coordinate 
system we transform the tensor GM

V + 5G/. Denote the corrections of order Í22 in the 
i?, 0 coordinate system by AG^7. One then has, for example, 

AG('(i?,0) = bG^iR,®) + £ (.R,0)^[Gi‘(-R,e)(o> ]. (73) 

Here (GiO(0) is GV calculated with the unperturbed metric. This latter quantity may be 
expressed using the zero-order field equations. One finds 

AGV(£,0) = bGt^Rß) ~ STÏ(R,e)dE(R)/dR , (74) 

AGrr(R,Q) = ôGrr(R,e) + 8TrÇ(R,G)dP(R)/dR , (75) 

AGee(£,0) = ÔGe9(RyG) + $Trï(R,G)dP(R)/dR , (76) 

AG^(R,0) = ôG^(RyQ) + 8irï(R,6)dP(R)/dR , (77) 

AGÄe(R,0) = ôGr
e(R,G) . (78) 

The space-time cross terms are of odd order in Í2. It can be seen using the identities of 
equations (74)-(78) that the equations obtained by this perturbation method are for- 
mally the same as those which would be found by working in the coordinates r, 6 and 
expanding 8 and (P in powers of ß2 with the identifications. 

( 2d-order term in 8 ) = — £ 
aK 

( 2d-order term in (?) = — £ 
aK 

(79) 

(80) 

In general relativity, as in Newtonian theory, the calculation of rotational perturba- 
tions is greatly simplified if the equations are expanded in spherical harmonics. The 
expansion of the metric coefficients is given in equations (67)-(69). From its definition 
in equation (72) £ transforms like a scalar under rotations. The expansion of £ thus has 
the form 

£ = £o(Æ) + Í;2(R)P2(Q) + . . . . (si) 

Expanded to order ß2 the Einstein equations will have the general form 

3ß/(h,m,k^) = ß/(w) , (82) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 67

 A
p J

. 
. .

15
0.

10
05

H
 

No. 3, 1967 ROTATING RELATIVISTIC STARS 1019 

where 3C/ is linear in the second-order quantities A, k, and £ and £1/ is quadratic in 
cö. The different l values in the spherical harmonic expansion of k, and £ are not 
coupled together by the left-hand side of equation (82) because that expression is linear 
in these components. The right-hand side is quadratic in the quantity cö which trans- 
forms like 1=1. This side can, therefore, contain at most / = 0,1, 2. The value / = 1 is 
ruled out from the assumed reflection symmetry of the configuration. Thus, only the 
Z = 0 and 1 = 2 equations involve the angular velocity £2 in any way. The coefficients in 
the expansion of h, m, k, and £ possessing other l values must, therefore, vanish since 
they vanish when the star is not rotating. The reduction in the number of l values from 
infinity to 2 in the slow rotation approximation greatly simplifies the subsequent nu- 
merical computations in complete analogy to the Newtonian analysis. 

VI. INTEGRAL OF THE EQUATIONS OE HYDROSTATIC EQUILIBRIUM 

Not all of the six independent Einstein equations need be written down in order to 
solve for the rotational perturbations when the rotation is uniform. A first integral of 
these equations is contained in the integral of the equation of hydrostatic equilibrium 
for a uniformly rotating configuration with a one parameter equation of state (Tauber 
and Weinberg 1961; Boyer 1965; Hartle and Sharp 1967) 

constant = jjlc 
S +(P 

u* 
exp (83) 

If the configuration is isentropic then iic is the chemical potential. Both sides of equation 
(83) are now expanded in powers of £22. The constant injection energy /¿c we write as 

Me = m[1 + 7 + 0(i24)] , (84) 

where m is the non-rotating injection energy and 7 a constant of order £22. In the ex- 
pansion of the right-hand side of equation (83) we use equation (36) to express u* in 
terms of the metric and angular velocity 0, We find for the non-rotating configuration 

