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Christodoulou has found a new nonlinear contribution to the net change in the wave form caused by
the passage of a burst of gravity waves ("memory of the burst" ). We argue that this eA'ect is nothing

but the gravitational wave form generated by the stress energy in the burst itself. We derive an

explicit formula for this effect in terms of a retarded-time integral of products of time derivatives of
wave-zone gravitational wave forms. The resulting effect corresponds in size to a correction 2.5 post-
Newtonian orders [O((Gm/rc2) 't2) =O((v/c)')] beyond the quadrupole approximation, and is there-

fore negligible for all but the most relativistic of systems. For gravitational bremsstrahlung from two

stars moving at 3000 kms ', the effect is much less than 10 ' of the usual linear quadrupole wave

form, while for a system of coalescing binary compact objects we estimate that the effect is of order
10 ' for two neutron stars.

I. INTRODUCTION

Christodoulou [1] has recently found a new nonlinear
gravitational-wave eAect in which the net change in the
gravitational wave form caused by a passing burst has a
contribution whose source is the energy in the gravitation-
al waves themselves. Thorne [2] has interpreted this as a
hitherto overlooked contribution to the net change Ah~j.

in the transverse-traceless part of the gravitational wave
form, called gravitational-wave memory. "

It has been known for some time that gravitational-
wave memory could be produced by the stress-energy-
momentum of matter, for example, by two stars passing
each other in a small-angle scattering event [3]. The main
assumption is that before and after the event, the system
can be described by a set of freely moving, gravitationally
unbound bodies of mass Mz and velocity vz. The change
in the gravitational wave form is then given by [2]

r TT
4M

~=i «(1 —vg)' '

~here r is the distance from source to detector, N is a unit
vector from the source to the detector, and the superscript
TT denotes the transverse-traceless part (see Ref. [4] for

discussion of gravitational-wave conventions; we use units
in which 6 =c =1). The notation A denotes a diA'erence

between initial and final values, when the sources can be
viewed as freely moving.

Thorne [2] pointed out that the overlooked contribution
to Eq. (1) was that caused by the gravitons emitted in the
burst, each graviton itself being viewed as a freely moving
particle carrying stress energy and capable of producing
gravitational waves. A similar eAect had been previously
noticed for bursts of neutrinos [5]. Thorne argued that a
simple replacement of particle energy Mz/(1 —vz ) '

with an appropriate graviton energy distribution dE/dQ
and of velocity v~ with a (c =1) unit vector g would give
the correct contribution to the memory. The formula that
resulted was

4 ~ dE 414j
r~ dn' (2)

where the integral is over a solid angle and g' is a unit vec-
tor directed from the source to dQ'. This has the same
form as the result obtained by Christodoulou, using rig-
orous asymptotic techniques, except that Christodou1ou's
wave form was evaluated at infinity along an outgoing null

geodesic, while Thorne's was evaluated at late time but at
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a fixed radius.
It is possible to give a heuristic derivation of this eA'ect

that elucidates the similarities and diA'erences between the
results of Christodoulou and Thorne. On a Aat back-
ground spacetime (we ignore the asymptotic deviation of
the true null cones from the flat cones), in the harmonic
gauge, the relaxed Einstein equation can be written as the
integral equation for the "trace-reversed" wave form h'J
=h" —hb'~:

xb(r' —t+( x—x'~)d x', (3)

where z'~ contains the stress-energy tensor of matter and
gravity, the latter in the form of terms of quadratic and
higher order in h"' and its derivatives. In order to focus
on the contribution to z'~ from the outgoing gravitational
waves themselves, we subtract from z'~ the matter stress
energy and the contribution from the near-zone gravita-
tional fields. This part of the source provides the usual
quadrupole and post-quadrupole contributions to the wave
form. The remainder, denoted F'~, is thus nonzero only in
the wave zone, where it can be approximated as a null ra-
diation field with t' (t', x') =t ("(' [I+O(r ')], where
g' is an outgoing radial unit vector. With these assump-
tions, we are in eA'ect evaluating the "bundle" term
identified and studied by Blanchet and Damour [6]. Note
that r' t =dL/dO, ', the differential flux, which is purely
a function of retarded time u'= t' ——r' and of direction 0'.
Changing integration variables from d x' to du'r' dr'
xdQ', integrating over r', and denoting the result h;, , we
find

dL(u', n') 4'4g
dQ' t —u' —x g'

