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Angular resolution of the LISA gravitational wave detector

Curt Cutler
The Max Planck Institute for Gravitational Physics, Potsdam, Germany

~Received 17 March 1997; published 15 May 1998!

We calculate the angular resolution of the planned LISA detector, a space-based laser interferometer for
measuring low-frequency gravitational waves from galactic and extragalactic sources. LISA is not a pointed
instrument; it is an all-sky monitor with a quadrupolar beam pattern. LISA will measure simultaneously both
polarization components of incoming gravitational waves, so the data will consist of two time series. All
physical properties of the source, including its position, must be extracted from these time series. LISA’s
angular resolution is therefore not a fixed quantity, but rather depends on the type of signal and on how much
other information must be extracted. Information about the source position will be encoded in the measured
signal in three ways:~1! through the relative amplitudes and phases of the two polarization components,
~2! through the periodic Doppler shift imposed on the signal by the detector’s motion around the Sun, and
~3! through the further modulation of the signal caused by the detector’s time-varying orientation. We derive
the basic formulas required to calculate the LISA’s angular resolutionDVS for a given source. We then
evaluateDVS for two sources of particular interest: monchromatic sources and mergers of supermassive black
holes. For these two types of sources, we calculate~in the high signal-to-noise approximation! the full
variance-covariance matrix, which gives the accuracy to which all source parameters can be measured. Since
our results on LISA’s angular resolution depend mainly on gross features of the detector geometry, orbit, and
noise curve, we expect these results to be fairly insensitive to modest changes in detector design that may occur
between now and launch. We also expect that our calculations could be easily modified to apply to a modified
design.@S0556-2821~98!00112-X#

PACS number~s!: 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb
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I. INTRODUCTION

This paper calculates the angular resolution of the plan
LISA gravitational wave detector. LISA~short for Laser In-
terferometer Space Antenna! is in essence a space-based v
sion of the ground-based interferometric detectors curre
under construction: the Laser Interferometric Gravitatio
Wave Observatory~LIGO!, VIRGO, etc. There are som
major differences, however. The primary difference is t
LISA will be sensitive to gravitational waves in a muc
lower frequency band: 1024– 1021 Hz. ~This low-frequency
regime is unobservable by any proposed ground-based d
tors, due to seismic noise. The ground-based interferome
will be sensitive in the range 101– 103 Hz.! The
1024– 1021 Hz band contains many known gravitation
waves sources that LISA is ‘‘guaranteed’’ to see. The
guaranteed sources comprise a wide variety of short-pe
binary star systems, both galactic and extragalactic, inc
ing close white dwarf binaries, interacting white dwarf bin
ries, unevolved binaries, W UMa binaries, neutron star bi
ries, etc. @1–3#. Indeed, our galaxy probably contains
many short-period, stellar-mass binaries that LISA will
unable to resolve them individually, and the resulting ‘‘co
fusion noise’’ will actually dominate over instrumental noi
as the principal obstruction to findingothersources of gravi-
tational waves~GW’s! in the datastream. In addition t
stellar-mass binaries, other possible LISA sources inclu
~1! a stochastic GW background generated in the early
verse,~2! the inspiral of compact, stellar-mass objects in
supermassive black holes~SMBH’s!, and ~3! the merger of
two SMBH’s @4#. The detection of any one of these wou
clearly be of immense interest. The events involving sup
570556-2821/98/57~12!/7089~14!/$15.00
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massive black holes must surely occur in the universe,
the event rates are highly uncertain.

In addition to their different frequency bands, another i
portant difference between LISA and the ground-based in
ferometers concerns their means of identifying the angu
position of the source on the sky. LISA is not a point
instrument; it is an ‘‘all-sky monitor’’ with a quadrupola
beam pattern. The ground-based detectors share this ch
teristic, but because there will be at least three ground-ba
detectors, and because they will be sensitive to gravitatio
radiation, whose wavelength is much shorter than the
tance between detectors, they will be able to determine
source position to within;1° by a standard time-of-fligh
method@5#. This method is not available to LISA. Only on
space-based detector is currently planned. Moreover
gravitational wavelength at the heart of the LISA ban
(;1023 Hz) is of order 1 AU, so a second detector wou
have to be placed at least several AU away from the Ea
for time-of-flight measurements to give useful constraints
source positions.

As we shall see, LISA can be thought of as two detecto
each measuring a different polarization of the gravitatio
wave. Thus the data consists of two time series. All inform
tion about the source position~as well asall other physical
variables! must be extracted from these two time series. A
gular position information is encoded in the time series in
following ways. First, the relative amplitudes and phases
the two polarizations provide some position informatio
Second, most sources will be ‘‘visible’’ to LISA for month
or longer, so LISA’s translational motion around the S
imposes on the signal a periodic Doppler shift, whose m
nitude and phase depend on the angular position of
7089 © 1998 The American Physical Society
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source.~In exactly the same way, radio astronomers ta
advantage of the Doppler shift caused by the Earth’s rota
to determine a pulsar’s position to an accuracy much be
than that implied by the beam width of the radio telescop!
Finally, as we shall describe, LISA’s orientation rotates o
one-year time scale, which imposes a further sour
position-dependent modulation on the measured signa
Fourier space, the effect of the detector’s changing orie
tion on a monochromatic signal of frequencyf 0 is to spread
the measured power over~roughly! a rangef 062/T, where
T is one year.~The factor of 2 arises from the quadrupo
beam pattern of the detector.! The effect of the periodic Dop
pler shift coming from the detector’s center-of-mass mot
is to spread the power over a rangef 0(16v/c), where
v/c;1024. These two effects are therefore of roughly equ
size at f 0;1023 Hz, which is near the center of the LISA
band; rotational modulation is more significant at lower f
quencies and Doppler modulation is more significant
higher frequencies.

It is also worth emphasizing that much of the uncertai
in the position measurement arises from the fact that fr
this pair of time series one must try to extractall the physical
parameters of the binary: the orbital plane of the binary,
masses of the bodies, etc. Errors in determining the so
position are correlated with errors in these other parame
The result is that LISA’s angular resolution is significan
worse than one would suppose if one ignored these corr
tions. From this consideration, it should be clear that LISA
angular resolution depends not just on the detector and
signal-to-noise, but on the type of source as well.

In this paper we derive the formulas necessary for ca
lating LISA’s angular resolutionDVS for some given source
and we then evaluateDVS for two sources of particular in
terest: monochromatic sources~e.g., short-period, white
dwarf binaries! and mergers of supermassive black hol
For these two types of sources, we perforce calculate h
accurately LISA can measure all the other sources par
eters, as well. A preliminary estimate of LISA’s angul
resolution has already been made by Peterseimet al. @4,6#,
but that estimate was only for monochromatic, hig
frequency sources, and it assumed that the frequency, p
ization, and amplitude of the signal were knowna priori, so
only the source position had to be extracted from the d
Also, for simplicity the estimate by Peterseimet al. @4,6#
took into account the information from only a single pola
ization, and it neglected the information encoded via the
tation of the detector. In essence, our paper provides a m
more realistic calculation. Since LISA’s angular resoluti
depends mainly on gross features of the detector orbit
noise curve, rather than exact details of the detector des
we expect that our results will be fairly insensitive to co
templated design changes. We also expect that the calc
tion presented here could be very easily modified to appl
a different design.

