
EVERETT'S ''RELATIVE STATE'' FORMULATION

functional form of the Hamiltonian of any given system.
Neither does it supply any prediction as to the func-
tional dependence of the over-all state function of the
isolated system upon the variables of the system. Hut
neither does the classical universe of Laplace supply
any prescription for the original positions and veloc-
ities of all the particles whose future behavior Laplace
stood ready to predict. In other words, the relative
state theory does not pretend to answer all the questions
of physics. The concept of relative state does demand a

totally new view of the foundational character of
physics. No escape seems possible from this relative
state formulation if one wants to have a complete
mathematical model for the quantum mechanics that
is internal to an isolated system. Apart from Everett's
concept of relative states, no self-consistent system of
ideas is at hand to explain what one shall mean by
quantizing4 a closed system like the universe of general
relativity.

4 C. W. Misner, Revs. Modern Phys. 29, 497 (1957).
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1. INTRODUCTIO¹ GRAVITATION THE ONLY
FORCE IN WHICH NEUTRINOS ARE

SUBJECT TO SIMPLE ANALYSIS

NOWLEDGK of neutrinos to date is confined
mainly to emission and absorption processes; that

is, to the domain of elementary particle transformations.
For comparison, imagine that one knew about electrons
only the rate at which they are produced in beta decay,
or absorbed in E-electron absorption processes, but
knew nothing about the motion of electrons in electric
and magnetic 6elds, nothing about the binding of
electrons in atoms or the existence of spin-orbit coupling
and very little about the stress energy tensor of the
electron. What can one do to learn some fraction as
much about neutrinos as one knows today about
electrons P

The neutrino does not respond directly to electric or
magnetic fields. Therefore, if one wishes to inQuence its
orbit by forces subject to simple analysis one has to
make use of gravitational fields. In other words, one
has to consider the physics of a neutrino in a curved
metric.

For this task the only available tools of analysis are
theoretical. We accept the recently clarified' and dra-
matically tested' ' neutrino theory. We see no motive
to change the theory. Instead we recall in Sec. 2 the
clearly defined extension of the Dirac equation to the
curved space that represents the most general gravita-
tional field. In Sec. 3, we specialize to the neutrino with
its zero mass and to the class of solutions with right-

T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956); 105,
1119(L) (1957).

2Wu, Ambler, Hayward, Hoppes, and Hudson, Phys. Rev.
105, 1413(L) (1957).

'Garwin, Lederman, and Weinrich, Phys. Rev. 105, 1415(L)
(1957).

handed polarization that are demanded by the recently
gained knowledge. ' ' Section 4 separates out the radial
wave equation for the motion of a neutrino in a cen-
trally symmetric gravitational field, and identifies one
term in this equation with a spin-orbit coupling. Section
5 compares and contrasts the energy level spectrum in
the case of spherical symmetry for (1) an electron in
an electrostatic Geld, (2) an electron in a gravitational
field, (3) a photon in a gravitational field, and (4) a neu-
trino in a gravitational field. Section 6 recalls the sta-
tistical mechanics of an ensemble of neutrinos. Section 7
discusses some neutrino pair creation processes that do
not depend upon beta interactions for their existence.
Section 8 deals with the contribution of neutrinos to the
stress energy tensor, Sec. 9 deals with the gravitational
interaction of two neutrinos traveling parallel or anti-
parallel to each other; and Sec. 10 with the contribution
to the stress energy tensor due to a neutrino in a bound
orbit. Finally, Sec. 11 examines by way of illustration
an object where both the creation of gravitational fields

by neutrinos, and the response of neutrinos to gravita-
tional fields come into play: a geon or entity constituted
entirely of neutrinos and held together by their mutual
gravitational attractions.

2. MATHEMATICS OF SPIN IN CURVED SPACE

Spinor fields have been treated in general relativity
by many authors4 and from three principal points of
view (Table I). The three formalisms are in principle
equivalent and must therefore in any actual problem
give identical results for such well-defined quantities as

4See W. L. Bade and H. Jehle, Revs. Modern Phys. 25, 714
(1953) for a general review of the literature. To their list of prin-
cipal references one should add M. Riesz, Lund Univ. Math. Sem.
Band 12 (1954); F. J. Belinfante, Physica 7, 305 (1940).
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TABLE I. Comparison of the three principal formalisms for description of spin in general relativity.

Components of P
Fundamental spin matrices" 4)
Dependent on position

General formalism

no

Vierbein formalism

no

Relation between spin
matrices and metric

Covariant under

Most general form for second
of these transformations

Spin matrices conform to metric

Pi)~g j+=2gsg'

General coordinate and similarity
transformations

4 complex
parameters

Metric transformed to locally
Lorentz metric

dP=b ~dx"
gsa= bs bhr, gaP I orentz.e P

Vk ~k Va, ~a=bI ~e
Use Qat space spin matrices

General coordinate transformations,
and quite independent Lorentz
transformations of the Vierbein
differentials, dx'

6 real Lorentz parameters, with or
without inversions of space or
time or both.

Formation of covariants

Pauli conjugate, f~

Dirac equation for neutrino

Lagrangian, I.
Current 4-vectors, s~

P~ i (Hermitizing matrix) f*&& comp. conj.

s V' /=0

As in tensor analysis; see Table II for covariant derivative

Vierbein formalism for Dirac equation in polar coordinates for two simple choices of Vierbeine

Vierbeine parallel to unit
vectors in

Corresponding y matrices

SepRI'Rtlon of DlI'Rc wRve
function for simple choice
of representation of the
+s

Spinor wave function is a
single valued function of
position

r, 0, rp, T directions

y, = (exp-,'X)jI
'Ye ="72
y~=r sin8j3
7r = (exp&p) j4

J'"(~'U96
J (r)g(e)
G( )~(g) exp(im; p —i'/h)

~.G(r) g(e).

no

s, y, s, T directions

y, = (exp~A) (sine sing jI
+sin8 cosq j2+cos8j 3);
similarly for yg and y&,

yp= (exp —v)

(p(r) yg (8) expLi(es;+-,') p —iEt/I 1-„
I"(r) I 2(0) expLi(m; ——,') q

—jEt/hj
G(r) I'1(e) expLi(re;+-,') q —jEt/kj.G(r) Y2(e) exp'(ns; ——,') q —gEt/kj,

energy eigenvalues and density of stress and energy.
%e 6nd it convenient to use here the formalism of
V. Bargmann because of its generality. The equations
of this formalism are covariant with respect to general
coordinate transformations, and invariant under general,
i.e., position-dependent, similarity transformations of
the spinors. The fundamental connection between space
and spin is made through a 6eld of y matrices which
satisfy the anticommutation relationship,|a rk+ rk7i 2gikl&

at each point in space, where g,, is the metric tensor at
that point, and I is the unit matrix. For the sigeufgre
of the metric tensor we adopt the familiar Pauli con-
vention (1, 1, 1, —1). Let the dependence of the g,~

upon position be known. Then one can set up a generally
covariant spinor formalism with the help of any field
of 4X4 matrices y; that have the following properties:
(1) their components are continuous functions of posi-

tion in space time, (2) they satisfy (1) and (3) they
transform like a vector under coordinate transforma-
tions, (4) under the spinor transformation

(splllor)~e~ =S (spmor)og)

they undergo the similarity transformation

(v')- =~ '(v')aa&

It also substantially simplifies the treatment of charged
spinor fields to limit attention to real representations,
yI„of the spin matrices, and to limit attention to spinor
transformations, 5, whose matrix elements are also real.