(4)

where u =t —r. We now assume that the radiation is in
the form of a burst so that the range of u' in the integral is
bounded, we consider a field point (r,x) corresponding to
a time after the burst has passed, and take the limit along
an outgoing null ray (r ~, u =const). The result is
that t —u' r, and

~ dL
lim rh;, =4 du', ' ', dn', (5)r-, urxed 4 4 dQ 1 N

where N=x/r. Since we expect h;~ before the burst to
vanish, and since fdL/dO, 'du'=dF/dO', we obtain the
nonlinear memory, Eq. (2), in the asymptotic limit used
by Christodoulou. Thorne, however, considers a gravita-
tional-wave detector at a fixed r. In such a case, one is
only interested in values of u in Eq. (4) corresponding to
the passage of the burst (u = u'), or for a time ht follow-
ing the burst that is much shorter than the light travel
time of the burst from source to detector (At ((r
=10 -10 yr). Under these assumptions, r —u'=At
+r =r, and Eq. (5) holds without the limit, and repre-
sents the contribution to the wave form during the burst
caused by the nonlinear effect of the burst itself. With ei-
ther interpretation, we denote the "nonlinear memory"
determined from Eq. (5) by hh;1. Notice that for a detec-
tor at fixed r, the memory vanishes as t

The purpose of this paper is to evaluate Eq. (5) explicit-
ly in terms of the far-zone gravitational wave forms of ra-
diating systems, and to apply the result to the examples of
gravitational bremsstrahlung and binary-star coalescence.

II. EVALUATION OF THE NONLINEAR MEMORY
FOR GENERAL SYSTEMS

The differential flux dL/dQ' is given in terms of the
far-zone gravitational wave form h;J by

dL/dQ'=(r /32+)h~j~ h J =(r /32m)h( h„q(P(P~, —
2 P~P('~)(P(P~'q —

& P~Ppq), (6)

0/4g
~h1'j du , dQdQ' 1

—N g'

where the final TT operation uses projection operators
I

(7)

where an overdot denotes a derivative with respect to re-
tarded time, P(—=8;( —( g(, PIP(~ =P~, P; =2 (summa. -

tion over repeated spatial indices is assumed). We then
write Eq. (5) in the transverse-traceless form

I

P;~ =b;q —N;Nj.
We now work in the quadrupole approximation for h;~. ;

in this case, h;~ itself does not contain any unit vectors g'
(higher-order corrections to h(J do, however). Comparing
Eqs. (6) and (7), we see that we must evaluate three an-
gular integrals of unit vectors, and take the TT part of the
(ij ) indices of the results. Recalling that b~~j =0 and that
(N;BJ) =0 for any B~, we find

(1 —N. (') '(,'$J d 0' =0
' TT

(8a)

(1 —N. g') 'j ( (~(,'„(dA' =(2)r/3)(6';((8 )))~~, (8b)

(1 —N g') 'g g(g(g, '„gp(q d0'

Combining Eqs. (6)-(8), we obtain

= (2'/3)(b((, 8(„,bpq)) +x(b((, b(.~N(,Nq)). (Sc)

where

8;( = "(r'/720) [h z(17h+h(„, JV W"') —26h(h((+2h(h& IV /V"']du'. (10)
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Consider a system consisting of two spinless bodies in an orbit confined to the x-y plane. In the quadrupole approxima-
tion, h;~ is given by (2//r)(I J