We now turn to our main motivation for considerin
SMBH mergers. The striking feature of these mergers is
huge amplitude of the emitted gravitational waves.~That is,
huge compared to other GW sources! LISA would be
capable of detecting SMBH mergers at basically any reas
able redshift~z,10, say! with signal-to-noiseS/N;103,
so long as the black holes are in the mass ra
e
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104M (,M (11z),107M ( . This mass range is set by th
frequency band where LISA is sensitive. While the event r
for such mergers is highly uncertain~it could be several per
year, or!1/yr; see@7# for a recent review!, if SMBH merg-
erswerediscovered, they could provide a way of determi
ing all the basic cosmological parameters—H0 ,V0 , and
L0—to remarkably high accuracy. The idea is that from t
gravitational waveform, one expects to determine the lu
nosity distanceDL to the source to an accuracy of rough
(S/N)21. ~In fact, we find that LISA does roughly a facto
10 worse than this: typicallyDDL /DL;1%; see Table II!.
As pointed out in the LISA Pre-Phase A Report@4# ~herein-
after referred to as the LPPAR!, if the source position on the
sky could be determined to sufficient accuracy that one co
identify the host galaxy or galaxy cluster, then presuma
one could also determine the redshift optically. Clearly
mere handful of such measurements would be sufficien
determineH0 , V0 , andL0 to roughly 1% accuracy. One o
the key motivations for this paper is to see whether LISA h
sufficient angular resolution to make such identificatio
possible. In brief, we find that LISA will determine th
SMBH location to no better than;1025 steradians~and
typically to ;1024 steradians! which is not sufficient by it-
self to permit identification of the host galaxy. However th
position measurement will be available days before the fi
merger; other telescopes~radio, optical, x-ray! should know
when and where to look, so if the merger is accompanied
an electromagnetic outburst~e.g., from an accretion disk be
ing carried along by one of the holes!, the host galaxy might
still be determined. Whether such an electromagnetic o
burst can be expected appears to be an interesting open
lem @8#.

The plan of this paper is as follows. Sections II and
give brief summaries of relevant background informatio
Section II reviews the basic formulas of signal analysis a
parameter estimation~mostly to establish notation and con
ventions!, while Sec. III describes LISA’s configuration an
orbit, its response to gravitational waves, and its no
sources. In Sec. IV we derive LISA’s angular resolution f
monochromatic sources, and in Sec. V we derive LISA
angular resolution for SMBH mergers. For both cases
calculate the Fisher matrix, which estimates how accura
the detector can extractall the physical parameters of th
system from the measured signal. Our conclusions are s
marized in Sec. VI.

We should state at the outset the principal limitations
this study. Firstly, and necessarily, the current detector
sign cannot be regarded as final, and the published n
curves—for both the instrumental noise and the confus
noise—can only be regarded as rough estimates.Faute de
mieux, we use the current design and the best estimates o
noise sources currently available. Relatedly, while it is a g
of the LISA design that the instrumental noise should
stationary and Gaussian@4#, probably we will not know how
well this goal has been met until the the instrument is fu
tioning. Faute de mieux, we assume the noise is stationa
and Gaussian. Finally, to simplify things, in our treatment
SMBH mergers we assume that the two holes are in a ci
lar orbit, and we assume that the plane of the binary orb
fixed. That is, we ignore both orbital eccentricity and t
precession of the orbital plane caused by the spins of
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57 7091ANGULAR RESOLUTION OF THE LISA . . .
holes @9#. We also represent the SMBH waveform by t
quadrupole portion of the inspiral waveform~the piece that
dominates the signal-to-noise!, ignoring the merger and ring
down parts of the waveform and ignoring higher-order m
tipoles components. We intend to take all these effects
account in a later paper@10,11#.

Throughout this paper, we assume that the detector
length is much smaller than the gravitational waveleng
and we take the gravitational waveformhab(t) to be in the
~standard! de Donder gauge. Time is in units of seconds a
frequency is units of Hz.

II. REVIEW OF SIGNAL ANALYSIS

This section briefly reviews the basic formulas of sign
analysis, partly to fix notation. For a more complete disc
sion, see@12# or @13#.

The output ofN detectors can be represented by the v
tor sa(t), a51,2, . . . ,N. It is often convenient to work with
the Fourier transform of the signal; the convention we us

s̃a~ f ![E
2`

`

e2p i f tsa~ t !dt. ~2.1!

The outputsa(t) is the sum of gravitational wavesha(t)
plus instrumental noisena(t). We assume that the noise
stationary and Gaussian. ‘‘Stationarity’’ essentially mea
that the different Fourier componentsña( f ) of the noise are
uncorrelated; thus we have

^ña~ f !ñb~ f 8!* &5 1
2 d~ f 2 f 8!Sn~ f !ab , ~2.2!

where ‘‘̂ &’’ denotes the ‘‘expectation value’’ andSn( f )ab
is referred to as the spectral density of the noise. W
N51 ~i.e., when there is just a single detector!, we will
dispense with Greek indices and just writes̃( f ) andSn( f ).

‘‘Gaussianity’’ means that each Fourier component h
Gaussian probability distribution. Under the assumptions
stationarity and Gaussianity, we obtain a natural inner pr
uct on the vector space of signals. Given two signalsga(t)
andka(t), we define (guk) by

~guk!52E
0

`

@Sn~ f !21#ab
„g̃a* ~ f !k̃b~ f !1g̃a~ f !k̃b* ~ f !…d f .

~2.3!

In terms of this inner product, the probability for the noise
have some realizationn0 is just

p~n5n0!}e2~n0un0!/2. ~2.4!

Thus, if the actual incident waveform ish, the probability of
measuring a signals in the detector output is proportional t
e2(s2hus2h)/2. Correspondingly, given a measured signals,
the gravitational waveformh that ‘‘best fits’’ the data is the
one that minimizes the quantity (s2hus2h).

It also follows from Eq.~2.3! that for any functionsga(t)
and ka(t), the expectation value of (gun)(kun), for an en-
semble of realizations of the detector noisena(t), is just
(guk). Hence the signal-to-noise of the detection will be a
proximately given by
-
to

m
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S

N
@h#5

~huh!

rms~hun!
5~huh!1/2. ~2.5!

For a given incident gravitational wave, different realiz
tions of the noise will give rise to somewhat different best
parameters. However, for largeS/N, the best-fit parameter
will have a Gaussian distribution centered on the correct v
ues. Specifically, letl̃ i be the ‘‘true’’ values of the physica
parameters, and letl̃ i1Dl i be the best fit parameters in th
presence of some realization of the noise. Then for la
S/N, the parameter-estimation errorsDl i have the Gaussian
probability distribution

p~Dl i !5Ne2~1/2!G i j Dl iDl j
. ~2.6!

Here G i j is the so-called Fisher information matrix define
by

G i j [S ]h

]l iU ]h

]l j D , ~2.7!

andN5Adet(G/2p) is the appropriate normalization facto
For largeS/N, the variance-covariance matrix is given by

^Dl iDl j&5~G21! i j 1O~S/N!21. ~2.8!

III. LISA

In this section we describe LISA’s geometry and no
curve; these are the only aspects of the detector that
necessary for our analysis. For more details on how the
tector works, we refer the reader to the LPPAR@4#.

A. Detector configuration and orbit

The geometry of the LISA mission, as currently env
sioned, is depicted in Figs. 1 and 2. The detector is a th
arm laser interferometer, with each arm being 53106 km
long. It consists of six drag-free satellites, positioned so t
two adjacent satellites sit at each vertex of an equilate
triangle. ~One satellite at each vertex would suffice, but t
current design calls for two, which provides some redu
dancy and greatly simplifies the pointing control.! The detec-
tor’s center-of-mass follows a circular, heliocentric traje
tory, trailing 20° behind the Earth. The plane of the detec
is tilted by 60° with respect to the ecliptic; this angle allow

FIG. 1. Shows the two coordinate systems used in our analy
‘‘barred’’ coordinates tied to the ecliptic and ‘‘unbarred’’ coord
nates that are tied to the detector and rotate with it.
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the satellites tomaintain the shape of an equilateral triang
throughout the orbit. We refer the reader to Fig. 3.17~p. 92!
of the LPPAR for a useful picture of the orbital geometr
and to Falleret al. @14# for a simple explanation ofwhy the
60°-tilt allows the equilateral shape to be maintained.