The principal feature of the mathematical formalism
is a definition of covariant differentiation which is the
natural generalization of the covariant difI'erentiation
of tensor analysis (Table II). In addition to the usual
Christo8el symbols, I';~, formed from the metric, g;I„
it is necessary to introduce four 4X4 matrices I'~.
These quantities are uniquely determined up to an
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TABLE II. Covariant differentiation of spin dependent quantities compared and contrasted
with covariant differentiation of tensors.

Symbol for covariant differentiation
with respect to x~

Special form when space is Rat, co-
ordinates are Euclidean, and y's
are independent of position

Additional quantities needed to define
covariant derivative when one or
more of these conditions are not
fulfilled

Formula to determine these additional
quantities from the metric

Tensor s

Final subscript
7
. k

40 functions of position I', I,

~gka+ gsrs ~gsk
8x' Bx~ 8x

Quantities with spinor trans-
formation properties

Preceding operator

The F;q and four
matrices, I'I,

Kq. (2) or Eq. (8)

How these quantities enter into the
definition of the covariant
derivative

Depends upon the transformation properties of the
quantity being differentiated

Example I
Effect of a coordinate transformation

EGect of a spinor transformation

Covariant derivative

Example II
EGect of a coordinate transformation

Effect of a spinor transformation

Covariant derivative

Example III

Effect of a coordinate transformation

Effect of a spinor transformation

Covariant derivative

Scalar, f
fnew= fold

fnew= fold

f, I,=Bf/8x~

Vector, A'
8$s

A'new =—A ~oid
E9x

A'new =A so]d

As
A';g, =—+PI, sA~

Bx~

Tensor, 3f;~

ax ax~
~s new= ——~0, old

Bx 8$

~i new=~ old

835 ~
MP)= ' +F) ~M; —F) 3f ~

xl

Spinor,

/new =fold

/new=+ gold

v'I,p =ap/ax~ —rI,y

Conjugate spinor p~

/new~ =fold~

/new~. =gold~+

Vg,f~=~~/Bx~+p~F I,

Spinor tensor, T;q
(such as y;yq)

ax ax~
Tik new=::TaP old8S' BS~

Tik new= S Tik oldS

V~T;~= T;g, , )+T;pea —r~T;~

additive multiple of the unit matrix by

The F;~ and I'~ together permit one to define the co-
variant derivative of any object of which the trans-
formation properties for general coordinate and simi-
larity transformations are known. This covariant de-
rivative is denoted by V'&, its explicit form depends on
the quantity it acts on (Table II). This covariant
differentiation has the standard properties

The definition of the y; by (1) can always be fulfilled

by a linear combination of the matrices of special rela-
tivity. These are constant matrices —and if one wishes,
purely real matrices —that satisfy the conditions

Vi7&+Y&Yi 2gik Lorentzq

1 0 0 0
0 1 0 0

gik Lorentz 0 0 1 0 7

0 0 0 —1.

V'i(AB) = (V'iA)B+B(V' gA),

7'i(A") = (ViA)*, (3) Thus, at each point, x, in 4 space it is possible to trans-
form from the general coordinates x' to a system xi
("Vierbein") whose metric is Minkowskian at that point:

where the symbol * means Hermitian adjoint (the
transpose of the complex conjugate). The quantity,
V'I,A, transforms like A under similarity transformations
and like a tensor of one higher rank under coordinate
transformations.

dx~= u~ dx, dx~= 5~~A&.

Then (1) is satisfied by

(6)
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by means of a "Hermitizing matrix, "e, chosen so that
both n itself and the four matrices, nip, are Hermitian.
In the Vierbein formalism we may choose the y~ to be
real and choose' +=i''. One then can form a current
density

s"=P iyQ (10)

whose covariant divergence vanishes by virtue of the
Dirac equation (9). The Dirac equation. can be derived
from the variational principle

with

8J L( g)'d x=0, —

I=4'v (7A)+A'4

by independent variation of Pt and P.

(12)

3. ALPHA AND BETA ROTATIONS AND TWO-
COMPONENT NEUTRINO WAVE EQUATION

We set the mass term equal to zero in the Dirac
equation (9) and the Lagrangian (12) to obtain the
wave equation for a Dirac-type neutrino,

(13)

5 For the solution for general y fields, see O. Klein, Arch.
Math. , Astr. och Phys. 34, 1 (1947).' For the general Hermitizing matrix, see W. Kofink, Math, Z.
51, 702 (&949).

The formalism which confines itself to solutions of (1)
of the special type (7) is called Vierbein formalism. In
terms of the Vierbein components b;&', a ~ the explicit
solution of (2) has the simple form'

I' =g„f(8b,&/cIx")a —I'„7s "+a I, (8)

where s"=,'(y'y' —y'y') and ai is arbitrary. In the
Vierbein frame a similarity transformation of the spinors
is equivalent to a Lorentz transformation of the
Vierbein. Thus the invariance of the formalism under
similarity transformations can be understood geo-
metrically as invariance und, er arbitrary Lorentz trans-
formations of the Vierbein. These Lorentz transfor-
mations have nothing to do with any coordinate
transformation, and vary arbitrarily from point to point
in space.

The Dirac equation in general relativity can be
written in the form

y V.&+@&=0 (p, =mc/A).

Here we assume the arbitrary traces of the F~ have
been adjusted so as to account for the effects of the
electromagnetic potentials.

To form real expressions, as for example for the
current density, we can follow Bargmann with minor
differences in notation and define the "Pauli conju-
gate" of P,

In this special case of zero rest-mass, the wave equa-
tion and the Lagrangian are invariant under a wider
class of transformations than are usually considered in
the Dirac theory. The situation is analogous to the case
of the charge-free electromagnetic field, Ii;y. Consider
any solution of Maxwell's equations,

c* »8& /Bx&=0,

(—g) '(~/~x )(—g)'~"=0,
where e""= 1, and e" ' changes sign on permutation of
any two indices. From any solution of these equations
in a metric of arbitrary curvature one can generate a
new solution by a special kind of transformation that
we may call an "e-rotation";

(F;I,)„,„=P;(,cosn+-', ( g) —*g;.gg,e" P.p sinu, (15)

where o. is an angle that is independent of position and
time. In Rat space this transformation takes the form

E„, =R cosn+H sinn,

Hgeyp =8 COSA R SlnQo

It is plainly not a rotation in any ordinary sense except
in the special case where K and II represent the principal
polarization directions of a monochromatic plane wave;
then the n transformation rotates the axes of polariza-
tion by the angle o..

Similarly, let P be a solution of the Dirac equation
for zero mass in a space-time continuum of arbitrary
curvature. Then one can generate a new solution by the
"P rotation, "~

P„,„=exp(-,'Py~)P= [I cos(-', P)+r& sin(-', P)7, (17)

where P is a constant and

vs= ( g) '(1/4l)~'"v. mfa, v~, —
(v5)'-= —I,
mrs*= —vn'~ (i=1 2 3 4).

In the special case where the neutrino wave is linearly
polarized in a given region of space, the P rotation turns
this direction of polarization through the angle P. That
ps' is a solution of (13) follows from (3) and the anti-
commutation relations (18); hence the linear combina-
tion, (17), of P and yqP is also a solution.