—
—, b;~1), where IJ is the moment-of-inertia tensor of the source [4], and so h;~ has com-

ponents only in the x-y plane. The observer direction N is described by polar angles 8 and (ji. For this case, we evaluate
the "+"and" "polarizations of the memory [for formulas, cf. for example, Eqs. (18) and (19) of Ref. [7]],and find ex-
plicitly

t u

hh+ = [gj(rh ) +g2(rh««) +g3(rh„«) +g4r h „h««+g5r h„h„«+g6r h««h «]du',
120r ~—

rI' u

hh» = [g7(rh „) +gs(rh««) +g9(rh„«) +g (or Ii h««+gjjr b, h «+gj2r h««h «]du',
120r 4—

where the angular functions are given by

g j (2&
=

g [(A +2B)sin 8+ 4(2+A )cos2&+ A sin 8cos4&],

g3= —
—,
' sin 8(3A —4B+A cos4$), g4= —,

' sin 8(7A —6B —Acos4$),

g5(61= —
—,
' [2(2+A )sin2(j'i T-A sin Osin4(ji], g7(s) 4 ocOS(+'2Bsi 2' —sin Osin4&),

g9=2gjo=cosOsin Osin4$, gjj((2j =cosO( —Bcos2$+'sin Ocos4$),

(1 la)

(1 1 b)

(12)

where 2 —= 1+cos 0, and B=5+cos 0, and the upper
(lower) sign goes with the first (second) subscript. Equa-
tions (11) and (12) can then be used to evaluate the non-
linear wave form for various orbiting systems.

I

wave form is given by [7]

b'~ = (2p/r) [(const) ' + (m/b) (4V'aJ" —
2 cosign'n )],

(13)
where p is the reduced mass, and where

n =—e cosg+eJ sing,

c~ sing+ cy cosg,

(14a)

(14b)
III. APPLICATION TO GRA VITATIONAL

BREMSSTRAHLUNG AND
COALESCING BINARIES

Gravitational bremsstrahlung is the radiation emitted
during the small-angle scattering of two masses which ap-
proach each other from large separations at a relative ve-
locity v, with impact parameter b (which corresponds
approximately to the distance of closest approach), and
with v »m/b, where m is the total mass. The latter in-
equality ensures that the gravitational deAection is small
(68=m/bv ). In the quadrupole approximation, for
bodies initially moving in the y direction, the gravitational

I

dh+ = —2(2p/r)(m/b)(l+cos 8)sin2&, (Isa)

Ah = —4(2p/r ) (m/b)cosOcos2& . (15b)

Now substituting Eqs. (13) and (14) into Eqs. (11) and
integrating over retarded time from —~ to +~, we ob-
tain an estimate of the "nonlinear" memory:

cosg=b(b +v ui) ', isgn=v u(b +v u )
(14c)

Calculating the change in h' between u =+ and u
= —~ (fixed r), and determining the TT polarizations,
we obtain, for the "linear" memory,

hh+ =(2p/r)(m/b) rlv (n/1920)[192cos2$+sin 8(1756—128cos2$ —50cos4$)
—sin 8(102 —32cos2$ —25cos4$)],

Ah» = —(2p/r)(m/b) gv (n/960)cosO[96sin2$ —sin 8(16sin2$+25sin4$)],

(16a)

(16b)

where rl =p/m.
Notice that the nonlinear memory is smaller than the

linear memory by (m/b) v . In a post-Newtonian expan-
sion of the gravitational wave form in powers of m/b
& v, this would correspond to 2 orders beyond the

quadrupole approximation, which is the order at which
gravitational-radiation reactions eAects must explicitly
show up in the far-zone wave form [8]. This makes con-
siderable sense, since the nonlinear memory is a direct
consequence of the radiated gravitational energy [6].
Since m/b(&v & 1, the nonlinear eA'ect in bremsstrah-
lung is much smaller than v times the linear eAect. For
bodies moving at 3000 kms ', v = 10 ' . Thus this
efIect is completely swamped by the linear efI'ect for any

I

astrophysical sources of bremsstrah lung.
For a coalescing binary system of two compact objects

such as neutron stars or black holes, the nonlinear
memory can be calculated in principle by integrating Eqs.
(11), first over the time during which the two-body orbit
decays by gravitational radiation damping, then over the
highly dynamical period when the two bodies coalesce,
and finally over the period when the final body emits
quasinormal-mode radiation. However, a complete wave
form for this process is not in hand to date, although wave
forms in each regime have been studied separately [9-11].
In order to obtain a crude estimate of the size of the non-
linear memory for this process, we restrict attention to the
precoalescence contribution. We use the quadrupole ap-
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proximation for the h;t that appear in Eq. (11) together
with an orbit evolved to late times near coalescence using
equations of motion valid through post i -Newtonian or-
der (thus including the orbital effects of radiation reac-
tion). Then h't is given by

rh' =4ttt(&'VJ —mX'Xt/R ),
(17)

