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It is shown that a wide class of tensor-scalar theories can pass the present weak-field gravitational
tests and exhibit nonperturbative strong-field deviations away from general relativity in systems
involving neutron stars. This is achieved without requiring either large dimensionless parameters,
fine tuning, or the presence of negative-energy modes. This gives greater significance to tests of the
strong gravitational field regime, notably binary pulsar experiments.
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Tensor-scalar theories, in which gravity is mediated by
one or several long-range scalar fields in addition to the
usual tensor field present in Einstein’s theory, are the
most natural alternatives to general relativity. Kaluza-
Klein, supergravity, and superstring theories naturally
give rise to massless scalar fields coupled to matter with
gravitational strength. Recently, “extended” inflationary
models [1] furnished a new motivation for considering
tensor-scalar theories.

Solar-system experiments set tight constraints on pos-
sible post-Newtonian deviations from general relativity,
namely (at the one sigma level) [2,3],

7 —-1<2x107%, |B8—-1<2x1073, (1)
where 3 and 7 denote the usual post-Newtonian param-
eters (we add a tilde to the standard notation to distin-
guish them from the underlying theory parameters intro-
duced below). Within tensor-scalar theories, the combi-
nation

ag=(1-9)/1+7) (2)
plays a basic role because it measures the ratio between
the couplings to matter of scalar and tensor fields. The
Jordan-Fierz-Brans-Dicke theory, which is the simplest
tensor-scalar theory, has a2 = (2w + 3)~! as a unique
free parameter, and all its predictions (in both weak-field
and strong-field conditions [4]) fractionally differ from the
general relativistic ones by quantities of order aZ. More
generally, a recent study of generic tensor-scalar theo-
ries [5] has formally shown that all the deviations from
general relativity, observable at the present cosmological
epoch, can be expanded in series of powers of aZ. These
results seem to suggest that the limit a2 < 10~ deduced
from post-Newtonian experiments, Eq. (1), a priori con-
strains the possible level of deviation from general rel-
ativity in all other gravitational experiments, including
those involving strong gravitational fields [6].
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The purpose of the present work is to prove that such
a conclusion would be illegitimate. By studying neutron-
star models within general tensor-scalar theories, we find
that, when a certain inequality is satisfied [(8 — 1)/(¥ —
1) 2 +1], these models develop some nonperturbative
strong gravitational field effects which induce order-of-
unity deviations from general relativity, even when the
linear coupling constant o2 is very small.

The most general metric tensor-monoscalar theory
(with one massless scalar field) contains one arbitrary
“coupling function” A(y) [7]. Its action reads

S = (167G,)~! /d4a: gi/z[R* — 290,00, ¢]
+ S [Ym, A%(0) gy - (3)

G, denotes a bare gravitational coupling constant, and
R, = gi“’R;V the curvature scalar of the “Einstein met-
ric” g;,,. The last term in Eq. (3) denotes the action of
the matter, which is a functional of some matter vari-
ables, collectively denoted by %, and of the (“Jordan-
Fierz”) metric g, = A%(p)g},. See Ref. [5] for the ex-
tension to the multiscalar case, and a comprehensive dis-
cussion of the observable consequences of tensor-scalar
theories.

The universal coupling of matter to §,, means that
nongravitational clocks and laboratory rods measure this
metric. However, the field equations of the theory are
better formulated in terms of the variables (g;;,,%). The
field equations derived from Eq. (3) read

* 1 * %k
R}, = 20, 0yp + 87G. (Tu,, - §T g[w) , (4a)
Og, ¢ = —4nGa(p)Ty , (4b)
with T = 2(g«)"'/26Sm/6g}, denoting the stress-

energy tensor in the g* units, and where all tensorial
operations are performed by using this metric. The quan-
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tity a(p) in Eq. (4b) denotes the logarithmic deriva-
tive of the coupling function, a(p) = 0ln A(p)/dp. It
plays the role of the basic (field-dependent) coupling
strength between the scalar field and matter. [The origi-
nal Jordan-Fierz-Brans-Dicke theory is characterized by
having a field-independent coupling strength, a(y) = aq,
ie., A(p) = exp(aop).]