Xo change whatever in the metric can lift the de-
generacy between the spin polarization states f and
exp PP&5)P. An analogous situation occurs in the physics
of a two electron system. No allowable system of forces
can ever produce a difference in energy between the
states u(xi, x2) and exp(iyP»)u(xi, x~), where Pi2 is the
permutation operator. Nature apparently does not ever
permit an irrevocable degeneracy of this kind. Only the
combination u(xi, x2) —u(x2, xi) is allowed. Assume simi-
larly that nature rules out a duplicity of spin states for
the neutrino that could never be split by any gravita-

'The possibility of this transformation in pat space is well
known.
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(1—iy, )lP, =0, (21)

and in a suitable representation have only two nonzero
components. They can be described by Pauli's spinors
of two components, as Lee and Yang show. They intro-
duce the two-component wave equation

Hlp= o42 pip= zA8$/8t, (22)

where e are the three 2)&2 Pauli spin matrices. To
write this equation in generally covariant form, it is
convenient to introduce four 2X2 matrices s; which

satisfy the conditions

[s4&sj]+ szs j+sjs& 2g &j &— (23)

where the bar denotes complex conjugation. Then the
covariant form of the Pauli-Lee-Yang equation is

s V' /=0.
The correct interpretation of the s' and the covariant
derivative V'; is well known from spinor analysis.

A beta rotation is not the only means to generate a
new solution of the neutrino wave equation (13) from a
general solution, lP. Let a representation be employed in

whichthebasicmatricesareallreal p pi x j g

and let the complex conjugate of (13) be taken; then
it follows at once that lP„pl,„„„;„g„,satisfies the wave
equation as well as does P itself. When @ represents a
pOSitiVe energy State, 4'complex coajagace Of COurSe repre-
sents a negative energy state; but there is ordinarily no
well-defined distinction between the two kinds of states
in a metric which varies both with space and with time.

How does one know that the basic matrices can still
be taken real when the three-dimensional space under

See, for example, W. L. Bade and H. Jehle, Revs. Modern
Phys. 25, 714 (1953).

tional field, however strong. More specifically, assume
that the only allowed state, lP, for the neutrino is a
state that is transformed into a multiple of itself by
every P rotation:

eXP(2P75)lPallowed e lPallowed (19)

Then one concludes that the allowed state functions
necessarily have circular polarisatiozz, in the sense that
the expression

4'allowed =4.= (1+ZV2)4') (20)

constitutes a mixture with 90' phase diGerence of the
states with rotations of 0' and 180'. To change the
sign of i in (20) is only to interchange the definitions of
positive and negative energy states. Lee and Yang' have
recently given different arguments for considering all
neutrinos to have right-handed circular polarization.
Their considerations have received dramatic verifica-
tion. ' ' The conclusion appears inescapably that neu-
trinos possess only one state of polarization, which is
circular.

The allowable spinor state functions satisfy the
condition

~'A

0
gip= 0

0

0 0 0
r' 0 0
0 r' sin'8 0
0 0 —e"

j

(26)

Here the coordinates are x'= r, x'= 8, x'= y, x'= ct= T.
The dilation functions X(r) and v(r) are assumed to
depend upon distance in an arbitrary way; they are not
limited to the special Schwarzschild solution for a
localized concentration of mass,

e "=e"=1 2GM/czr. — (27)

In order to write the Dirac equation in this metric we
choose a field of p matrices of the type (7). Two choices
for these matrices are simple: (1) Vierbein axes parallel
to the r, 0, and q axes at each point, so that the desired
Dirac matrices, y' are expressed in terms of the standard
Dirac matrices, p', for a Cartesian coordinate system;
by the formulas

rl e'*" ri, r2 r r2 rz r»n8 rg, r4=e'*" r4, (28)

and (2), Vierbein axes parallel to some rectanguls, r co-
ordinate system:

yi=e& (sin8 coslpfi+sin8 singy2+cos8ya),

y2 r(cos8 coslpyi+ cos8 sin zof—
2——sin8 f2),

ya rsin8 (—sin——ivy &+cos lpy2),
1

y4
——e "y4.

(29)

The two choices lead to the same radial equation, but
to a diferent dependence of the components of the
spinor wave function upon the angles (Table I). In
case (2) the angular dependence agrees with that pre-
dicted in the familiar case of special relativity by

consideration has an arbitrary curvature and topology'
We assume for simplicity that time has the topology of
a straight line. We are indebted to Professor V. Barg-
mann for informing us of a theorem cited by Hopf at
the International Congress of Mathematicians, Cam-
bridge, Massachusetts (Vol. I, p. 193 of the 1950
Proceedings) to the effect that one can always in a
three-dimensional space define three mutually orthogonal
nonsingular vector fields —a construction that is well

known to be impossible on the Iso-dimensional closed
surface of a sphere. Then one has only to take over the
standard four real p matrices of Rat space and employ
the Vierbein formalism to have four real matrices,

(25)

in the curved space under consideration.

4. MOTION OF A NEUTRINO IN A SPHERICALLY
SYMMETRICAL GRAVITATION FIELD

We explore the reactIon of the neutrino to a gravita-
tional field in the simplest known case: a spherically
symmetric metric of the Schwarzschild type,
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( —1'- l4'+4'
(ax

= lizzie '"(8/Br+r '+v'/4)+ (y2/r) (8/i70+ ', cot9)-

+ (p,,/r sinS) (a/ay) —e '"p.(a/-aT) jy+pP. (31)

We can rewrite this equation, following Schrodinger, as

with
18')/8 T= kci),

a) = exp(v/4)r(sine) lP,

(32)

(33)

e '*"k= y4yie '"8/iver+ (yi/r)E iy4)i, —

E=fii'r4'r28/'ting+ )ii'r4+38/z sln88 p.

(34)

(35)

The operator E is Hermitian and commutes with h. We
can therefore choose simultaneous eigenfunctions of h

and E, and separate the pth component of the wave

function, co„, into radial, angular and time factors,

+„=R„(r)O„(8,g) exp( ikT)—(36)

Here the quantity k represents (energy/hc). The angular
factor, 0', is determined by the requirement

(37)

where k is constant. This equation for eigenstates of the
angular motion has been investigated by Schrodinger. "
He finds, in agreement with the conventional treatment
of the Dirac equation in a central field, a spectrum of
positive and negative integral eigenvalues k.

Only the two matrices p4 and p& remain explicitly in
the radial equation (34) after the operator E is replaced

by the number k. They can therefore be represented

by 2/2 matrices, and the radial factor by a two-

'See, for example, H. A. Bethe, IIundbuch der Physik {Julius
Springer Verlag, Berlin, 1953, second edition), Vol. 24, Part 1.

'OE. Schrodinger, Commentationes Pontif. Acad. Sci. 2, 321
(193S).

standard formulas. ' Such ambiguities in the wave func-
tion are to be expected whenever one uses a formalism
which is invariant under similarity transformations that
are quite independent of coordinate transformations.
The physically meaningful quantities, such as the
current density, will, of course, agree for both choices,
for the similarity transformation leaves these quantities
invariant. We show the explicit calculations for our
choice 1. The 1"i are found from (2) or (8),

Kg=0; F2——-,'e '"ygy2,

1"
~ ', —(—si-n8e '"yiy~+cosoy2$ 3); (30)

1'4 —(v'/4)ek(i —&) ~i~4

where v'= dv/dr.
The Dirac equation for a particle of mass )iA/c takes

the form

component spinor

~0 1q ti 0 y (Fyii=
I 1, ~4=1

0) '
EO —i&

'
EG&

In this representation the radial equation for an electron
in a Schwarzschild metric, with an electric potential
energy V= vhc, becomes a modification,

$e 2" (h v)+v j—F e2'dG—/dr (k/r)G—=O,

[e (h2v)—)i jG—+e 2 "dF/dr (k/—r)F =0, (39)

of the familiar radial equations" for an electron in a
centrally symmetric potential. For the neutrino, of
course, we annul both v and p.