We label the arms 1,2,3, and call their lengthsL1 ,L2 ,L3 .
Gravitational waves cause time-varying changes in a
lengths by amountsdLi(t), which are different in the three
arms. The differences are measured interferometrically@15#.
With 3 arms, there are two linearly independent differenc
dL12dL2 and dL22dL3 . Therefore LISA will be able to
measure simultaneously both polarizations of an incom
gravitational wave.

We find it useful to introducetwo Cartesian coordinate
systems: ‘‘unbarred’’ coordinates (x,y,z) tied to the detector
and ‘‘barred’’ coordinates (x̄,ȳ,z̄) tied to the ecliptic. Un-
barred and barred spherical polar angles~u,f! and (ū,f̄) are
related in the usual way to the Cartesian coordina
cosu5z/(x21y21z2)1/2, cosū5z̄/(x̄21ȳ21z̄2)1/2, etc. We de-
note byxa the unit vector along the x-axis, and similarly fo
ya,za,x̄a,ȳa,z̄a. Here the superscript ‘‘a’’ is an abstract index
indicating that the object is a vector in 3-dimensional spa
The unit vectors along the arms are calledl 1

a ,l 2
a ,l 3

a , respec-
tively. The detector lies in thex-y plane, and thex-y coor-
dinates rotate with detector. We assign, for all time, the f
lowing coordinate-directions to the three arms:

l i
a5cosg ix

a1sin g i y
a ~3.1!

where

g i5p/121~ i 21!p/3 ~3.2!

as shown in Fig. 2. Thep/12 term in Eq.~3.2! is included for
later convenience. We choose thex̄- ȳ plane to be the ecliptic
~i.e., the plane of the Earth’s motion around the Sun!. The
detector’s center-of-mass follows the trajectory

ū~ t !5p/2, f̄~ t !5f̄012pt/T ~3.3!

FIG. 2. Illustrates the orientation of LISA’s 3 arms in th
x2y plane.
,

s:

g

s:

e.

l-

whereT equals one year, and wheref̄0 is just a constant tha
specifies the detector’s location at timet50.

The normal to the detector plane,za, is at a constant 60°
angle toz̄a, andza precesses aroundz̄a at a constant rate:

za5 1
2 z̄a2

)

2
@cos f̄~ t !x̄a1sin f̄~ t !ȳa#. ~3.4!

Using zal i
a50 and Eqs.~3.1!–~3.4!, we see that the direc

tions l i
a can be written in terms of the barred coordinates

l i
a5cosa i~ t !@cos f̄~ t !ȳa2sin f̄~ t !x̄a#

1sin a i~ t !S)2 z̄a1 1
2 @cos f̄~ t !x̄a1sin f̄~ t !ȳa# D ,

~3.5!

where thea i(t) increase linearly with time:

a i~ t !52pt/T2p/122~ i 21!p/31a0 , ~3.6!

wherea0 is just a constant specifying the orientation of t
arms att50.

In this paper we are primarily interested in LISA’s ang
lar resolution. The error box for the position measurem
has solid angleDVS given by

DVS52p~Dm̄SDf̄S2^Dm̄SDf̄S&! ~3.7!

wherem̄S[cosūS. The second term in brackets in Eq.~3.7!
accounts for the fact that errors inmS andfS will in general
be correlated, so that the error box on the sky is elliptica
general, not circular. Also note the overall factor of 2p in our
definition of DVS . With this choice, the probability that th
source liesoutside an ~appropriately shaped! error ellipse
enclosing solid angleDV is simply e2DV/DVS.

B. Detector response

Because the LISA antenna has three arms, it produ
basically the same information as a pair of two-arm det
tors, and therefore is capable of simultaneously measu
both polarizations of the gravitational wave. To begin wi
however, we shall consider only asingle two-arm detector,
formed by arms 1 and 2. The extension to two detectors
be straightforward.

1. Single detector

We refer to the detector formed just by arms 1 and 2
‘‘detector I.’’ Detector I measureshI(t), given by

hI~ t !5@dL1~ t !2dL2~ t !#/L ~3.8a!

5 1
2 hab~ t !~ l 1

al 1
b2 l 2

al 2
b! ~3.8b!

5
)

2
~ 1

2 hxx2
1
2 hyy! ~3.8c!

where we used Eq.~3.1! to go from Eqs.@3.8~b!# to @3.8~c!#.
That is, for an arbitrary waveformhab(t), the ‘‘relative arm
length difference’’hI(t) measured by a 60°-interferometer
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always precisely)/2 times as large as the ‘‘relative arm
length difference’’ measured by a 90°-interferometer~a re-
sult which is well-known among LISA cognoscenti!. This
result assumes the 60°-interferometer is ‘‘placed symme
cally’’ inside the 90°-interferometer, as shown in Fig. 2. Th
is the reason for ourp/12 term in Eq.~3.2!. This simple
observation saves a lot of work. It means that all the form
las derived in the extensive literature on 90°-interferome
~LIGO, VIRGO, etc.! can be carried over immediately t
LISA: one just remembers to multiply the signal amplitu
by)/2.

Consider a monochromatic, plane-fronted gravitatio
wave travelling in the2na direction. The general such solu
tion can be written as the sum of two orthogonal polari
tion states. Letpa and qa be axes orthogonal tona, with
qa[2eabcnbpc . Define polarization basis tensors by

Hab
1 5papb2qaqb , Hab

3 5paqb1qapb . ~3.9!

For a particular, unique choice of (pa,qa), called the waves’
principal axes, there is precisely ap/2 phase delay betwee
the two polarizations:

hab~ t !5A1Hab
1 cos~2p f t !1A3Hab

3 sin~2p f t !.
~3.10!

Here A1 and A3 are constants, the amplitudes of the tw
polarization states, and we have omitted an arbitrary ph
by our choice of the zero of time. Our convention
A1>uA3u>0; A3>0 for right-hand polarized waves an
A3<0 for left-hand polarization.

The strainhI(t) that the waves produce in detector I d
pends onA1 and A3 , the principal polarization axes, an
the direction of propagation:

hI~ t !5
)

2
A1FI

1~uS ,fS ,cS!cos~2p f t !

1
)

2
A3FI

3~uS ,fS ,cS!sin~2p f t !, ~3.11!

whereFI
1 and FI

3 are the ‘‘detector beam-pattern’’ coeffi
cients@16#:

FI
1~uS ,fS ,cS!5 1

2 ~11cos2uS!cos 2fScos 2cS

2cosuSsin 2fSsin 2cS , ~3.12a!

FI
3~uS ,fS ,cS!5 1

2 ~11cos2uS!cos 2fSsin 2cS

1cosuSsin 2fScos 2cS . ~3.12b!

Here the subscript ‘‘S’’ stands for ‘‘source,’’ (uS ,fS) give
the source location in the ‘‘unbarred,’’ detector-based co
dinate system, andcS is the ‘‘polarization angle’’ of the
wavefront, defined~up to an arbitary multiple ofp! as fol-
lows:

tan cS5~zaqa!/~zbpb!. ~3.13!

In the case of interest here, the source polarization is
sumed fixed, but the detector plane rotates throughout
observation. A very closely related problem was examin
i-
t
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rs

l

-

se

r-

s-
he
d

by Apostolatos, Cutler, Sussman, and Thorne@9# ~ACST!,
who investigated the case, where the detector location
orientation are fixed~on the time scale of the observation!,
but where the orbital plane of the binary undergoes Len
Thirring precession~due to the post-Newtonian coupling be
tween the bodies’ spins and their orbital angular mom
tum!, thereby modulating the complex amplitude of th
measured signal in a nearly equivalent way. We refer
ACST for derivations of many of the formulas quoted belo
~There is one important difference between the ‘‘rotatin
source’’ case studied in ACST and the ‘‘rotating-detecto
case studied here: the ‘‘Thomas precession’’ term identifi
in ACST is absent in the ‘‘rotating-detector’’ case. Note al
that some of the sign conventions in ACST are differe
from those used here; in particular,A3 is defined to be posi-
tive in ACST, but has no definite sign here.!