Post-Newtonian experiments probe just the low-order
perturbative structure of tensor-scalar theories in that
they depend only on the values of a(y) and its field-
gradient, B(p) = Oa(yp)/0¢, at the cosmologically de-
termined value of the scalar field: say ap a(vo),
Bo = B(po) where the cosmological value ¢y enters the
theory as the boundary condition on the scalar field at
spatial infinity. The square of ap determines the post-
Newtonian parameter 4 through Eq. (2), while the other
post-Newtonian parameter is given by [5]

ﬁoa%
(14 af)?

f-1=

2 (5)

The spherically symmetric, static metric generated by
an isolated, nonrotating neutron star can be written as

dr?
2 _ % BnV — u(r)d 2 e
dsy = g, dz"dz e e+ T 2u(r)/r
+72(d6? + sin? 8 dp?) . (6)
The physical stress-energy temsor TH* = 2(3)~1/2

X6Sp /63, takes the perfect-fluid form Tw = (8 +
p)ura” + pghY, and is related to its g*-frame counter-
part by T#, = A%(p)T#. From the field equations (4a),
(4b), and the stress-energy balance equation (%,,f: 0)
one derives the following first-order differential system
(with a prime denoting d/dr):

J

W = 4n G A% ()E + %r(r — o)y

¢ =9,

W= 4”0*%%@(@@ — 3p) + (& — p)]

i = —(¢+5) [M@Li‘%‘?j N %T¢2+ 7(7'—&27)
+a(s0)¢] : (1)

Given some equation of state relating € and p, one can
integrate the system (7) starting from the center, r = 0,
with the initial conditions p(0) = 0, »(0) = 0, ¢(0) = ¢,
¥(0) = 0, and $(0) = P.. Although the right-hand sides
of Egs. (7) do not vanish outside the matter, it is suf-
ficient to integrate the system up to the surface of the
star, r = r,, where the pressure vanishes. Then one
can match the interior solution (g}, ) [written using a
Schwarzschild-like radial coordinate, Eq. (6)] to the ex-
act general exterior solution, which is known in closed
form when using a radial coordinate introduced by Just
[5,8,9]. The latter general exterior solution contains two
independent parameters: the total ADM mass of s
say G«ma, and the total scalar charge wyg such that
@ = @o + Guwa/r + O(1/r?) as 1 — oco. Actually, a
more interesting scalar quantity is the dimensionless ratio
o4 = —wa/ma. We here follow the notation of Ref. [5];
in particular the subscript A is used as a label to distin-
guish a particular star member of a multiple system (e.g.,
a binary pulsar system). From matching the interior and
exterior solutions we find a4 = 29, /v, and

_ 2¢s (V'3 + 4212
Y= g + W&rctanh I: V¥ 2/7'5 s (8)
2y 2u 1/2 v (,/2 +4¢2)1/2
=22 (1- = ——5—*—arctanh | ~—L——2-— 9
ma 2G ( Ts ) =B (V"2 +4¢§)1/2arc an vh+2/r, ’ ©

where the subscript s refers to quantities evaluated at
the surface r = r, (and where, as above, g is the value
of ¢ at infinity). Another quantity of direct physical
interest is the total baryonic mass of the star A, say Mg =
My [ fn/Guld3z = 1y, [ AR A3 (@)r?(1 — 2u/r) =/ 2dr,
where 1, denotes, say, one atomic mass unit and i the
physical, proper baryonic number density.