E=mc' —-', m(Ze'/nk) ',

r =vi'f'i'/mZe'

are replaced by the corresponding formulas

E=wc' ,'m(GMm/ek)—', —

r = e'A'/GMm'

(40)

(41)

Deviations from this behavior, such as arise from gravi-
tational. spin-orbit coupling, are to be expected only
when the calculated velocity of the electron in the lowest
Bohr orbit is comparable to the speed of light:

or

or

GMm/fi e,

Mm Ac/G= (2.18X10 ' g)'

M 5X10"g (42)

For the analysis to apply in such an extreme case it
would be necessary that this attracting mass should be
confined within a distance of the order of the Schwarz-

"See for example, L. SchiG, Quantum Mechanics {McGraw-Hill
Book Company, Inc. , New York, 1955), second edition.

S. COMPARISON OF ENERGY LEVELS OF ELECTRON
IN ELECTROSTATIC AND GRAVITATIONAL FIELDS

AND NEUTRINO AND PHOTON IN
GRAVITATIONAL FIELD

In order to gain some qualitative understanding of
the behavior of electrons and neutrinos in gravitational
fields we first consider the case of an electron in a gravi-
tational field. We take over the Schwarzschild solution
(27) for the metric outside a mass M. We substi-
tute this metric into the radial wave equation (39)
and neglect terms of order 1/c' and higher. We find

(E V)=Ac(k —v) —is replaced by (E V —P), wh—ere

p = —(GM/r) (E/c') is the "gravitational potential
energy" of a particle of energy E. Therefore in this
approximation the energy levels of an electron of posi-
tive energy remain unchanged when the electric poten-
tial is replaced by an equally strong gravitational poten-
tial. The Bohr formulas for energy levels and radii of
circular orbits,
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schild radius of this mass, or the Compton radius of the
electron,

rsos„= 2GM/c' = 25/mc = 7.7X 10 "cm

—a condition impossible of attainment even with
matter of nuclear density.

The foregoing weak field analysis demands a binding
energy for the particle small compared to its rest energy.
It obviously will not apply to the neutrino with its zero
rest mass. Moreover, bound orbits lie in the energy
region between +mc2 and —mc2 and will cease to exist
for an object with zero rest mass. The wave function
for such an object never falls off exponentially in the
region where the metric has become Qat. However, it is
possible to construct a metri. c with an inner region, a
barrier region, and an outer region, in such a way that
the neutrino wave function falls off exponentially in
the barrier region. Then leakage from the inner region
to the outer region is greatly inhibited. Electively
bound proper states of 1ong life then exist for the
neutrino in the inner region.

Such trapping of neutrinos is illustrated especially
simply in the metric of the thin shell spherical geon, "
e"=e "=1—(2G M/c'r) for r) (9/4)(GM/c'),

e"=1/9; e "=1 for r((9/4)(GM/c')
(43)

With the abbreviations

angular momentum parameter, k, and also propor-
tional to the radial derivative of the metric quantity,
e'"= (—g44)'. However, this term appears with opposite
sign in the second order wave equations for the two
components, Ii and G, of the same state function. From
the fact that the two diGerent equations have the same
eigenvalues, it follows that the last /go coupling terms
together in (45) and in (46) produce no net effect on
the energy levels. Otherwise stated, the energy eigen-
values are completely invariant against the change from
k to —k. This degeneracy is the same as the fundamental
polarization degeneracy that was discussed in Sec. 4.
The demand that. the neutrino have right-handed
polarization means that the allowed state function is
given neither by the solution of (45) and (46) for posi-
tive k, nor by the solution for negative k, but by the
proper linear combination of these two solutions. How-
ever, (45) and (46) give the correct pieces out of which
to construct the allowed total wave function, and also
gives the correct energy eigenvalues.

It is now appropriate to check that the same radial
equations are obtained in the two component formalism.
For spin matrices, s;, that satisfy the equations of
definition (23), we make a choice analogous to the choice
(1) of (28):

t0 1q
e~s)~ =e:)s .

E1 Oi

dr~ =es~:"dr

p= (c'/GM)r,

h (cm ') =energy/Ac,

c (dimensionless) = (GM/c') i4

= (GM/Ac') (energy), (44)

)i Oq
S2=f =fs2j

&0 i)

~
—1 0~

s4 ——r sintj~
~

=r sinos4,.
1)

(47)

we rewrite the two first-order wave equations (39) for
zero rest mass and zero electrostatic potential. We then
eliminate one of the two dependent variables to obtain
a single equation of the second order for the other
variable; either

d'I" /d p*'+ L" f (p)]I' =o, —
with

&(p) = &"74'/p' e" '"74/p'+ (k/p)—(d/d p*)~'" (45)

~0 1y
s4 ——e'" =- e'"s4.

& —1 Oi

To de6ne covariant di6erentiation we need 2)C2 ma-
trices, 1'i, that satisfy the analog of (2)

Bs'/Bx~ F,i,&s„I'j,„p—„„;s;+—s;1'i, 0, (48)=

or

with
d'G/d p*'+ [e' rj(p) jG=0—

rj(p) = e"0'/p'+e l"k/p' —(k/p) (d/d p*)el". (46)

T n.~ 1 Oq & 2 2~ Si comp. conj. s2q

llF3= 2 l,sln88 Sf comp. conj.S3+COSBS2 comp. conj S3) ~

r4 ——(i '/4) e'" '"Si comp. conj S4. (49)

The last term on the right-hand sides of the dimen-
sionless effective potentials g(p) and rj(p) of (45) and
(46) has the character of a spin-orbit coupling. As in
the case of an electron moving under electrostatic
forces, where the spin-orbit coupling is proportional to
the angular momentum and to the radial derivative of
the potential, so here one term in the e6ect, ive potential
experienced by the neutrino is proportional to the

'~ J. A. Wheeler, Phys. Rev. 97, 511 (1955).

s V /+jig =0,
s comp. conj.Vajp+A'

(50)

These representation-independent expressions evidently
can also be generated from the I'I, 's, of the Dirac formal-
ism (30) by a simple change: every product of the form

p,p, is replaced by a product of the form s; „p j sz'.

The Dirac equation for a particle of mass m in the
present formalism operates on a pair of spinors, P and qo,

each of two components,
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~o =exp(v/4) r (sin8) iP, (52)

as in (33). Also multiply the equation for o& through by
s4 comp. conj. and note that

~4 comp. conj ~4

and recall that the quantities

s4„,„„;s„=o.;, (i=1, 2, 3) (53)

are the Pauli spin matrices. Then the general relativity
form of the Pauli-I. ee-Yang neutrino equation in a
centrally symmetric metric becomes

(o,e ''"8/8r+a, 8/r80
+osB/r sin88qo+e —l"0/8T)a&=0. (54)

We consider a solution, ~, which depends upon azi-
muthal angle and time as

exp(im, q ihT), —
so that (54) reduces to

(oie i 8/Br+a~8/r88+im, a3/r sin0 —ihe i") ni0. (55)

We can no longer find an angular operator, E, that
commutes with (55). Instead, we proceed as follows.