(J
rh = 4p—m(4V 'X —3X'X R/R)R

0. 15
+
+ 0.10—

&1

0.05

0.00

(6,(t))=(45,22.5)

I I I I I I

R/m

10

where V, X, and R are the relative velocity, separation
vector, and distance between the two bodies, respectively.
Time derivatives of V have been evaluated using the
Newtonian equations of motion. For the time evolution of
these variables we substitute analytical and numerical
solutions for decaying orbits studied by Lincoln and Will
[9a]. We then integrate from a suitably early time, when
the bodies are well separated, and the gravitational wave
form is small, up to a time determined either by the onset
of hydrodynamics for neutron stars, or by the failure of
the post -Newtonian approximation for black holes.
From u = — to a time corresponding to a relative sepa-
ration of around 40m, integration of an analytic approxi-
mation to the orbit [Eqs. (3.6) and (3.12) of Ref. [9al]
yields Ah+ = —,', (p/r)(m/R)sin 8(17+cos 8). Surpris-
ingly, h, hx is zero in this approximation. For h, h+, the
effect is as large as 20% of the quadrupole wave form
O(p/r)(m/R) because the effect has built up over a
radiation-reaction tiine scale. Subsequent evolution of
t5h+ determined numerically is plotted in Fig. 1 as the ra-
tio of hh+ to the peak amplitude of the quadrupole wave
form (including postquadrupole corrections). The ratio
does not increase further, and in fact decreases at late
times as the quadrupole contribution increases more rap-
idly. Whereas the quadrupole wave form oscillates at in-
creasing frequencies O((m/R ) 'i ), the nonlinear wave
form varies smoothly, representing a slow drift. For a
gravitational-wave detector, the important quantity is the
change in the wave form from the time the signal is ac-
quired, thus the initial values represented in Fig. 1 are not
very meaningful.

Notice that a relative separation of 7m corresponds to
30 km for two neutron stars, or a separation when the
stars are touching, and hydrodynamical effects take over.
Numerical-hydrodynamics evolution of neutron-star coa-
lescences show wave forms and luminosity that decrease
very rapidly as the hydrodynamic phase proceeds [10b],
and hence the nonlinear memory evaluated at 7m,
Ah+ =0.03@/r (about, '0 of the quadrupole wave form at
that separation) probably represents a realistic upper lim-
it. This memory will persist after the burst has past. For
black holes, the post-Newtonian approximation is break-

FIG. 1. Ratio of nonlinear memory Ah+ to amplitude of
quadrupole h+ for binary coalescence as a function of separa-
tion, for two observation directions.

ing down by separations of 5m, and it is difficult to make
reliable estimates (in harmonic coordinates, the event hor-
izon of an isolated black hole is at m).

IV. CONCLUSIONS

We have argued that the Christodoulou nonlinear
memory is a consequence of gravitational radiation gen-
erated by the outgoing gravitational radiation itself, and
have derived an explicit formula that can be used to calcu-
late this effect approximately for a wide variety of dynain-
ical sources. For gravitational bremsstrahlung, the effect
is utterly negligible, while for coalescing binaries, the
effect builds up to a significant fraction of order ]'0 of the
usual quadrupole wave form. However, because it is a
slowly varying drift, detecting it will pose different chal-
lenges from detecting the rapidly oscillating wave form.
Furthermore, in highly relativistic systems such as
coalescing neutron stars and black holes, higher-order
(postquadrupole) corrections to the normal wave form
will be of comparable size to or larger than the Christo-
doulou effect, further complicating its detectability. For
example, slow drifts similar to the Christodoulou drift can
be seen already in first-post-quadrupole corrections to the
wave form, caused by interference between different har-
monics [see Fig. 14(c) of Ref. [9a]], and in "hereditary"
terms resulting from backscattering of the radiation from
the curved-spacetime background [6].
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