To begin, we rewrite the signal~3.11! in the conventional
amplitude-and-phase form. For a waveform whose amplit
and frequency are slowly changing functions of time, we c
write

hI~ t !5
)

2
AI~ t !cosF E t

2p f ~ t8!dt81wp,I~ t !1wD~ t !G ,

~3.14!

where f (t) is the GW frequency thatwould be measured by
a non-rotating detector positioned at the solar system b
center, andAI(t), wp,I(t), andwD(t) are given by

AI~ t !5@A1
2 FI

12~ t !1A3
2 FI

32~ t !#1/2, ~3.15a!

wp,I~ t !5tan21S 2A3FI
3~ t !

A1FI
1~ t ! D , ~3.15b!

wD~ t !52p f ~ t !c21R sin ūScos@f̄~ t !2f̄S# ,
~3.15c!

whereR51 AU. We refer towD(t) as theDoppler phase; it
is just the difference between the phase of the wavefron
the detector and the phase of the wavefront at the baryce
We have neglected second-order Doppler corrections to
~3.15c!; this is justified since such corrections are of ord
(v/c)uwD(t)u&331024( f /1023) radians. In Eq.~3.15c! we
also neglect the small change in the source frequencyf ~as
measured at the barycenter! that occursduring the time delay
R sin ūS/c; the fractional correction towD(t) due to this ef-
fect is of order 1

2 f 21(d f /dt)R/c, which for a binary is
;0.04(4m/M )(6M /r )5/2( f /1023), wherem and M are the
reduced and total mass of the binary, respectively, andr is
the orbital radius.

AI(t) is the waveform amplitude, and we refer towp,I(t)
as the waveform’spolarization phase. The time-dependence
of AI(t) and wp,I(t) are determined byFI

1(t) and FI
3(t),

which in turn depends onuS(t), fS(t), and cS(t). Using
Eqs.~2.1!–~2.6! we find

cosuS~ t !5 1
2 cos ūS2

)

2
sin ūScos@f̄~ t !2f̄S#

~3.16!
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fS~ t !5a11p/12

1tan21S) cos ūS1sin ūScos@f̄~ t !2f̄S#

2 sin ūSsin@f̄~ t !2f̄S#
D .

~3.17!

Now consider the case where the monochromatic sou
is a circular, Newtonian binary.~This is quite general: any
monochromatic point source can be represented as a circ
Newtonian binary.! The lowest-order, quadrupole approx
mation gives

pa5eabcnbL̂c , ~3.18a!

A15
2M1M2

rD
@11~ L̂ana!2#,

~3.18b!

A352
4M1M2

rD
L̂ana ,

~3.18c!

where M1 and M2 are the two masses,r is their orbital
separation,D is the distance between source and obser
and L̂a is the unit vector parallel to the binary’s orbital a
gular momentum vector. The binary’s circular orbit, wh
projected on the plane of the sky—i.e., projected orthogo
to the waves’ propagation direction-looks elliptical. Th
principal axispa is just the major axis of this ellipse.~See
Fig. 21 in ACST.! We let L̂a point in the direction (ūL ,f̄L).
The anglesuS(t) andfS(t) do not depend on the principa
polarization directionpa, so they are already given by Eq
~3.16!, ~3.17! above. Using Eqs.~3.13! and~3.18a!, cS(t) is
given by

tan cS~ t !5~ L̂aza2L̂anazbnb!Y ~eabcn
aL̂bzc!

~3.19!

where

L̂aza5 1
2 cos ūL2

)

2
sin ūLcos@f̄~ t !2f̄L# ~3.20!

L̂ana5cos ūLcos ūS1sin ūLsin ūScos~f̄L2f̄S!

~3.21!

eabcn
aL̂bzc5 1

2 sin ūLsin ūSsin~f̄L2f̄S!2
)

2
cos f̄~ t !

3~cos ūLsin ūSsin f̄S

2cos ūSsin ūLsin f̄L!2
)

2
sin f̄~ t !

3~cos ūSsin ūLcos f̄L

2cos ūLsin ūScos f̄S!. ~3.22!

To recapitulate, Eqs.~3.14!, ~3.15! give hI(t) in terms of
ūS , f̄S , A1 , A3 , F1(t), andF3(t). A1 andA3 are given
ce

lar,

r,

al

by Eq.~3.18!, while the termsF1(t), andF3(t) are given in
terms ofuS(t), fS(t), cS(t) by Eq.~3.12!, and finallyuS(t),
fS(t),cS(t) are given by Eqs.~3.16!, ~3.17!, and Eqs.
~3.18!–~3.22!. We note that an equivalent expression f
AI(t) was derived independently by Giampieri@17#.

2. Two detectors

We have stated that with its three arms, LISA functio
like a pair of two-arm detectors, outputting two linear
independent signals: sI(t)[@dL1(t)2dL2(t)#/L and
sII 8[@dL2(t)2dL3( f )#/L. We now extend our above
analysis to include both detectors. We continue to assu
the noise is stationary and Gaussian; nevertheless, the n
in different arms will generally be correlated. Letni(t)
[dLi(t)/L be the noise in thei th arm; then

^ñi~ f !uñ j~ f 8!&5Ci j ~ f !d~ f 2 f 8! ~3.23!

whereCi j ( f )Þ0 in general. Clearly then the noise outpu
of detectorsI and II 8 will be correlated too. However it is
also clear that we can always find some nontrivialsII which
is a ~frequency-dependent! linear combinationsI and sII 8 ,
and which is orthognal tosI , in the sense that the noise insII
is uncorrelated with the noise insI . Just set

s̃II ~ f !5 s̃II 8~ f !

2 s̃I~ f !
C12~ f !2C13~ f !2C22~ f !1C23~ f !

C11~ f !22C12~ f !1C22~ f !

~3.24!

and then we have

^ñI~ f !uñII ~ f 8!&50. ~3.25!

We find thinking in terms of such orthogonal detectors to
very convenient for calculations.

Unfortunately, there do not yet exist estimates for how
noise in LISA’s three arms will be correlated. In this pap
we will make the simplifying assumption that the noise
‘‘totally symmetric’’ among the three arms, in the followin
sense:

C12~ f !5C23~ f !5C31~ f !, ~3.26a!

C11~ f !5C22~ f !5C33~ f !. ~3.26b!

It is not too unreasonable to suppose that the instrume
noise will approximately totally symmetric, since the ind
vidual satellites will all be virtually identical. Also, one ca
easily show that the confusion noise due to an isotro
background of gravitational wave sources must be tota
symmetric. The reason is that for an isotropic backgrou
Ci j ( f )/Sn( f ) can only be a function of (eabl i

al j
b)2, where

eab is the Euclidean 3-metric. The totally symmetric cond
tion then follows from the facts that LISA’s arms are all th
same length and the angle between any two different arm
p/3. ~Of course, our galaxy is not spherically symmetric, a
so the confusion noise from galactic binaries cannot be
pected to satisfy the condition of total symmetry.!



of

c

a

e

rn
p

ar
s

n

be
oal
of

e-
tec-

rt-
nt

al

is a

d

57 7095ANGULAR RESOLUTION OF THE LISA . . .
For totally symmetric noise, the linear combination
s̃I( f ) and s̃II 8( f ) that is orthogonal tos̃I( f ) is actually
frequency-independent. That combination is

sII ~ t !5321/2@dL1~ t !1dL2~ t !22dL3~ t !#/L

5321/2@sI~ t !12sII 8~ t !# ~3.27!

which implies

^ña~ f !uñb~ f 8!&5dabd~ f 2 f 8!Sn~ f !, ~3.28!

wherea,b take on valuesI or II , andSn( f ) is the spectral
density for detector I.