(1) We temporarily introduce an explicit representation
for the Pauli matrices, o,, and express (55) as two
coupled first-order equations for two unknown func-
tions. (2) We deduce the character of the solution from
what we already know of the solution in the Dirac
formalism. (3) Out of this solution we construct: the
mixed density matrix, M(1,2)=tk(2)gt(1). From that
matrix we can calculate the expectation value of any
physical quantity. The neutrino Aux, for example, is
given by the trace

(neutrino flux) ~=/tish/
= Trois'M(1, 1)). (56)

(4) This density matrix can be expressed as a linear
combination of the four matrices, a; and 1, and thus
translated back to a form independent of any special
representation of the Pauli matrices. It then takes
the form

~(1,2) =tl(2)k'(1)
=exp) —4v(r&) —4v(r2))(r&r&) '

' {L~ (r&)F(r2) +0(r i)G (r.))
XLO, (1)O (2)+O (1)O (2)
+iLG(r, )F(r2) —F(r,)G(r2))

XLO~&(1)Oi(2) —0~2(1)02(2)))1(is4)+etc. (57)

but the Pauli-Lee-Yang neutrino equation has the
simpler form

0= s-V.P= s.(8/8~- —r.)|t. (51)

This equation. is obtained in explicit form from (31) by
annulling the mass term, titl and replacing y, every-
where by s;. Again introduce a new form for the wave
function,

p„„=9/4 (61)

The dimensionless vibration frequency or energy, e, of
the eth semistable bound state can be estimated from
the JWKB approximation formula,

(~+4)~=j" C" E(p))'dp*, —
a

where u and b are the classical turning points of the
"bound" state of highest energy. The integral exists
only when e lies between P;„*=2k/27 and g,„l=k/3*
(the two dashed limits in the right-hand part of Fig. 1).
The total number, S&, of bound states of type k can
be estimated by setting e' equal to the maximum of
((p) and calculating (62), with the result

&=a ik jt L(1/27) —(1/p2)+(2/p4))l(1 —(2/p))&dp
' 9/4

9/4

+)t L(1/27) (1/9p'))'3dp

=0.15k—0.5. (63)

where F and G are the radial functions already intro-
duced. The angular factors in (57) have the form

Oi(1) = f(0i) exp(im, g i)/(sin8i) i,

O~. (1)=g(0i) exp(im, toi)/(sin0i)&, etc.,

where f and g are the angular functions of Schrodinger. "
Such quantities as the number, Aux and stress and
energy density of neutrinos follow in a straightforward
way from the density matrix (57) according to the pat-
tern of (56), based on two component spinors. Alterna, -

tively the same answers can be obtained from the Dirac
formalism, with which we shall generally work.

In either 2 or 4 component formalisms the energy
levels of a trapped neutrino are found by solution of an
eigenvalue equation which can be taken to be (45). We
assume the geon metric (43). Then the dimensionless
effective potential, $(p), has the form

5(p) = L1—(2/p))(k'/p') —L1—(2/p))"'(k/p) [1—(3/p))

outside the radius p=2.25; and inside it becomes

$(p) =k(k —1)/9P'. (59)

This potential is sketched in Fig. 1 for several values
of the positive integer, k. Semistable bound states
occur only for values of k of the order of 10 and larger.
For such values of k terms in k can be neglected, relative
to terms in k'. Then in the outer region $(p) attains it:s
maximum value

5--(p --)=k'/27
at

Pmax. =~
Its minimum

&min (pmin) =4 k /9
occurs at
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For each value of k the spectrum of allowed values for
the dimensionless energy parameter, e, stretches from
a minimum value a little above $; & (proportional to k)
to a maximum value a little less than t „~ (also propor-
tional to k). In this interval the number of levels, 1V~,

is also approximately proportional to k. These qualita-
tive features of the level scheme are shown in Fig. 1.

In the absence of a gravitational field the neutrino
spectrum reduces to the natural analog of the spectrum
of the free electron. For each wave number, (k„k„,k.),
there is one state of right-handed circular polarization
and of positive energy; and a second state of negative
energy and left handed circular polarization. All states
of negative energy are to be considered as filled. Absence
of a neutrino from a negative energy is to be interpreted
as the presence of an antineutrino. According to hole
theory the momentum (or angular momentum) of the
real physical antineutrino is the negative of the mo-
mentum (or angular momentum) of the missing nega-
tive energy neutrino. For that negative energy neutrino
the momentum and spin angular momentum are oppo-
site in direction, according to the equation, H= c(e p),
of Lee and Yang. Therefore, as they show, the momen-
tum and spin angular momentum have opposite direc-
tions for the real physical antineutrino.

6. STATISTICAL MECHANICS AND THERMAL
EQUILIBRIUM OF NEUTRINOS

Gamow and Schoenberg" have given reason to be-
lieve that neutrino emission determines the rate of
gravitational contraction of a heavy star in late phases
of evolution, after the normal sources of thermonuclear
energy have been exhausted. In oversimpli6ed terms,
hot neutrons change to cooler protons plus electrons
plus neutrinos; hot protons and electrons change to
cooler neutrons and antineutrinos. The medium con-
tinually loses energy by emission of neutrinos and anti-
neutrinos —Gamow's "Urea process. " The v's and f's
escape so much more readily than photons that they
alone determine the rate of energy liberation and gravi-
tational contraction. In late phases of such gravitational
contraction the density mi.ght rise to a point where the
opacity of matter even to neutrinos begins to make
itself felt. For example, consider the point where nuclear
densities have been reached, of the order of 10"
nucleons/cm'; and assume a neutrino interception cross
section, 10 "cm', of the order of that found by Reines

and crowan"; then the mean free path of a neutrino

will be of the order of only 1 km. Under such conditions
one has to speak of an opacity with respect to neutrinos

and a local neutrino temperature along lines familiar

from the theory of transfer of heat by electromagnetic
radiation. One does not have to consider this particular
problem of stellar interiors to raise the question: what

"G. Gamow and M. Schoenberg, Phys. Rev. 59, 539 (1941)."F.Reines and C. Cowan, Jr., Phys. Rev. 92, 830 (1953).
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Fio. 1. Comparison of energy levels of an electron in an electro-
static field and in a gravitational field, and of a photon and a
neutrino in a gravitational field. The left-hand diagram in these
four cases gives, respectively, the electrostatic potential; the
Einstein gravitational potential, —g44= e" for the "geon metric";
the dimensionless effective potential, g(p) =t(l+1)e"/p~ for pho-
tons; and the corresponding quantity for neutrinos Lthe g(p) of
(59)j.The bound states of the electron lie lower than mc~ and are
therefore stable against electron escape. The energy splitting at
(a) arises from Lamb shift and any other perturbative effects that
raise the effective potential near the origin compared to the ideal
Coulomb potential. Similarly, a splitting arises at (c) because
s-wave electrons respond more than p-wave electrons to the
central fiat region of the metric. The splittings at (b) and (d) arise
from spin-orbit coupling. Photons and neutrinos can be trapped
only in states of greater or lesser life time, never in completely
stable levels. The wave function of a trapped state falls off expo-
nentially in the region of the effective potential barrier, lower left.
Zero or small angular momentum corresponds to motion along,
or nearly along, the radius vector —a kind of motion that always
leads to escape of the photon or neutrino. The diagrams lower
right show schematically both the position and the width of the
semistable bound states. Each photon state can be occupied by
any number of photons of either independent state of polarization.
Each neutrino state can be occupied by only one neutrino. The
corresponding antineutrino state has the same frequency and
energy and can also be occupied. There is nothing to compare
with the spin-orbit splitting of the electron states: the angular
momentum of the neutrino always precesses in such a way as to
stay parallel to the neutrino momentum.