ß = {E+P)e’* exp (- / ^p), (85) 

and for the terms of order O2 

7 = ÿ*(R,0) + h(R,&) — \e~viR)ôi{K)2 R2 sin2 0 , (86) 

where we have defined the relativistic “pressure perturbation factor” 

p*(R,e) = iVRi;(R,e) = - ? (¿p^l). <87> 

and the last equality follows from the second of equations (29). If we define 

Pa (R) ^R^(^E+Pd^)’ ífiS> 

then both sides of equation (86) may be expanded in spherical harmonics to find 

1 = 0, 7 = po<R) + h0(R) - ie-WR^R)2, (m 

1=2, 0 = p2*(R) + h2{R) + le-^R2w(R)2. (»D 
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In this way we have an integral of the second-order Einstein’s equations for each relevant 
value of L 

The equations for different values of l are not coupled together and may be considered 
separately. In the next two sections we will consider the equations for Z = 0 and Z = 2 in 
turn with special emphasis on putting them into a form to calculate the relation between 
mass and central density and the shape of the star. 

VII. THE Z = 0 EQUATIONS—RELATION BETWEEN MASS AND CENTRAL 
DENSITY—BINDING ENERGY 

How does the mass of a rotating star differ from that of the non-rotating one possessing 
the same central density? This question can be answered by examining the Z = 0 equa- 
tions alone because the mass, M, of any configuration in general relativity is determined 
by the spherically symmetric part of the metric at large distances, 

gtt-*— 2M/r), r—oo . (92) 

In this section the Z = 0 equations are organized to solve this problem. By considering 
the rotating star as a perturbation on the non-rotating star with the same central density 
we guarantee, as in the Newtonian theory, that the fractional displacement %(R,Q)/R 
is small throughout the star as is necessary for a valid perturbation analysis. 

Three functions w0, and £0 suffice to specify the Z = 0 parts of the configuration 
completely. As an integral of the Z = 0 field equations is already in hand in equation 
(90) only two additional field equations need be solved. These are chosen to be GV = 
SttTY and Grr = SttTV2, where G/ = R/ — ^S/R. The second-order contributions 
to the G/ are calculated in the Appendix. Combining equations (A.9) and (74) and 
(A. 11) and (75) one has 

and 

( AG R R ) z=o== 

(AG¿*)z=o= - 

2 Wo 

(93) 

2mo 
{R-2M) 

(8.P+¿) + (l-^)!§+á*W,)> + 8,í 

dP 
dR 

dP 
0 dR' 

(94) 

Here equation (28) has been used in obtaining the last line. The second-order terms on 
the right-hand side of Einstein’s equation are 

(A7y)i=o= = (95) 

and 
(ATrR)i=o = 0 . (96) 

Thus the two Einstein’s equations considered here become 

and 

dmo 
~dR 

^R>jp{E+P)p¿ + ^jW(ÚR)> (97) 

dhu 

~dR 

m^R2 

Tr^im)2 

4t(E+P)R\, 1 R* .2.. ,2 

(R-2M) ^ {R-2M) ] 
(98) 
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where 

ROTATING RELATIVISTIC STARS 1021 

ÿo*= - (99) 

Differentiation of the integral of the equation of hydrostatic equilibrium yields an 
identity which may be used to eliminate dhv/dR from equation (98). 

dR Tl2 (R 

Ri 

2M) 
PiÜR y+x±(Ejw_\ 

’ ^ adR\R-2Mj 

{E±PW 

^(R— 2M) 
moR2 

(R-2M) ( 

(100) 

8„P+¿). 

Equation (100) is the relativistic generalization of the Newtonian equation (second of 
eqs. [15]) of hydrostatic equilibrium for slowly rotating configurations. It shows the 
balance of pressure, gravitational, and centrifugal forces. Together with equation (97) it 
completely determines the / = 0 problem. The linearity of these equations and of those 
which determine co means that from the solution for one value of Í2 the solution for other 
values may be obtained by scaling. 