In terms of the ‘‘unbarred’’ coordinates introduced in Se
III A, it is easy to show using Eq.~3.1! that

hII ~ t !5
)

2
~ 1

2 hxy1
1
2 hyx!. ~3.29!

That is, just ashI(t) is equivalent to the response of of
90°-interferometer~modulo the overall factor)/2!, sohII (t)
is equivalent to the response ofanother90°-interferometer,
rotated byp/4 radians with respect to the first one.~This
result was previously derived by P. Bender, in unpublish
work @18#.! It is therefore trivial to write down the beam
coefficients for detector II:

FII
1~uS ,fS ,cS!5FI

1~uS ,fS2p/4,cS! ~3.30a!

FII
3~uS ,fS ,cS!5FI

3~uS ,fS2p/4,cS!. ~3.30b!

Finally, in complete analogy with Eqs.~3.14! and~3.15!, we
can writehII (t) as

hII ~ t !5
)

2
AII ~ t !cosF E t

2p f ~ t8!dt81wp,II ~ t !1wD~ t !G ,
~3.31!

where

AII ~ t !5@A1
2 FII

12~ t !1A3
2 FII

32~ t !#1/2, ~3.32a!

wp,II ~ t !5tan21S 2A3FII
3~ t !

A1FII
1~ t ! D , ~3.32b!

and wherewD(t) is still given by Eq.~3.15c!.
Figs. 3 and 4 show an example of the modulation patte

due to detector rotation, for one representative choice of
rameter values.

C. Noise spectrum

We will assume the noise spectra for detectors I and II
the same; both are given bySn( f ), which we represent a
the sum of instrumental noiseSn,in( f ) and confusion noise
Sn,co( f ):

Sn~ f !5Sn,in~ f !1Sn,co~ f !. ~3.33!

These two contributions are shown in Fig. 5. We now co
sider them in turn.
.

d

s
a-

e

-

1. Instrument noise

It is a LISA design goal that the instrumental noise
stationary and Gaussian; our analysis will assume that g
has been met. The following is the current best estimate
the spectral density of theinstrumentalnoise Sn,in( f ) for
detector I@4#:

Sn,in~ f !55.0493105@a2~ f !1b2~ f !1g2# ~3.34!

where

a~ f !510222.79~ f /1023!27/3,

b~ f !510224.54~ f /1023!, g510223.04.
~3.35!

Herea( f ) is mainly due to temperature fluctuations,b( f )
reflects the loss in sensitivity, when the gravitational wav
length becomes comparable to or shorter than than the de
tor arm length, andg ~a constant! is mainly due to photon
shot noise. We will assume that Eqs.~3.34!–~3.35! above
give the noise spectral density for detector II as well.

2. Confusion noise

It seems very likely that gravitational waves from sho
period, stellar-mass binaries will actually be more importa
than the instrumental noise in ‘‘drowning out’’ the sign
from other types of sources. The issue ofwhy stellar-mass
binaries should be regarded as effectively a noise source

FIG. 3. The amplitudesAI(t) andAII (t) during a one-year ob-
servation, for the following choice of initial detector position an

orientation and of the source’s position and polarization:f̄050,
a050, mS50.3,fS55.0,mL520.2,fL54.0. The overall scale is
arbitrary.
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subtle, but important one. We confine ourselves to a
remarks on this subject, and refer to the reader to Bender
Hils @20# and Hils, Bender, and Webbink@3# for further de-
tails.

The first remark is that the orbits of these stellar-m
binaries can be treated as Newtonian, and the radiation c
puted accurately from the quadrupole approximation. T
orbit of a Newtonian binary is periodic, so in Fourier spa
its gravitational radiation is composed of discrete lines
f 52/P,4/P,6/P, etc., whereP is the orbital period.~The
sequence is multiples of 2/P instead of 1/P because the ra
diation is quadrupolar.! It seems reasonable to assume t
most of the short-period, stellar-mass binaries have sm
eccentricity:e,0.2. In this case,.60% of the power comes
out in the lowest-frequency line,f 52/P @3#. Current esti-
mates of the confusion noise therefore neglect the hig
frequency lines.

Second, for an observation time ofT0;1 yr, the discrete
Fourier transform sorts monochromatic signals into f
quency bins of widthD f 51/T0;331028 Hz. The typical
time scale on which these binaries evolve is*107 yrs; thus
in one year’s observation, a binary’s emitted GW frequen
changes by& f /107510210( f /1023) Hz—i.e., much less
than the width of one bin! Thus, ignoring for the moment t
motion of the detector, each binary remains in the same
throughout the observation. The lower half of the LIS
band, 1024– 1023 Hz, contains roughly 33104 frequency
bins, while our galaxy contains;33107 close white dwarf
binaries~CWDB’s! with GW frequencies in this range, s
roughly 103 per bin. Thus the problem of ‘‘fitting’’ for all the
binaries, in order to then ‘‘take them out’’ of the data,
extremely underdetermined: there are at least 103 times as

FIG. 4. The polarization phaseswp,I(t) and wp,II (t) during a
one-year observation, for the same parameter values as in Fig
w
nd

s
m-
e

t

t
ll

r-

-

y

in

many free parameters as there are data points. In fac
model this signal accurately, one needs not only the
quency of each source, but its location and orientation, si
the motion of the detector ‘‘smears out’’ the the signal ov
a frequency range;2/year, in a manner that depends o
these additional variables. So the motion of the detector o
aggravates the problem of ‘‘fitting out’’ the stellar-mass b
naries. One might even argue that instrumental noise i
principle no different from binary confusion noise; instr
mental noise always arises from some deterministic phys
processes that one could also in principle model and t
attempt to remove from the data by some fitting proced
~or by monitoring these processes directly!, but in practice
one reaches a point, where there are simply too m
variables—too many free parameters—to obtain a fit that
predictive power.

The number of galactic binaries per bin decreases w
increasing frequency. Somewhere in the range 1023 Hz to
431023 Hz, there is a transition from having many galac
binaries per bin to having fewer than one, on average.
frequencies above this transition, most of the informat
about some broad-spectrum source~such as a SMBH
merger! will come from the bins that do not contain galact
binaries. At these frequencies, then, the binary confus
noise is dominated by the extragalactic contribution.

The following represents the current best estimate
Bender and Hils@20# for the level of the binary confusion
noise:

Sn,co~ f !5H 10242.685f 21.9, f <1023.15,

10260.325f 27.5, 1023.15< f <1022.75,

10246.85f 22.6, 1022.75< f ,
~3.36!

FIG. 5. Shows the spectral density of both the instrumental
confusion noise. log10Sn,in( f ) and log10Sn,co( f ) are plotted versus
log10f . The total noise is given bySn( f )5Sn,in( f )1Sn,co( f )..
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where f is measured in Hz. This estimate assumes a sp
density of CWDB’s which is 10% of the theoretical valu
predicted by Webbink@21#, and does not yet take into ac
count the contribution from helium cataclysmic variabl
~which are likely to be important in the range 1 to 3 mHz!.

IV. MONOCHROMATIC SOURCES

Any monochromatic point source of gravitational wav
can be thought ofas a circular-orbit binary: they are in 1-
correspondence. Therefore, in the rest of this section we s
always speak of the angular resolution of LISA for circula
orbit binaries, but the results would apply to any monoch
matic source. An arbitrary circular-orbit binary is describ
by sevenfree parameters: the frequencyf 0 ~as measured by
an observer at the solar system barycenter!; the anglesūS ,
f̄S , ūL , and f̄L ; an overall amplitude proportional t
A[M1M2 /rD ; and a trivial overall phasew0 related to the
choice oft50.