It was shown in Ref. [5] that the equations of motion
(at the post-Keplerian level), and the gravitational wave
emission, of a system of N strongly self-gravitating bod-
ies were determined by the values of the total inertial
masses my4 (where A =1,...,N) together with the val-
ues of the dimensionless parameters a4 = 8Ilnm4/0¢g,

-

Ba = 8aa/Opo, in which the derivatives are taken keep-
ing M (and G.) fixed. For instance, the Keplerian-order
interaction energy between two stars is —G.mamp(l +
asap)/rap. The quantity as = 0lnma/Bypp is identi-
cal to —wa/m4 and plays the role of the effective cou-
pling constant between the scalar field and the star A.
In the limit of negligible internal gravity the parameters
a4 and B4 tend toward agp = a(pp) and Bo = B(vo),
respectively. In Ref. [5] it was further shown that, when
one works perturbatively in the strength s4 ~ G,ma/ra
of the self-gravity of body A, one obtains an expansion
of the symbolic form as = ao[l + a154 + ags% + -]
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with some coefficients a;, as,... which stay finite when
oo — 0 [and which are of order unity if the coupling func-
tion A(¢p) is smooth and involves no large parameters].
This expansion suggests that a4 — 0 when o tends to-
ward zero, even when s4 approaches unity (strong self-
gravity). As all observable quantities associated to the
exchange of a scalar interaction contain at least two « fac-
tors (e.g., in combinations such as a4f8pac¢), this would
mean that post-Newtonian experiments yield a priori
constraints on possible strong-field effects observable in
systems of compact objects. Actually, this conclusion is
premature.

One can see heuristically in a simplified model how
the infinite series of self-gravity contributions, 1+a1s4 +
azsi + .-+, can compensate even a vanishingly small ap.
Let us consider the simple case where A(p) = exp(B8p?/2)
li.e., a(p) = By and B(yp) = B = const], and let us ap-
proximate the scalar field equation (4b) by neglecting the
curvature of g%, and replacing —G.T. = G.A*(& — 3p)
by a positive constant, G.ma /(4713 /3) = 3s4 /4772, all
over the volume of the star (r < r4). This yields the
simple equation Ay = sign(B)x%p where 2 = 3|8|sar ;>

when r < r4 and k2 = 0 when r > r4. When S
is negative, the solution of this equation in the inte-
rior of the star is ¢in(r) = @csin(xr)/kr with . =

wo/ cos(kra) = o/ cos[(3|8|s4)/?] > o, so that the
effect of the self-gravity of the star is to amplify the lo-
cal value of |a(p)| = |Ble with respect to its cosmolog-
ical value |ag| = |B|lpo. When |5| and the self-gravity
of the star are such that (3|8|sa)}/? = 7/2 this ampli-
fication mechanism can compensate even a vanishingly
small ag. (There appears a zero mode of ¢, i.e., a non-
trivial solution with vanishing boundary conditions at in-
finity.) As a typical (1.4mq) neutron star has s4 ~ 0.2,
we expect that this nonperturbative amplification effect
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FIG. 1. Fractional binding energy vs baryonic mass for a
neutron-star model (polytrope I' = 2.34 with K = 0.0195)
computed within the tensor-scalar theory A(p) = exp(—3¢?),
with cosmological boundary condition ¢o = 0.0043. The
dashed curve represents a second, energetically less favorable,
sequence of equilibrium configurations. For clarity, only the
turning point of the binding energy curve within general rel-
ativity is indicated.
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could take place when 3 < —4. By contrast, when (3
is positive the solution is obtained by the replacements
sin — sinh, cos — cosh and one obtains a deampli-
fication of the local value of a(p) with respect to ag
(e = ap/ cosh[(38s54)'/?]). In that case the strong self-
gravity of neutron stars is expected to further quench
deviations from general relativity.

By numerically integrating the exact system of equa-
tions (7) we have indeed shown the existence of a non-
perturbative amplification mechanism of the coupling
strength of the scalar field when the logarithm of the
coupling function A(y) has a sufficiently negative curva-
ture around g: Bo = 8%In A/8¢3 S —4. The results of
our numerical integrations are presented in Figs. 1-3.