is the equilibrium distribution of neutrinos' The speci-
fication of this equilibrium demands one more quantity
for neutrinos than for photons: one has to give both the
temperature and a suitably defined Fermi energy. The
probability W(E) that a neutrino state of energy, E,
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,
W(E)=
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In contrast, the energy content of electromagnetic
blackbody radiation is

p. = (8m'/120) (T4/h'c'). (7o)
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FxG. 2. Inhuence of temperature and Fermi energy on the
equilibrium distribution of neutrinos and antineutrinos.

shall be occupied is given by"

(67)

the total density of antineutrinos (given by the same
expression with the sign of g reversed), and the total
energy density,

x'dx x'dr
p= (T'/2m'hPc') — + i

— . (68)
p 1+e*» p 1+e*+"i

If the Fermi energy is zero, the integrals have the
simple values

n+=e = (TP/2~'h'c') &&1.803,

's E. Fermi, Z. Physik 36, 902 (1926).

where T represents the temperature (in energy units)
and qT represents the Fermi energy.

Translating from hole theory to the physically ob-
servable neutrino and antineutrino states (Fig. 2), one
has the expression,

ed+= [m4.
'kdk/( m2.)' 7[/1+e p+""' 7 (65)

for the average number of neutrinos per unit volume
in the interval, D, of circular wave number; and for
the corresponding number of antineutrinos,

de = [4rk'dk/(2s) '][1—W( —khc)]
= 34nk'dk/(2m) '7/[1+. e~""'~r].

The quantities of greatest interest are the total density
of neutrinos,

The neutrino energy is smaller than the electromagnetic
energy by the factor 8. The number of accessible
states of a given wave number is the same for the two
kinds of radiation: two spin polarizations for photons;
and for the more penetrating radiation, one neutrino
and one antineutrino state. Moreover, the occupation
probability for either kind of state follows the same
limiting Holtzmann formula for states of high energy
W(E)~e E~r. But any given state of low energy can
be occupied by many photons, and at most one neu-
trino: hence the advantage for electromagnetic energy
compared to neutrino energy. These relationships are
entirely changed when the Fermi energy of the neu-
trinos has a nonzero value. In that case the energy
density of the neutrinos can be made to have any arbi-
trarily large value.

O'. CREATION OF NEUTRINO PAIRS

In this paper we disregard all processes for creation
or disappearance of neutrinos which depend upon trans-
formations of the elementary particles, considering only
the response of neutrinos to the curvature of the metric.
More specifically, we limit attention to processes in
which —according to hole theory —a neutrino is raised
from a negative energy state to a positive energy state,
or where, in physical terms, a neutrino-antineutrino
pair is created.

Is there anything special about the gravitational field
which makes it incapable of raising a neutrino from a
negative energy state to a positive energy state? Other-
wise stated, does there exist any quantity, Q, which will

commute or anticommute with the operator in the wave
equation (51) and which will serve to distinguish posi-
tive and negative energy states? To construct such an
operator one has only the four independent 2&(2 spin
matrices. Among these only the unit matrix commutes
with (51). From it nothing of interest can be con-
structed. We therefore expect that there is no point of
principle which prevents transitions from negative
energy to positive energy states. In other words, it is
as much out of the question in neutrino physics as it
is in electron physics to make a well-defined distinction
between negative and positive energy states when
general gravitational or electromagnetic fields are
at work.

The mechanism of the transitions in the neutrino
case is simple. Just as a static disturbance in the metric
defiects a neutrino, bringing about a transition between
states of different momenta, so a time-varying dis-
turbance causes a transition between states of different
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TABLE III. Order-of-magnitude estimate of cross section for creation of a pair by the collision
of two quanta of equal but opposite momenta.

Process

Energy of one quantum

Localization volume

Energy density

Relevant 6eld

Square of field

Available potential in region of energy
concentration

Potential required to produce transition
from Ei= —Ac/A. ' to E2=+Ac/k' with
nearly 100% probability

Available disturbance/required disturbance

Number of times this factor enters into
matrix element

Number of times matrix elements occur in
transition probability

Pair creation cross section for 100%creation
probability

Resulting estimate for cross section for pair
creation

Asymptotic behavior of accurate formula for
cross section, high energy, unpolarized
radiation

7+y ~e++e

E=Ac/X

-A /~4

electric

(Ac) «/K'

BA (Ac) «/K

Ac/Ae

e/(Ac) «

2

0 (e'/Ac)'X'
~(e'/mc )'(mc /E)'

0.~2Ã(e /mc )'(mc /E)'
X lnL2E/e«mc~ j

G+G~v +g

E=Ac/a

Ac/K4

gravitational

-(AcG) «/~

ag-(AG/c3) «/~

(AG/c') «/K

2

(AG/c3) a/gu

-(1.6X 10-33 cm)4/8
-(«/~)
Not yet calculated

energies. Let such a time-varying disturbance in the
free gravitational field be analyzed into Fourier com-
ponents in the weak field approximation. According to
the laws of conservation of momentum and energy, no
single monochromatic disturbance will be able to pro-
duce transitions of neutrinos from negative energy
states to positive energy states (apart from the singular
case where all three momenta lie along the same line).
Real pair production demands collaboration of at least
two of these monochromatic disturbances, traveling in
different directions. As in the case where two photons
collide to produce an electron pair, " so here it is
simplest to analyze the two quantum process in a frame
of reference in which the momenta are equal and oppo-
site. For an order-of-magnitude estimate of the cross
section for pair creation it is not necessary to evaluate
matrix elements in detail. Instead, one can follow the
reasoning sketched by Bohr and Rosenfeld in their
discussion of vacuum polarization. "Let the two concen-
trations of energy be pictured as localized in two regions
of space, of dimensions ~X, and as moving towards
each other with velocity c, so that they overlap and
collaborate only during a time interval K/c. Then the
calculation outlined in Table III leads to a cross section

G. Breit and J. A. Wheeler, Phys. Rev. 46, 1087 (1934). See
E. J. Williams, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
13, 44 (1935}for the observable physical consequences of this pair
creation process.

'7 N. Bohr and L. Rosenfeld, Phys. Rev. 78, 794 (1950).

of the order
0(GE/c4)'.

(1.6X10 "cm)4/K',
(71)

for creation of a (v, v) pair by two gravitons, each of
energy E. The cross section is fantastically small for
quanta of any familiar energies. As the energy is in-
creased, a domain of wavelengths is ultimately reached,

(AG/c') 1.6X10 " cm, at which any normal
analysis of gravitational disturbances into waves would
appear to be ruled out: the disturbances in the metric
have reached the order of magnitude, bg 1, where
nonlinear effects completely dominate the analysis.
Even at such incredibly high energies the estimated
cross section (71) only attains a value of the order

o-~10 "cm'. (72)

v+ r (via~+ G) +v'+r '—(74)
"J.S. Toll, "The dispersion relation for light and its application

to problems involving electron pairs, " Ph. D. thesis, Princeton,
1952, unpublished; see also J. Toll and J. A. Wheeler, Phys. Rev.
S1, 654(A) (1951).

