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Boson Stars: Gravitational Equilibria of Self-Interacting Scalar Fields
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Spherically symmetric gravitational equilibria of self-interacting scalar fields p with interaction poten-
tial V(p) —,k

~
p)" are determined. Surprisingly, the resulting configuration may differ markedly from

the noninteracting case even when A, &&1. Contrary to generally accepted astrophysical folklore, it is
found that the maximum masses of such boson stars may be comparable to the Chandrasekhar mass for
fermions of mass mf . -X, '~4mb

PACS numbers: 04.20Jb, 11.10.-z, 95.30.Sf

Recent speculations in particle physics and cosmology
have emphasized the potentially critical role played by
evolving scalar fields in the development of the early
Universe, ' and raised the possibility that various exotic
bosons comprise the cosmological missing mass. z3 In
view of this development, a detailed examination of the
gravitational equilibria of massive fields in asymptotical-
ly flat space-times —"boson stars" —seems appropriate.

Earlier work has considered equilibrium configura-
tions of noninteracting boson fields. 4 Such objects are
macroscopic quantum states, that are only prevented
from collapsing gravitationally by the Heisenberg uncer-
tainty principle. This requiress that a state of charac-
teristic size R has a typical boson momentum p —1/R
(here and throughout we set h —= 1 =c ). In a moderately
relativistic boson star one has p -rn, where m is the bo-
son mass, so that R —I/m. Since hydrostatic equilibri-
um requires that the total mass M-R/G for relativistic
bound states, we find M -(Gm) ' M)~„k/m for mar-
ginally relativistic boson stars. This mass is generally
much smaller than the Chandrasekhar mass,
-M)l«, k/m, characteristic of marginally relativistic

fermion st rass.
In this paper we consider arbitrarily relativistic equih-

bria of self interacting c-omplex scalar fields. We as-
sume an interaction potential V(p) —,'

A, ( p ( where A, is
a dimensionless coupling constant. We demonstrate ex-
plicitly that euen if A, ((1 the structure of the resulting
boson stars may differ radically from the A, 0 limit
To see why, first notice that the characteristic energy
density inside a A, 0 configuration is p-M)h„km in

the relativistic case. Since the energy density of nonin-
teracting bosons is p —m ( p ~, we find that

( p ~
-Mp~, k inside relativistic X 0 boson stars. Next,

consider the effect of increasing X, from zero. The im-
portance of the interaction potential is measured by the
ratio V(p)/m ( p ~

2 of interaction energy to kinetic ener-
gy. At sufficiently small X,, this ratio is just—A,M)t«, k/m . Thus, self-interactions may only be ig-
nored if

((m /M)tgngk (6 7 x 10 GeV )m

Surprisingly, for A))1 we find that M-A'I2M(~, „,k/
m-X' Mch, so that the masses of relatiuistic boson
stars may be comparable to those of their ferrnion coun
terparts ifk- l.

The starting point for our calculation is the scalar-
field Lagrangean

J'- - lg""e,'„-O,. &m'I O
—I' l& I O I-',

which implies an energy-momentum tensor

T," --'g" (~~,,+~,~,'.)

(3)

'&."&g"-~~-e;.+m'I e I'+ '&
I ~ I'j -(4)

We explicitly ignore interactions of p with any other
fields. In particular, Eq. (3) assumes negligible coupling
to gauge fields, which is a good approximation for gauge
coupling constant e ((m/Mp~«, k. Calculations for larger
values of e are currently under way.

We consider spherically symmetric, time-independent
solutions of Einstein's field equations

6„" 8trGT„"

in Schwarzschild coordinates

ds2 B(r)dtz+A(r)d—r2+r2d Q, .

For such solutions to exist we require that

y(r, t) @(r)e

(5)

(6)

where @(r) is a real function. [We could equally well
consider "antiboson stars" with p(r, t) @(r)e' '. ] For
convenience we actually solve the (;) and (,') com-
ponents of Eq. (5) coupled with the scalar wave equation

~-m'~-&
I e I 'e-0, (8)

which may be derived from Eq. (5) using Eq. (4) and

Moreover, families of gravitational equilibria may be
parametrized by the single dimensionless quantity

A XM)(a«k /4%m
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uations aret e i ties The resultmg equthe Bianchi identities. e u

A 4+ a')z+ +I cr+ —a+A'+1
A2x x2

(9

A 4 (a')'I 08' 1 4

ABx x2 A

(9b)

2+ 8'
g + + —1 a —Acr 0,

(9c)

d/dx, a (4rrG ) 1/2Crimes denote x,
/, dAi gi by q.(4 )' @/Mpi„,g, Q co rri an

If we ~rite

(10)A (x) - [1 —2AI(x)/x]

te E . (9a) aswe may rewrite q.