A. The measured signal

For a circular, Newtonian binary, the waveformha(t)
(a5I ,II ) can be written as

ha~ t !5
)

2
Aa~ t !cosxa~ t ! ~4.1!

where

xa~ t !52p f 0t1w01wp,a~ t !1wD~ t ! ~4.2!

where w0 is just a constant of integration, andAa(t),
wp,a(t), andwD(t) are given by Eqs.~3.15! and ~3.32!.

The calculation of the Fischer matrix is simplified by th
following trivial observation. Although the measured fr
quency is not exactly constant, due to the motion of
detector, it is verynearly the constantf 0 . Therefore we can
take the factor 1/Sn( f ) out of the integral in Eq.~2.3!, and
write

~] ihu] jh!5
2

Sn~ f 0! (
a5I ,II

E
2`

`

] i h̃a* ~ f !] j h̃a~ f !d f

~4.3a!

5
2

Sn~ f 0! (
a5I ,II

E
2`

`

] iha~ t !] jha~ t !dt,

~4.3b!

where we used Parseval’s theorem to go from Eq.~4.3a! to
Eq. ~4.3b!. Then using the fact thatf @A21dA/dt, we can
approximate Eq.~4.3b! by

~] ihu] jh!5 3
4 Sn~ f 0!21 (

a5I ,II
E

2`

`

@] iAa~ t !] jAa~ t !

1Aa
2~ t !] ixa~ t !] jxa~ t !#dt. ~4.4!

Thus to evaluate the Fisher matrix~4.4!, we need the deriva
tives of Aa(t) andxa(t) with respect to the seven physic
parameters lnA,w0 , f 0 ,ūS ,f̄S ,ūL ,f̄L . Clearly one might
straightforwardly use the chain rule with Eqs.~3.15! and
ce

all
-
-

e

~3.32! to determine the partial derivatives ofAa(t) andxa(t)
with respect to the four anglesūS , f̄S , ūL , andf̄L , though
the final expressions would be cumbersome. In our calc
tion, we preferred simply to take these derivatives nume
cally. The remaining partial derivatives are

]Aa~ t !

] ln A5Aa~ t !,
]Aa~ t !

]w0
50,

]Aa~ t !

] f 0
50, ~4.5a!

]xa~ t !

] ln A50,
]xa~ t !

]w0
51,

]xa~ t !

] f 0
52pt. ~4.5b!

B. Results

For monochromatic sources, the detailed shape of
noise curve has no bearing on the Fischer matrix; all t
matters isSn( f 0), where f 0 is the source frequency. And
Sn( f 0) is inversely proportional to the signal-to-noise of th
detection, so we can eliminateSn( f 0) from the problem sim-
ply by normalizing the results to some fixed, fiducialS/N. In
Table I, we normalize our results toS/N510, whereS/N is
the total signal-to-noise accumulated by both detectors I a
II. The advantage of this way of representing our results
that Table I remains valid forany noise spectral density
~However the results do depend on our assumption that
noise is totally symmetric among the three arms.! Table I
lists LISA’s angular resolutionDVS for a one-year observa
tion, for a range of source frequenciesf 0 and for representa
tive choices of anglesūS ,f̄S ,ūL ,f̄L . For these cases, w
also list SI /N and DVS,I , the signal-to-noise and angula
resolution of detector I taken alone.~One expectsSI /N to be
roughly 221/2S/N57.07, but the exact value clearly depen
on the various angles specified.! The sizes of the position
error ellipsesDVS andDVS,I simply scale like (S/N)22.

Since everything in the problem is periodic with perio
one year, one obtains exactly the same results forT years of
observation, whenT is an integer.~That is, one obtains the
same results after normalizing toS/N510; if instead one
normalizes to sources at some fixed distance, thenS/N scales
like AT and DVS scales likeT21.! This scaling will hold
approximately, but not exactly, whenT is some non-integer
greater than 1. LISA’s angular resolution would certainly
much worse for observation times significantly less than o
year.

The results in Table I are easily summarized. LISA’s a
gular resolution for monochromatic sources is roughly in
range 1023 to 1021 steradians~equivalently, 3 to 300 square
degrees! for source frequencies in the range 1024< f 0
<1022 andS/N510. Having data from both detectors I an
II provides hardly any improvement in angular resolutio
apart from the trivial improvement due to the increasedS/N.
Presumably this is because in one year’s time, LISA
changing orientation allows detector I by itself to measu
both polarizations of the incoming wave fairly accurate
LISA’s angular resolution is roughly a hundred times bet
at 1022 Hz than at 1024 Hz ~for fixed S/N!. Clearly this is
because the Doppler modulation is a much bigger effec
the higher-frequency sources.

We note that one application of the results in this sect
is to compact stellar mass objects~like neutron stars! in orbit
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TABLE I. LISA’s angular resolutionDVS ~in steradians! for monochromatic sources. Results are for a 1-year observation, with so
strength normalized so that total~i.e., detectors I and II combined! S/N510. SI /N andDVS,I are the signal-to-noise and angular resoluti

~in steradians! achievable by detector I alone, for the same source strength. LISA’s initial position and orientation are given bya05f̄0

50.

f GW m̄S f̄S m̄L f̄L
SI /N DVS,I DVS

1024 0.3 5.0 20.2 4.0 7.07 2.1531021 8.2731022

1024 0.3 5.0 0.2 0.0 7.19 2.2331021 7.8931022

1024 20.3 1.0 20.2 4.0 6.89 1.2631021 7.2831022

1024 20.3 1.0 0.8 0.0 6.80 1.2331021 7.1131022

331024 0.3 5.0 20.2 4.0 7.07 2.0131021 7.5331022

331024 0.3 5.0 0.2 0.0 7.19 2.1231021 7.2131022

331024 20.3 1.0 20.2 4.0 6.89 1.2531021 6.5331022

331024 20.3 1.0 0.8 0.0 6.80 1.1231021 6.2831022

1023 0.3 5.0 20.2 4.0 7.07 1.0731021 3.9831022

1023 0.3 5.0 0.2 0.0 7.19 1.0331021 3.8331022

1023 20.3 1.0 20.2 4.0 6.89 7.5331022 3.1531022

1023 20.3 1.0 0.8 0.0 6.80 6.5131022 3.1431022

331023 0.3 5.0 20.2 4.0 7.07 2.9531022 1.0731022

331023 0.3 5.0 0.2 0.0 7.19 2.9431022 1.0731022

331023 20.3 1.0 20.2 4.0 6.89 1.8131022 7.0631023

331023 20.3 1.0 0.8 0.0 6.80 1.7331022 7.2231023

1022 0.3 5.0 20.2 4.0 7.07 2.5731023 1.0831023

1022 0.3 5.0 0.2 0.0 7.19 2.9031023 1.1531023

1022 20.3 1.0 20.2 4.0 6.89 1.9931023 7.7431024

1022 20.3 1.0 0.8 0.0 6.80 1.9531023 7.6631024
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around SMBH’s. In that case, orbital evolution is sufficien
slow on the time scale of the observation that the signa
effectively a sum of ‘‘lines’’ at frequenciesn/P, where P is
the orbital period. To the extent that the strongest line do
nates, the source is therefore monochromatic.

V. SUPERMASSIVE BLACK HOLE MERGERS

In this section we consider the information LISA cou
extract from the collision of two supermassive black hol
Note that since high signal-to-noise ratios are expected
this case, we expect the Fischer matrix approach to e
estimation to be quite accurate.