The principle of microscopic reversibility gives a
cross section also of the order (71) for the process

(73)

The existence of the inelastic process (73) implies, ac-
cording to dispersion theory, '8 the existence of an elastic
scattering process
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To estimate the cross section for this process even for
neutrino energies, A~, small compared to the critical
energy (Ac'/G) i, it is not legitimate to apply

te f' rrake(4O )d4O

(do/dfI) elastic forward at ca = i —,(75)
. 2x'c p M

v+v(via virtual kfk++e )—+f'+t'. (77)

In the frame where the total momentum is zero the
first process has a threshold at a neutrino energy,

E= 104mc' (78)

The calculated cross section rises well above threshold
according to the asymptotic formula"

o k (g'/A'c') (E/fftc')'

because the principal contribution to the integral comes
from virtual processes at energies, Ace', comparable to
and larger than the critical energy.

We have not considered processes that belong in the
realm of true elementary particle physics; processes
such as

r+~ft++e,

in the metric with the stress-momentum-energy tensor,
T;&. This tensor has been given for example by Pauli"
in the case of Rat space. Rosenfeld" has discussed this
tensor in curved space from the viewpoint of the
Uierbein formalism and derived some of its components.
We follow his very general approach. The Lagrangian
density in general relativity is proportional to the
quantity

L (c'/G) R+L](—g)
—l, (83)

where E. is the curvature scalar and I arises from other
field variables in addition to the g;I, . The requirement
that the Lagrangian be an extremum with respect to
variations of the g; J, leads to the Einstein field equations
of the form

Sxo
Gik(=&k 2gfk+) Tik)

c4

where the stress energy tensor, T;&, is defined for ordi-
nary fields as the variational derivative

P(-g)-:L
7''k=(1/8 )(—g)'

gg
sic

where the beta-coupling constant has the familiar value

g~10 4' erg cm'. (80)
p

"oL
= (I/8~) (

—hg'kL I,
(8g'k

(85)

From the absorption process one infers via causality
arguments the existence of the scattering process (77).
Applied to this process, the dispersion integral (76) is
only logarithmically divergent. Attribute to the di-
vergent logarithm the conventional value "10." Then
one estimates" a scattering cross section of the order

(do/dII)f»w»d ei»tie "100"(Eag2/Akck)'- (81)

It appears reasonable to conclude that both (f, f)
scattering processes are negligible at any reasonable
energies in comparison with the two absorption proc-
esses. The two absorption cross sections have the same
E' energy dependence, interestingly enough. Their ratio
is the dimensionless number

o (4 +fr +f4++e )(g'/A'c4) (E/—A)'—
o.(f +i—+G+G) (GE/c4)2

= (gc'/GA')' 10", (82)

a testimonial to the well-known great ratio between
beta couplings and gravitational couplings.

8. DENSITY OF STRESS, MOMENTUM,
AND ENERGY

So far we have considered the response of a neutrino
(or electron) to a given metric, either static or varying
in time. Now we ask for the response of the gravitational
field to the neutrino (or electron). The Einstein 6eld
equations connect the gravitational field and the change

and more generally, for spinor fields, by the equation

t T tf'g&" (—g)~d4X= (1/8fr)g)t L(—g)Id'. (86)

[~v„v,t,+h„~v,].=»g„I
One solution is"

6y'= ~y bg '.

(87)

(88)

Since any other solution can be obtained from this one

by a similarity transformation, the above is general
enough for our purposes. This variation of the y' leads,
through (2), to the variation of the I'k,

Sr„=,'(g„.ri „, g„-.rI „;)sk",— (89)

where s'&' is an abbreviation for -', (y'y' —pe'). For the

"W. Pauli, IIandblch der I'hysik (Julius Springer Verlag,
Berlin, 1933), second edition, ' Vol. 24, Part 1, p. 235.

20 L. Rosenfeld, Acad, roy. Belg. 18, Xo. 6 (1940). We are in-
debted to Bryce DeWitt for the opportunity to see an unpublished
manuscript of his written several years ago in which the result (92)
has already been given.

» W. Pauli, Ann. Phys. 18, 337 (1933).

The procedure for finding this variation for spinor fields
is somewhat more subtle than for c-number fields. The
variation of the g;& rejects itself not only where they
are used to form invariants, but also in variations of the
spinors which are necessary to preserve the fundamental
relationship (1):we must have
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Lagrangian (7), which vanishes when the field equations
hold, we find the variati. on

= ~L0'~V"~4+0'V "~I'4 3( a)'d—'x

Here N is a slowly varying spinor function of position
which (1) is nearly constant in the domain of the pencil
of radiation —very large compared to X=1/k—and (2)
falls off smoothly and strongly outside of this region.
The gradient of P contains terms that come from the
gradient of N, and others from the gradient of the ex-
ponential; but the second terms are overwhelmingly
more important than the erst ones. We conclude that
all components of T;~ with ~ or k equal to 2 or 3 are
negligible. The significant components have the value

=
~

H4' &~7 Pc""+ (g'" ' g'"~")
T14= T44= T11=Ack (95)

&& (g„.bi'„,'—g„.rr„,'))(—g) 'if'x, (90)

where s" is the previously defined four vector of Qow

and density. The bF„, are expressible in terms of the
bg&" and their derivatives. The derivatives are removed
by partial integration, and the various terms in the
second part of the integrand collected to form the co-
variant derivative of the typical component of the
Qow vector, s~:

L( g)~d'x-

since the Qow-density four vector is light-like. Tolman
and Khrenfest have investigated" the metric due to a
pencil like concentration of electromagnetic energy of
identical character. Therefore the results which they
derived for light also hold for neutrinos. Two photons
or neutrinos, or one electron and one neutrino, attract
when their propagation vectors are antiparallel with
twice the Newtonian value, and not at all when their
propagation vectors are parallel. Therefore the neu-
trinos in a toroidal neutrino geon will be in their most
stable configuration when half go around one way and
half go around the other way.

'4'v. ~,P '-~,~.3C""( g)'~'x (—91)

In the case of special relativity, where 7'&= 8/Bx~, this
result —which holds both for the electron and the neu-
trino —reduces to the energy-momentum tensor given
by Pauli. "The trace of the energy-momentum tensor
(92) reduces to

T =pAcgtg (93)

as a consequence of the fieM equations. It is remarkable
that this trace vanishes for the neutrino field (p=0)
just as it does for the electromagnetic 6eld.

One can use this result to derive the expressions
already given for the density of neutrino energy under
conditions of thermodynamic equilibrium.

9. INTERACTION BETWEEN TWO PENCILS
ON NEUTRINOS

We consider a second application of the energy
momentum tensor. We ask for the e6ect of a directed
beam of neutrinos in an otherwise nearly Qat space.
For simplicity, let the beam move in the x direction.
Take ki= k4=k'=k=E/Ac. T—hen the neutrino wave
has the form

Comparing (91) with (86), we find the momentum-
energy tensor

T'~ = —(A&/4) L4'v'~A (~A')&4-
+4'Vi ~A' (~4')7~4' j -(92)

10. STRESS, MOMENTUM, AND ENERGY OF A
NEUTRINO IN A TRAPPED STATE

As a third application of the stress energy tensor we
consider the motion of a neutrino in a nearly bound orbit
in a central field, as in Sec. 5. Let the time dependence
of the wave function be described by the factor
exp( —iET/Ac), and neglect any small imaginary part
of E that describes the slow leakage of the state out of
the zone of trapping. Then the stress energy tensor
takes the form