It is of interest to see how the Newtonian balance of pressure, centrifugal, and gravi- 
tational forces shows up in equations (97) and (100) when all quantities are expanded in 
powers of (1/c). To make this expansion we reinsert the factors of G and c and write 

E = Gp/c2 + 0(1A4), P = Gp/c* + 0(l/c6) , 

M = GM/c2 + 0(1A4) , ¿b = ti/c + 0(1A3) , (loi) 

jR/jR = -47r(E + P)e~v = -4:tGp/c2 + 0(1A4), ^ = 2GM/R.C2 + 0(1A4) • 

The equations (97) and (100) become 

and 

where 

Tr=^gr 7ppPü ’ 

dpa* 
dR 

?Í22£ = 
ma 
R2 ’ 

p dp 

(102) 

(103) 

(104) 

These equations are identical with the Newtonian equations discussed in § II. 
From its definition in equation (66) one sees that the value of Mo(r) at large r is the 

change in mass, ôMy of the perturbed configuration from its non-perturbed value. To 
relate the change in mass 8M to the value of Mo at the surface of the star we solve equa- 
tions (97) and (100) in the exterior region using the known form for cö(r) given in equa- 
tion (47). We find outside the star 

M0(r) = ÔM - J2/r3, (105) 

so that 
(-r_2M7 + 

ÔM = m0(a) + P/a? . 

P 
rPr-2M)' 

(106) 

(107) 
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To determine the relation between mass and central density one now proceeds as fol- 
lows. (1) Choose a value of the central density. Calculate from the general relativity 
equation of hydrostatic equilibrium the non-rotating configuration with this value of the 
central density. At the same time calculate ev{r) for this configuration. (2) Solve equation 
(46) to determine œ(r) for this configuration and its moment of inertia I. (3) Integrate 
the coupled equations (97) and (100) out from the origin with the boundary conditions 
that as 0, 

Po*(R)-+HjcàcVœ, »ío*(i?)-^||(^+Pc)[(^Dc+2](ic¿,c)^6. aos) 

Here a subscript c indicates that the quantity is to be evaluated at the center of the star. 
These boundary conditions guarantee that the central density of the rotating and non- 
rotating configurations are the same. (4) Determine the change in mass of the rotating 
configuration with the chosen value of central density over that of the non-rotating con- 
figuration with the same central density from equation (107). 

The total baryon number of a neutron star and the binding energy of a supermassive 
star are two other quantities of interest which can be computed from the 1 = 0 equa- 
tions. The expression for the total baryon number, ^4, as an integral over the number 
density of baryons, 91, follows directly from the differential form of the baryon conserva- 
tion law [(—¿)1/29toM],M = 0 (see Misner and Sharp 1964). The expression is 

A = f dzx{— g)1/V91. (109) 

For an isentropic configuration the number density of baryons can be related to the 
pressure and energy density by the first law of thermodynamics 

dm, _ m 
d& ~S+(P- 

(UO) 

The negative of the binding energy, —Eb, of a relativistic star is defined to be the differ- 
ence between its mass and the mass of all its matter when cold and dispersed. 

— Eb = (total mass-energy) — (rest mass-energy) = M — jjlA , (in) 

where /* is the rest mass-energy associated with a single baryon. A calculation of the 
binding energy is, therefore, equivalent to a calculation of the total baryon number. 

The quantities of interest for the slowly rotating stars will be the change in binding 
energy ôEb or change in total baryon number ÔA over their values in the non-rotating 
configuration, 

— ÔEb = àM — ¡JLÔA . (112) 

When calculating the change in binding energy greater accuracy is obtained by specify- 
ing not the number density of baryons directly but rather the difference, e, between the 
density of mass-energy and the density of rest mass-energy, 

€ = 8 — um . (113) 

An expression for ôEB in terms of e may be obtained from equation (112) as follows: 
Express equation (109) in the coordinates R, 0. Expand the resulting equation to order 
ß2 and integrate all derivatives of £ by parts to find ÔA. Only 1 = 0 perturbations will 
survive in this expression. Subtract this result from 8M found through equation (107). 
One finds: 

ÔEB=f
a4:irR2B(R)dR, (m) 

a6 Jq 
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where 

W) = (£+i.)i,jf[(l l]+ê(l 

(115) 

+ (£ - 6) (l - 2^“3/2 g! + i ( )2 _ 1 ( ^ ) ] . 