SMBH collisions are related by simple re-scaling to t
mergers of stellar-mass black holes; many of the issues
arise in gravitational waves~GW! data analysis are identica
for the two cases, so we take take advantage of the exten
literature on the latter. Our exposition in this section w
therefore be highly abbreviated; we refer to@12# for more
extensive discussion and derivations.

Unlike our treatment of monochromatic sources in S
IV, our treatment here will be based on some simplifyi
assumptions. Most importantly, we neglect the spin-indu
precession of the binary’s orbital plane, and its correspo
ing modulation of the waveform amplitude and phase. Giv
that the rotation of the detector and the rotation of the bi
ry’s orbital plane modulate the signal in very similar ways
may in practice prove difficult to disentangle these two
fects in the data analysis, and the accuracy of position m
surement would be correspondingly degraded. Another c
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plication we omit is the possible eccentricity of the orb
Finally, we have ignored higher-order multipole compone
of the inspiral waveform, the merger waveform, and t
post-merger ringdown waveform, all of which should b
measurable for SMBH mergers in the 106– 107M ( range,
due to the large S/N ratio. These last pieces encode infor
tion about the physical source differently than the sim
quadrupole inspiral waveform, and thus should improve
rameter estimation by breaking near-degeneracies prese
our simplified waveform. Thus our analysis here ignor
some effects that tend to degrade parameter extraction a
racy, and ignores others that tend to improve it. One mi
hope that, when the dust settles, the preliminary results g
here are close to LISA’s true angular resolution for SMB
mergers. In any case, we plan to include these complicat
in later work.

One might expect such collisions to occur at significa
redshift (z>1) so in this section we carry along the facto
of (11z) that we have ignored in earlier parts of the pap
~see Ref.@22#!. These collisions would be visible to LISA fo
a significant fraction of year. Assuming circular orbits, t
time interval from the instantt( f ) that quadrupole fre-
quency sweeps pastf until the instanttc , when the two
bodies collide and merge is~to lowest order!:

tc2t~ f !55~8p f !28/3@M~11z!#25/3

53.0033106 s~ f /1024!28/3FM~11z!

106M (
G25/3

~5.1!
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whereM5M1
3/5M2

3/5/(M11M2)1/5, and f and t are the fre-
quency and time measured by an observer at the Earth.

A. The measured signal

We define a signalH(t) by

H~ t ![
2M1M2~11z!

DLr ~ t !
cosE

0

t

f ~ t8!dt8 ~5.2!

where f (t) is the ~redshifted! frequency a detectorwould
measure if it were nonrotating and its position were fixed
the Solar system barycenter. In Eq.~5.2!, M1 , M2 andr are
the unredshifted masses and orbital separation that woul
measured by an observer near the source, andDL is the ‘‘lu-
minosity distance’’ to the source@22#. We think ofH(t) as a
‘‘carrier’’ signal, which is modulated by the motion of th
detector. Themeasuredsignalha(t) is given by

ha~ t !5
)

2
La~ t !A~ t !cosS E

0

t

f ~ t8!dt81wp,a~ t !1wD~ t ! D
~5.3!

whereA(t) andLa(t) are defined by

A~ t ![2M1M2~11z!/@DLr ~ t !# ~5.4!

La~ t ![Aa~ t !/A~ t !. ~5.5!

Thus La(t) basically encodes the amplitude modulatio
How is h̃a( f ) related toH̃( f ), the Fourier transform of the
carrier? SinceLa(t), wp,a(t), and wD(t) all vary on time
scales of;1 yr@1/f , we can approximateh̃a( f ) using the
stationary phase approximation. This gives@9#

h̃a~ f !5
)

2
La~ t !e2 i @wp,a~ t !1wD~ t !#H̃~ f ! ~ f .0!

~5.6!

where t5t( f ) is the instant at which the GW frequenc
sweeps through the valuef . So given H̃( f ), we have a
simple ~approximate! expression forh̃a( f ).

In this paper, we use a ‘‘model’’ ofH̃( f ) that was de-
veloped in @23,12#. This model is based on the so-calle
‘‘restricted post-Newtonian approximation.’’ In brief, th
model includes post-Newtonian corrections to thephaseof
the waveform throughO(v/c)3, but it takes the waveform to
be quadrupolar, with an overall amplitude given by t
lowest-order approximation. A more detailed explanation
this model is given in@12#. Specifically, our modelH̃( f ) is

H̃~ f !5HAf 27/6eiC, 0, f , f cut-off ,

0, f . f cut-off
, ~5.7!

where

A5~5/96!1/2p22/3DL
21@M~11z!#5/6 ~5.8!
t

be

.

f

C~ f !52p f tc2fc2p/41
3

4
@8pM~11z! f #25/3

3F11
20

9 S 743

336
1

11m

4M D x1~4b216p!x3/2G .
~5.9!

Here M[M11M2 , m[M1M2 /M , M[m3/5M2/5, and the
post-Newtonian expansion parameterx( f ) is defined by

x~ f ![@pM ~11z! f #2/3. ~5.10!

The parameterstc and fc are just constants of integration
The termb is a P1.5N spin-orbit coupling term defined in
@12#. ~b is only approximately conserved by theP1.5N equa-
tions of motion, but in our model we treat it as a constant!. In
this paper, we ‘‘cut-off’’ the signal~somewhat arbitarily! at
f cut-off5@33/2pM (11z)#21, corresponding tor /M53. In
fact, the value of this cutoff substantially affects the calc
lated signal-to-noiseS/N in cases, whereM (11z) is greater
than;33106M ( , because in these cases most of theS/N
accumulates at the very end of inspiral. That is beca
LISA’s noise curveSn( f ) falls very rapidly with increasing
f for f ,331023 Hz. However we will find that the pre-
dicted angular resolution of the detection, for a source
fixed distance, is rather insensitive tof cut-off .

From Eq.~5.6! we therefore have

h̃a~ f !5
)

2
La~ t !Af 27/6ei @c~ f !2wp~ t !2wD~ t !# ~ f .0!

~5.11!

wheret5t( f ) is given throughO(v/c)3 by @12#

t~ f !5tc25~8p f !28/3@M~11z!#25/3

3F11
4

3 S 743

336
1

11m

4M D x2
32p

5
x3/21O~x2!G .

~5.12!

Note that our model of the signal is the just inspiral wav
form: it does not include the final merger and ringdow
Partly this is necessitated by our current ignorance about
final merger. However it also seems to us that this neglec
justified by the particular problem we are trying to solve; th
is, it seems unlikely that signal from the final burst will sig
nificantly improve LISA’s angular resolution, even if
dominates the signal-to-noise. The reason is that the fi
burst is only a few seconds long, and obviously LISA’s o
entation and velocity hardly change in that interval,
there’s modulational encoding of the source position.~Of
course, the final burst could give extra information about
chirp massM, which is correlated with the position un
knowns, butM is already very well determined by th
lower-frequency data.!

Note that h̃a( f ) depends on 10 physical paramete
M,m,b,fc ,tc , ln DL ,ūS,f̄S,ūL ,f̄L . The next step is to-
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evaluate the Fisher matrix~2.8!. As in Sec. IV, we numeri-
cally evaluate the partial derivatives ofh̃a( f ) with respect
to the four anglesūS ,f̄S ,ūL ,f̄L , using Eqs.~3.15! and
~3.32!. The partial derivatives ofh̃a( f ) with respect to the
other 5 parameters are given by Eqs.~3.14! and ~3.19!
of @12#.

B. Results

Using Eq. ~4.3! as our model for the signal, we hav
computed the variance-covariance matrixS i j for a wide
range of masses and angles. We note that since the si
to-noise is high for SMBH mergers, the Fischer matrix a
proximation, Eq.~2.8!, is expected be quite accurate.