T;= (iAc/2) e '"D BP*/Br) y4ygP
—4*~ ~ (~4/~ ), (96)Tr = —e '*"EP*f

Te'+ T,"= [&:+Tr']. —

Require that P be an eigenstate of the s component of
the total angular momentum. Then these expressions
are independent of p. It is therefore a simple matter to
sum or average them over various orientations of the
orbit provided the contributions add incoherently. It is
easy to give conditions which make this incoherent
addition legitimate. " The e6ect of the addition or
averaging is to make (T,"), (Trr), (T/), and (T„&) the
only nonzero components, and to eliminate the de-
pendence upon angle. Then these surviving components
of the averaged stress-momentum-energy tensor depend
only upon the radial components of the neutrino wave
function. When this wave function has the form (36),
using the wave equation (32), these averages take

P =e exp[ik(x' —x')j. (94)
"See, for example, R. C. Yolman, Relativity, Thermodynamics

and Cosmology (Oxford University Press, New York, 1934),p. 272.
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the form

(T„")=(e '"/r')Le '"ER*R—(Ak/r)R*f, Rj
(Trr) = —(e "/r')ER*R (97)

(T')=(T„)=(Ak/ ').—:R*&,R;

however, this form applies only to a Dirac neutrino.
The normalization of (36) is such that the fourth com-
ponent of the Row-density vector integrates to unity:

1= I s'd (volume)

= —)"[(Trr)/E7d (volume)

p~Q p
A*Re'" '"dr

~

sin0d0dy.
0 sin0

(9g)

The radial and angular integrals are separately nor-
malized to unity here and hereafter.

The wave function for the right-handed neutrino,
as already noted, does not have the form, cu, of (36),
but rather, the form, 2 l (1 iver)co—of a linear combina-
tion of two parts. Each part is individually separable
in the product form but their sum is not. Let R con-
tinue to denote the radial factor in the first of these two
parts. Then the normalization (98) will continue to
apply. The form (97) will not be valid for the stress-
energy tensor for any individual neutrino state; new
interference terms have to be added. However, when
the average is made, as before, over orbits of all orienta-
tions, and use is made of the angular properties of the
functions, as deduced by Schrodinger, then these inter-
ference terms drop out, and (97) continues to apply to
the Lee-Yang neutrino.

11. NEUTRINO GEON

So far as one knows, geons have nothing to do either
with elementary particle physics or with astrophysics.
They have interest for quite another reason. Gravita-
tional fields have a nonlinear character that has many
unexplored consequences. A few of these consequences
come to light in the analysis of a geon."A collection of
immaterial energy holds itself together by its own
gravitational attraction. The analysis of such an object
or "geon" combines both major topics of the present
paper: the response of neutrinos to gravitational fields,
and the production of gravitational fields by neutrinos.

Geons of toroidal form appear in principle to be more
stable than spherical geons, at least when comparable
numbers of quanta go around in the two opposite direc-
tions. The case in which the angular momentum is zero
has been analyzed by Krnst. 24

"For further discussion, especially of unexplored analogies
between gravitation physics and hydrodynamics, see E. Power
and J. A. Wheeler, Revs. Modern Phys. 29, 480 {1957).

'4 F. Ernst, Revs. Modern Phys. 29, 496 {1957).

In the opposite extreme case where all the neutrinos
go around the same way, then the right-handed
character of the neutrinos implies that the resulting
toroidal system is not mirror symmetric with respect to
reflections in its own plane. It would be interesting to
investigate the consequences of this asymmetry to see
whether it shows up in the gravitational field near the
toroidal geon.

Among spherically symmetrical geons perhaps the
simplest to consider is a thermal geon." A thermal
neutrino geon divers from a thermal electromagnetic
geon only in a trivial respect. The photon energy
density in a thermal geon is

Tr (~'/15——) (T'/A'c') e-'" (co/kn. ) (9 )

where T is the temperature (in energy units), —e
—"&"&

=g44 is the familiar factor in the metric, and co/4m. is
the solid angle within which those rays travel which
are trapped. The neutrino energy density in a thermal
neutrino geon is similarly

Tr'= (~'/ ) (T'/&' ')~ '"( / )f(n) ( oo)

Here the dimensionless factor,

x'dx p" x'dx
f(.)=(»/2')

i

— + ~—
1+e* »o 1+e*+"

is uniquely fixed by the Fermi energy, E&= &T of the
trapped neutrinos. All the analysis of thermal electro-
magnetic geons" can be taken over immediately to
thermal neutrino geons. For this purpose it is only
necessary to redefine the characteristic scale of length,
ET, as

Rr (15''c'/8 vr' f(q) GT——4) l,

and the characteristic unit of mass as

(1O2)

Mr ——(15h'c"/gz'f (q)O'T4) '*. (103)

Then all the calculated graphs of reference 23 apply at
once, and a complete description of the metric and
energy distribution is available for a thermal neu-
trino geon.

In the other simple limiting case of a spherical neu-
trino geon, all of the energy is concentrated in a thin
spherical shell. In ray language, all of the neutrinos are
executing circular orbits of the same radius. Orbits of
all orientations occur with equal probability. It is a
matter of choice—that is, a matter of initial conditions—whether neutrino orbits of many diferent energies
are occupied, or only states of a single energy are filled.
We take the second option to simplify the analysis,
although it demands a higher energy per neutrino to
provide a given total mass. The wavelength of the
neutrinos is then very small compared to the geon
radius so the quantum number, k, is very large.

To formulate equations for the self-consistent metric,
we proceed as in reference 12, introducing the ab-
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breviations
0=E/Pic,

(104)

already used (43) in discussing the response of neutrinos
to a given gravitational field. In summary, geons can
be constructed in principle out of neutrinos in much the
same way that they can be constructed in principle out
of photons.

where L(p) is a parameter that measures the mass in-
cluded within the distance r;

ex+v-Q2(p) .

(f(p) & /&(r) i
I
=

I 8~«» —1)~/c'3'I
I

(105)
Eg(p)l & G(r))

J
ev&—vv(P2+G2) dr = 1.

0

(106)

The wave equation takes the form

d'fld p*'+L1 (e"I'/p'—)+ (did p*) ('"I/p))f= o, (1o7)

and the Einstein fieM equations lead to the formulas

dLld p*= (1/2Q) (f'+c')
= (1/2Q) Lf'+ (&f/dp*)'+ (e"&'/p') f'

(e :"&/p)df/—&p*-],

dQ/d p*= (p 2L) 'Lf'—+ (df/d p*)'3 (108)

These equations for the self-consistent field of a thermal
geon are very similar to (38), (40), and (41) of refer-
ence 12 for electromagnetic geons. When we neglect
terms in k compared to terms in k', the two systems of
equations become identical. The solution for the case of
large angular momentum" leads to the geon metric

where the radial functions F and 6 have the nor-
malization

12. CONCLUSION

From our analysis of some of the interactions between
neutrinos and gravitational fields we conclude that
neutrino physics has an interesting character in and by
itself, even when attention is withdrawn from all beta-
ray transformations. The behavior of neutrinos has
become a little clearer, but the mystery why spinors
occur in nature is left as pressing as ever. What is there
about the description of the geometry of space which
is not already adequately covered by ordinary scalars,
vectors, and tensors of standard tensor analysis' To
this question the mathematics of spinor fields gives a
well known answer: spinors allow one to describe rota-
tions at one point in space completely independently of
rotations at all other points in space —rotations that
have nothing to do with the coordinate transformations
that are treated in the usual tensor analysis. Fully to
see at work this machinery of independent rotations at
each point in space, we do best to consider the spinor
field in a general curved space, as in this paper. But the
deeper part of such rotations in the description of
nature is still mysterious.
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