To find the binding energy or equivalently the total baryon number, one now proceeds 
as in the calculation of the relation between mass and central density described above 
with the following additional steps: (5) Determine the difference, €, between the energy 
density and the rest mass-energy density from the equation of state. (6) Use the already 
calculated functions ÿ0*, w0, E, P, M, and œ to calculate B(R) from equation (114). (7) 
Integrate equation (114) to find the change in binding energy of the rotating star over the 
value for the non-rotating configuration. Determine the change in total baryon number 
from equation (112). 

VIII. THE 1—2 EQUATIONS—THE SHAPE OF THE STAR 

How is the surface of a rotating star of given central density deformed from the 
spherical surface of a non-rotating star with the same central density? 

The surface of the rotating star is given according to equations (72) and (81) by the 
equation 

r = r(6) = a + £0(d) + %2(a)P2(0) , 

where a is the radius of the non-rotating configuration. The parameter %o(a) has already 
been determined from the solution to the 1 = 0 equations 

£0(0) = po*(a)a(a — M)/M , (ii7) 

where M is the mass of the non-rotating configuration. To calculate the other parameter, 
£2(0), the field equations with 1 = 2 must be used. In this section the generalization to 
general relativity of Clairaut’s equation in Newtonian gravitational theory for deter- 
mining £2(0) will be derived. 

In addition to ^{R) there are three unknown functions h2{R)1 k2(R), and m2(R) which 
completely determine the 1 = 2 solution. As the integral of the equation of hydrostatic 
equilibrium (eq. [91]) is already in hand, only three field equations need be written down. 
The equations are chosen with a view to yielding the simplest non-trivial expressions. 
The G/ necessary to write these equations have been computed in the Appendix. 

The first equation we consider is one which vanishes identically in the case of no 
rotation 

ReQ - Rf = 87r(re
0 - TV) . (ns) 

The right-hand side to order Œ2 is 

Tqq - 7V> = - (S + (P)^ = - (£ + P)e~vÜô)R2 sin2 e + 0(Û4) . (H9) 

Equating this with the result for the left-hand side from equations (A. 15), (76), and (77), 
one has 

h* + -r-™2M= + <12°) 

This relation provides a useful first integral of the field equations. 
The next equation is taken to be 

Rr
q = 0 , (121) 
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which from equations (A.14) and (78) has the form 

¿(Ä2 + ^)=Ä2(|-^)+^|s(|+^). 

Finally, we use the 1 = 2 component of the field equation 

Gr
r = StTr

r = StKP . 

We rewrite this employing equations (A.12) and (75) as 

2 / 2M\ dh2 

R\l R ) dR 

6h2 

~R~ 

Vol. 150 

(122) 

(123) 

(124) 

Equations (120), (122), and (124) and the integral of the equation of hydrostatic equi- 
librium (eq. [91]) are the four equations we will use to determine the 1 = 2 terms in the 
deformation of the star. 

To find the general relativity analogue of ClairauFs equation we use the two integrals 
(eqs. [91] and [120]) to eliminate the functions w2 and £2 leaving two coupled first- 
order equations for h2 and &2. For the purpose of numerical computation it is convenient 
to introduce v = h2

Jr k2 and write the resulting equations in the form 

-^Â2 + d + y)[ -^3(Í2)fi«
2 + Ü2^4(¿>B)2], (125) 

dhi 

Hr S-**+(ïrrfFd>'<-E+'> 

4M"|| 4t> 
i?3JiÄ2 Rvb{R-2M) 

+i [^rR- 
1 

(R— 2M) 
(w) 

(126) 

The quantity vr which appears in these equations may be expressed in terms of the 
energy and pressure by 

8tPR*+ 2M 
R(R— 2M) ' 

(127) 

The two equations (125) and (126) are solved for the derivatives so that they are in a 
form where their solutions can be computed numerically by integrating outward from 
the origin. 