2
(9a')+I a ~—cr+At'(x) -x' — — +

) w
'

ted for Eq. (9a) in our in-', was substitute . in our inE uation 9a w

e ', hE. (10 use

8o o1 ~ h dFollowing Ruffini an ona

h h). It seems reasonab e o

')'/2~ T..s of the cr

conditions
th contributions

subject to the boundary(9) are solved s j

d ~( ) 1 (i.e., reg"0) -0, an
it)

() (0) a a '
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FIG. 3. Scalar field o as a function of dimensionless radius

x for cz, 0.1 but A 0 and A 300. The dots are the solution
to Eqs. (12)-(15) with 02/8(0) from the exact cr, O. l,
A 300 model, scaled to A 300.

of Eqs. (9a'), (9b), and (9c) accurate at large A:
o, oA'/, x, xA ', and At, At/A'/ Ignor. ing
terms O(A '), the scalar wave equation may be solved
algebraically to yield

cr (0 /8 —1)'

FIG. 4. Boson-star mass vs 02/8(Q) for the limiting equili-
bria computed from Eqs. (12)-(l5).

Because of self-gravity, the ground state of the boson
field is not a zero-energy state. Moreover, the scalar
field, at large A, only varies on a relatively large length
scale A'/ m '&)m ', so that we can solve the scalar
wave equation locally, ignoring derivatives, to get Eq.
(12). This results in an effective equation of state, Eqs.
(15a) and 15(b), for the boson star, or on elimination of
fI2/8 and restoration of dimensional quantities

which may be substituted into the field equations to give,
to the same accuracy, p -poF(p/po). (16)

and

JKy 4' y Py (13) where pn m4/4X and

+(pjpn) -
9 ((I+—,' pipn) '~' —I 1'.

1 1
1 —— 8'~,x2

where prime denotes d/dx, and

'/+)( '/

p -—'~-&(~2/g —1)2

(14)

(15a)

(15b)

Equations (12)-(15) become essentially exact for
A . At large A these equations may be used to gen-
erate approximate solutions. Figure 3 compares n(x)
based on Eqs. (12)-(15) with the exact o (x) for
A 300. As expected, the two calculations agree well
except at very large radii. Because A does not appear
explicitly in Eqs. (13)-(15), we can use these limiting
equations to determine the rescaled mass At~ M/
(A'~ M(~„,qjrn) as a function of the single free parame-
ter 0 /8(0). The results, shown in Fig. 4, imply the
peak value At *=0.22 used in Eq. (11).

Equation (11) is then equivalent to the statement that
M~,„-M$~,„,q/p) for a fluid star with an equation of
state of the form of Eq. (16). It is straightforward to
show that the well-known theorems on stability of fluid
stars may be applied to the A oo limiting scalar-field
equilibria satisfying Eqs. (12)-(15). In particular, M „
denotes the boundary along the sequence between stable
and unstable equilibria as A . It seems reasonable
to suppose that the same stability criteria may be applied
for all (finite) A, although we have not proven this state-
ment in general.

Generally accepted astrophysical folklore maintains
that boson stars, should they exist, must have negligibly
small masses. %'bile detailed studies have corroborated
this prejudice for bound states of noninteracting bosons,
the situation for self-interacting scalar fields may be very
different. In this paper we have shown that for an in-
teraction potential V(p) -—,'k

~ p( much larger masses
will result provided that A=A/4x(Jm ))1, an inequality
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that may be satisfied even at A, &&1 for reasonable
scalar-boson masses. When A)&1 we have found that
the maximum boson-star mass is

M~gg 0.22A M)[spy /m

-(0.10 Gev')~. ~'"/m',

which is comparable to the Chandrasekhar mass for fer-
mions of mass m/1, 'l . It is conceivable that boson stars
with masses approaching Eq. (18) could arise in the
course of gravitational condensation of bosonic dark
matter in the early Universe. Equation (18) would im-

ply masses possibly near, but below, the stellar mass
range for scalar neutrinos with m —1 GeV, but would

appear to require ridiculously large masses,
M~,„-10 X,

' Mo, for cosmologically relevant axions3
(with m —10 eV) except for exceedingly tiny )I, .
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