To model the structure of a neutron star we con-
sidered polytropic equations of state, € = #amp +
Kiigmy (A )f0)T /(T — 1), p = Kngmp(7i /)T with mp =
1.66 x 1072* g and fip = 0.1 fm~3, and with values
of the parameters I' and K adjusted to fit the curves
(computed, within general relativity, from some realistic
equations of state [10,11]) giving the fractional binding
energy f = (@ — m)/m as a function of the baryonic
mass 7 (see Fig. 1). In particular, we used I' = 2.34 and
K = 0.0195 to fit the equation of state II of Ref. [11], and
' =2.46 and K = 0.009 36 to fit the equation of state A
of Ref. [10].

Figure 1 illustrates the spectacular changes in the grav-
itational equilibrium configurations of a neutron star
with a given nuclear equation of state when using, instead
of general relativity, the tensor-scalar theory defined by
A(p) = exp(—3¢?), with o = 0.0043, i.e., the maximum
value consistent with the limits in Eq. (1). The maximum
baryonic mass of a neutron star increases from 2.23mg
in general relativity to 3.03mg [12]. Note the presence
of a second branch of equilibrium configurations below
the one continuously connected with the normal New-
tonian configurations. This second branch is linked to
the appearance, above a certain state of compactness,

0.8
0.6
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FIG. 2. Effective scalar coupling constant vs baryonic mass
for the neutron star model of Fig. 1 computed within five
different tensor-scalar theories. The labels indicate the cor-
responding coupling functions A(y). In each case, we chose
the maximum value of ¢o consistent with the two limits in
Eq. (1).
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FIG. 3. Illustration of the weak dependence of the nonper-
turbative effects in a4 when reducing o, keeping everything
else fixed (dotted curve), and when changing the equation
of state. The theory used is A(p) = exp(—3¢?); the labels
EOS II and EOS A refer to the polytropic approximations
discussed in the text.

of a nonlinear zero mode (exact, nontrivial configuration
with zero scalar boundary condition). The fact that this
second branch is energetically less favorable than the first
and disconnected from it suggests that it is not associ-
ated to any physical pathologies. Figures 2 and 3 clearly
exhibit the existence of strong-field deviations from gen-
eral relativity (a4 of order unity) in tensor-scalar theo-
ries with By = 8%In A/0¢p3 < —4. (Computation of G4
also exhibits clear strong-field effects for stars of bary-
onic mass 1.5mg with cafaas < —2 for By < —5.)
Two features illustrate the nonperturbative character of
these strong-field effects. First, the large difference in
Fig. 2 between the two cases A1(p) = exp(—3p?) and
Az(p) = cos(v6y) (two functions having the same cur-
vature at the origin, fo = —6) shows that strong-field
effects probe a large segment of the coupling function.
Second, the small difference exhibited in Fig. 3 between
the cases ¢g = 4.3 x 1072 and o = 4.3 x 107% when
m 2 1.3mg shows how strong-field effects free themselves
from weak-field constraints when they develop. Note also
in Fig. 3 the robustness of the strong-field effects against
a change of nuclear equation of state. (However, an equa-
tion of state causing &€ — 3p to become negative over a
sizable fraction of the radius of the star could introduce
significant changes in our conclusions.) Finally, when (o
is positive, we find that the strong gravitational field of
neutron stars further quenches the small level of devia-
tion from general relativity allowed by weak-field exper-
iments [13].

In conclusion, a wide class of tensor-scalar theories
can pass all the present solar-system tests and still ex-
hibit large, strong-field-induced, observable deviations
in systems involving neutron stars. The condition for
the occurrence of such effects is a certain inequality,
8%In A/9p3 S —4, which can be written in terms of the
post-Newtonian parameters as (G —1)/(¥ —1) 2 +1 [14].
This provides new motivations for experiments probing
the strong-field regime of relativistic gravity, notably bi-

nary pulsar experiments [15], which might reveal the ex-
istence of a scalar contribution to gravity too small to be
detectable in solar-system experiments. Such strong-field
effects could also have a significant impact on the emis-
sion of gravitational waves during supernova collapse,
and neutron-star binary coalescence.
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