At the origin the solutions must be regular. An examination of the equations (125) 
and (126) shows that, asi£—»0, 

h2(R) —» AR2 (128) 

v{R)-^BR4i
i (129) 

where A and B are any constants related by 

4 7T 
R+2tt(Pc + \Ec)A= --f(Ec + Pc)(jcùc)2, (130) 

and where Ec and Pc are the values of the energy and pressure at the center of the star. 
The remaining constant in the solution is determined by the boundary condition that 
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ho(r) —> 0 at large values of r. The constant is thus determined by joining the interior 
solution to that exterior solution which satisfies this boundary condition. 

In the exterior region the values of cô and v and X are given through equations (47) 
and (27). In terms of the mass of the unperturbed star, If, and the angular momentum, 
/, the 1 — 2 equations in the exterior region become 

d v 
dr 

2Mh‘ 6J2 (r-M) 

dJi2 

dr 

r(r-2M) ' rb (r-2M) ’ 

2v 2h2(r-M) 3J2 (r2-2Mr-2M2) 

M r{r-2M) M rb(r-2M) 

(131) 

(132) 

The general solution to these equations is the sum of any particular solution plus a 
solution to the homogeneous equations, 

d v 
d r 

2Mh2 

r(r-2M) 1 
dh2 _ 2v 2h2(r — M) 
~dV~ ~H~~Vlr~-2M)' 

(133) 

A particular solution may readily be found by making the ansatz v = ar~* + br~A + cr~h 

and a similar form for h2. One finds 

v = 
P 
w 4 ’ =p ^ 

VM>3 rV 
(134) 

To find the solutions of the homogeneous equation we write equations (133) as one 
second-order equation for h-¿. 

Ph, 2(r-M) dhi 6r2- 121fr + 41f2 

dr2 r {r — 2M) dr P(r-2M) 
hi = 0. (135) 

At large r this has solutions which behave as r~3 and r2. Only the one which vanishes at 
infinity is relevant here. To find it we introduce the new variable f = (r/M) — 1 : 

O-f2) 
d'h, 

d? 2ff+(6-r7r>'-0- 
(136) 

This is a form of Legendre’s equation so that the solution with the desired asymptotic 
properties may be written 

3f3-5f 
Ä2 ( f ) = AÖ,2 ( n = A [| ( f2 - 1 )log (¿±|) - , (137) 

where Qf1 is the associated Legendre function of the second kind. The constant A is re- 
lated to the mass quadrupole moment of the configuration by the relation 

(quadrupole moment) = Q — J2/M + \6AMZ/S . 

The general 1—2 exterior solution is then5 

v{r) =2AM[r{r-2M)]-^Q¿(ji-\^-yi, 

(138) 

(139) 

(140) 

6 The author has been unable to make the solutions given by Bach (1922) for the case of vanishing 
quadrupole moment agree with those given here. 
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where 

JAMES B. HARTLE Vol. 150 

The interior solution like the exterior solution may be written as the sum of a particular 
solution and a homogeneous solution. The particular solution may be obtained by inte- 
grating equations (125) and (126) outward from the center with any values of A and B 
which satisfy equation (130). The homogeneous solution is then obtained by integrating 
the equations 

dv 
Jr 

— VRh2l (142) 

dh2 

Jr 

R 
= I —VR [8»(£+P)-^][ 

4a 
{R— 2M)vr 

with A and B as in equation (128) but related by 

B + 2ir(Pc + \EC)A = 0 . 

The general solution may then be written 

h2 = Arh2
H + h2

p , v — A'vH + vp , 

Rvr(R-2M) 
, (143) 

(144) 

(145) 

where a superscript H denotes the homogeneous solution and P the particular solution. 
The constants A and Af are then obtained by joining h2 and its first derivative at r = a 
with the exterior solution given in equation (139). 

To summarize the calculation of the shape of the surface one proceeds as follows: (1) 
Write the equation of the surface in the form given in equation (116). The parameter 
£o(#) is determined from the / = 0 equation by the relation in equation (117). (2) Inte- 
grate equations (125) and (126) outward from the center with arbitrary initial conditions 
satisfying equations (128), (129), and (130). This determines particular solutions h2

p 

and vp. (3) Integrate the homogeneous equations (142) and (143) outward from the 
center with arbitrary initial conditions satisfying equations (128), (129), and (144). (4) 
Match the general solutions of equations (145) with the exterior solutions in equations 
(139) and (140). All constants are now determined and h2 and v are known as functions 
of r. (5) Calculate the ellipticity, e(a), of the surface with the relation derived from 
equations (89) and (91). 

e(i?) = -7rh(a) = I* CL 
3 (a — 2M) 

2M 

It is instructive to see how the procedure summarized above yields Clairaut’s equa- 
tion in the Newtonian limit. To do this we must reinsert factors of G and c and make an 
expansion of the relativistic equations in powers of (1/c). Here we use the already known 
expansions given in § VIII and, 

h = <P2/c2 + 0(1A4), z; = t/c2 + xA4 + 0(1A6) . 

Equations (125) and (126) then reduce to 

d(P2 _ (^tcR2p __ 2 \ _ 2x 
M r) gm 

47T 
m 

piï2R\ 

(147) 

(148) 

¿ = 0, (149) 
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dx 'léG^L J Sx fi K(U 
lR=:-~W'(pi+TïlRGp- 050) 

The integral of the equation of hydrostatic equilibrium (eq. [91]) becomes 

0= ^lf- + ^(Æ)+§Û2Æ2. (151) 

If we write this in terms of the ellipticity e(R) = —f f2(^)/^ and compare with equa- 
tion (5) we see that ç>2 is the Eulerian change in the Newtonian potential, 

çp2 = 3>2[2] . (152) 

By using equation (120) to calculate m2, the metric becomes 

di2= -(l+^)¿¿2 + [l+^^+$2t
21(>-)P2(*)]ár2 

(153) 
r 2$9í2) i 

+ r2[H-^-P2
(x)J(àô2 + sin2 dd^). 

This is in agreement with the result quoted in equation (SO) taking the gauge transfor- 
mation into account. Finally eliminating x and <p2 between equations (148), (150), 
and (151) one has the following equation for e: 

M d2e . 2 dM de , 2dM € 6Me n    =0. (154) 
R dR?^R dR dR^ dR R*R* 

This is identical with Clairaut’s equation (eq. [22]). The relativistic theory presented 
here thus gives the correct Newtonian limit. 

IX. CONCLUSIONS 

Equations have been developed for calculating the structures of slowly rotating 
general-relativistic stars in hydrostatic equilibrium. In particular, prescriptions have 
been given to find the relation between mass and central density, the shapes, and the 
binding energy of these massive stars. The equations are the generalization in general 
relativity of the corresponding equations in Newtonian gravitational theory. 

The equation which determines the relation between mass and central density takes 
the form of an equation of hydrostatic equilibrium. It enforces the balance of pressure, 
gravitational, and centrifugal forces correctly to order O2 in the angular velocity. In this 
order the surfaces of constant density are spheroids whose ellipticity varies from zero at 
the center of the star to the ellipticity which describes the shape of the star at the surface. 
The ellipticity, e(R), as a function of radius is determined by a generalization to general 
relativity of Clairaut’s differential equation for this quantity. 

Both the equations which determine the relation between mass and central density 
and those which determine the ellipticity are systems of ordinary, first-order linear 
differential equations whose solution may be obtained by computer calculation. Work in 
this direction is now going forward. 

The opportunities of discussions with Professors S. P. S. Anand, J. M. Bardeen, S. 
Chandrasekhar, and J. Weinberg are gratefully acknowledged. Special thanks are due 
to Professors K. S. Thorne and J. A. Wheeler for numerous conversations and critical 
readings of the manuscript and to Dr. S. M. Chitre for checking the equations. 

Part of this work was done while the author was at Princeton University and at the 
1966 École d’Êté de Physique Théorique at Les Houches, France. 
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APPENDIX 

The second-order contributions to G/ are briefly summarized here. The R/ were first calcu- 
lated for the general metric 

ds2 = e2*dr2 + e2W + p2d<p2 - 2œp2d<pdt + (co2p2 - N2)dt2, (a.i) 

where a, ß, p, co, and N are functions of r and 6 alone. This line element is more general than that 
of equation (50), but the expressions which it leads to are more easily checked against other 
calculations (see, e.g., Bach 1922; van Stockum 1937). One finds 

—ea+ßpNRt = [eV-a(pNr - pK^)r/^N)]r + [e^{pNe - pV)0/4AO]0 , (a-2) 

-e'+PpNRv* = [e^-a(Npr + pV),/47\0]r + [e^Npe + p3(co2)0/4iV)]0, (a.3> 

-e^pNRJ = [e^apzœr/N)r + [e^p^e/N]e, (A-4) 

-e+^+VpNR/ = Np[(eV-*ßr)r + OaH3a0)0] + e^{Np)eae + e^[pNrr 

+ Nprr - <Xr{NP)r] ~ ^ 

—e{a+ß)pNRe9 = Np[(e^^r)r + (e-ßae)e] + eß-'(Np)rßr + e°-ß[PNee 

+ Npee - ße(Np)e] - h^eY^pVN , 

Rre = —N re/ N — pre/ p + ae(Nr/N + pr/ p) + ßr 

X (Ne/N + pe/p) + h^epVN^. 

For the scalar curvature R one finds 

—ea+ß
PNR = [(e^-opAOrlr + [e^CpA7)«]« + 2Np[(,e^ßr)r 

+ (e*-ßa)e] + p[(e^Nr)r + (e*-ßNe)e\ + N[(e^pr)r (A-s) 

+ (e°-ßpe)e\ ~ i(p3/N)[e^(œrY + e-^e)2] . 

The quantities Gß, G/, Rre, and Ree — Rv
v are now to be expanded in powers of 0 using the 

form of the metric given in equation (85). The resulting equations are then to be separated into 
components of definite angular momentum. We also use here the result of the discussion of § IV 
that to« = 0. We find: 

( 2d order GV)¡=o = 8r37rCo(Q — to) +ir4(tor)
2] (A.9) 

or2 dr r¿ 

( 2d order Gt1)^ = 8r3yrco (O — co) — jrA(wr)
2 

o r¿ 

+ 1 
6wî2 

dm2 2 
dr r2 

4¿, 

r2(r-2M) r- 

2M\ 2 ( A0) 
(2d order Gr

r)i-e = Ir2 j2M2-^(vr+ + (l -~^) 

( 2d order G/) z=2 = - | r2j2 ( tor )2 - ^ (^ + ^) + (l - ^) 

X 
2 ( ^2 ) r 6^2 

(A.10) 

(A.ll) 

(A.12) 
U, 

1 ’ 
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(2d order2?rí()¡_o = 0 , (A.u) 

(2d order2?r«)i=2 = ~ (¿ (j-- (¿2)r + y (7+|)■ (A-14) 

(2d order Re9 — ^9) = sin2 +§i2r2(ov)2 

(A.15) 

+ >■ ( J2 ) r<W ( 0 — CO ) J . 

In some cases these expressions have been simplified by using the differential equation for co 
(eq. [65]). 

Thanks are due to K. S. Thorne and B. A. Zimmerman for checking the Ricci and Einstein 
tensors given in this Appendix with their analytical computer program “Albert” (see Thorne 
and Zimmerman 1967). 
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