Clearly there is a very large, non-trivial parameter spa
to explore:M,m,b,ūS ,f̄S ,ūL ,f̄L . ~The Fisher matrix is
independent offc and tc , and lnDL just affects the overal
scaling.! Here we will look at just a few representative cas
Our results are shown in Table II. In all cases we ta
b50 ~that is, thetrue value of b is zero, but the best-fi
value can be non-zero!, and we take the initial position an
orientation of the detector to bef̄050, a050. We take as
our fiducial source a binary atz51 in a low-density
(V050) universe withH0575 km/s-Mpc; consequently ou
fiducial distance is DL[H0

21z513.0373109 yr. The
masses listed in Table II are the ‘‘true’’ masses, as th
appear in Eq.~5.2!, not their redshifted versions. All result
are for one year of data.

As stated earlier, forM.33106M ( , mostof the signal-
to-noise accumulates at the very end of the inspiral,
therefore the totalS/N we calculate with our model wave
form depends rather sensitively on how one assumes the
nal is ‘‘cut-off’’ as the two bodies merge. Therefore theS/N
results listed in Table II should not be regarded as accura
better than a factor of;2. However we find that our result
for DVS do not depend sensitively on this cutoff~for a given
source at fixed distance!. We also find that, for the mas
range we looked at~104 to 107M (!, increasing the observa
tion to include longer than the final year did not significan
increase the angular resolution.

The following points emerge from Table II. Unlike th
case for monochromatic sources, having essentially two
tectorsdoessubstantially increase LISA’s angular resolutio
for SMBH mergers. The angular resolutionDVS achievable
by detectors I and II combined is roughly 1024 steradians.
The angular resolution depends strongly on the masses
the particular angles involved, however.DVS is roughly in
the range 1025– 1023 steradians for 105M (,M(11z)
,107M ( . DVS is generally larger for the lower mass blac
holes (M'104– 105M () because the signal-to-noise is ge
erally smaller in these cases.

The angular resolution achievable by detectors I and
combined is roughly an order of magnitude better than t
achievable with detector I alone. Notice this is quite differe
from the case of monochromatic sources, where the impro
ment was only a factor of;2. It seems clear that this differ
ence arises because, in the SMBH case, the time-scale
which most of the signal-to-noise is accumulated is rat
shorter than a year. During this ‘‘effective’’ integration tim
the orientation of detector I does not change dramatica
al-
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and so detector I is effectively sensitive to only a sing
polarization.

The distance determination accuracyDDL /DL for SMBH
mergers is roughly in the range 0.1% – 30%, with;1% be-
ing typical. This is much worse than the naive guess
DDL /DL'(S/N)21. Clearly the ‘‘extra error’’ is due to cor-
relations betweenDL and the various angles describing th

source. The quantityDVL[2p(Dm̄LDf̄L2^Dm̄LDf̄L&)
represents LISA’s accuracy in determining the orbital pla
of the binary. We find that large values ofDDL /DL have a
strong positive correlation with large values ofDVL , as one
might expect.

Finally we note that a recent paper by Schilling@24# has
looked more carefully LISA’a transfer function, and co
cludes that the high-frequency part of the instrumental no
is somewhat lower than previously estimated, so that
termb( f ) in Eqs.~3.34!–~3.35! should be reduced by som
factor &1.5. Re-running the code with this change, we fin
makes a negligible correction to the values ofDVS listed in
Table II.

VI. CONCLUSIONS AND FUTURE WORK

We have seen that, for SMBH mergers, LISA shou
achieve an angular resolution of~very roughly! ;0.3 square
degrees. What are the implications of this result for the id
of using such mergers to determine the cosmological par
etersH0 , V0 , andL0? Since LISA can determine the lum
nosity distance to the source, but not its redshift, one cle
needs the reshift of the host galaxy or galactic cluster to
cosmology. Since one square degree contains;104 L* gal-
axies, the LISA measurement alone is clearly insufficient
identify the host galaxy or cluster. On the other hand: b
cause the signal-to-noise is so large, one will know tha
merger is occurring weeks before the final burst. We ha
checked that, more than a day before the final burst, LI
will have achieved most of the angular resolution indica
in Table II. Thus one will know very accurately,when the
final burst will occur, and will know to within a degree
where it will occur. At the right time, every available tele
scope can be trained at the right spot in the sky~as happened
with the impact of the comet Shoemaker-Levy on Jupite!,
and, if one is lucky, the merging binary could ‘‘send up
flare’’ electromagnetically@8#. Of course, a flare is possibl
only if there is normal matter involved in the collision; e.g
if at least one of the black holes has preserved an accre
disk up to the point of merger. It is possible there could
some electromagnetic signal even before the final bu
Clearly, these possibilities deserve more investigation.

Finally, we list some ways in which our analysis could
improved. First, it would be useful to have a better und
standing of how the instrumental noise in the different ar
will be correlated; our assumption of ‘‘total symmetry’’ be
tween the different arms was a crude estimate intended
to get us started. Of course it would also be useful to hav
better estimate of the confusion noise levels, but it may t
a working LISA to provide that! Second, our treatment
monochromatic sources could be improved by doing a
Monte Carlo estimation of the errors. The S/N for any mon
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TABLE II. LISA’s angular resolution for SMBH mergers. All mergers are taken to occur at redshiftz51 and luminosity distance
DL5H0

21, where we takeH0575 km/s-Mpc. Results marked with subscript ‘‘I’’ are for detector I alone; results without a subs
represent the signal-to-noise and accuracies achievable using both detectors I and II. LISA’s initial position and orientation are

a05f̄050. DV is in units of 1025 steradians.

M1

(M ()
M2

(M () m̄S f̄S m̄L f̄L SI /N S/N
DVS,I

(1025 str)
DVS

(1025 str)
DDL /DL

(31022)
Dm/m

(31022)

107 107 0.3 5.0 0.8 2.0 975 1336 153 1.52 1.53 1.52
107 107 20.1 2.0 20.2 4.0 1435 2085 256 15.5 1.34 1.10
107 107 20.8 1.0 0.5 3.0 3150 4907 148 29.1 0.294 0.630
107 107 20.5 3.0 20.6 22.0 2505 3361 234 24.5 0.944 0.846
107 107 0.9 2.0 20.8 5.0 4610 6715 53.8 13.0 15.8 0.454
107 107 20.6 1.0 0.2 3.0 2386 3940 164 38.8 0.539 0.775
107 107 20.1 3.0 20.9 6.0 3411 3984 457 78.7 0.822 0.807

107 106 0.3 5.0 0.8 2.0 469 641 125 1.53 1.32 0.515
107 106 20.1 2.0 20.2 4.0 687 1001 188 12.4 1.15 0.376
107 106 20.8 1.0 0.5 3.0 1483 2310 104 20.9 0.275 0.219
107 106 20.5 3.0 20.6 22.0 1182 1589 154 18.1 0.831 0.299
107 106 0.9 2.0 20.8 5.0 2193 3188 42.3 9.61 13.8 0.159
107 106 20.6 1.0 0.2 3.0 1125 1853 116 27.4 0.471 0.270
107 106 20.1 3.0 20.9 6.0 1612 1884 312 56.2 0.690 0.285

106 106 0.3 5.0 0.8 2.0 2774 3806 94.0 0.87 1.16 0.320
106 106 20.1 2.0 20.2 4.0 4091 5935 128 9.13 1.02 0.228
106 106 20.8 1.0 0.5 3.0 9016 14041 71.1 15.6 0.212 0.127
106 106 20.5 3.0 20.6 22.0 7165 9607 104 13.8 0.711 0.173
106 106 0.9 2.0 20.8 5.0 13152 19172 27.5 6.93 11.8 0.091
106 106 20.6 1.0 0.2 3.0 6826 11280 76.8 20.8 0.394 0.156
106 106 20.1 3.0 20.9 6.0 9749 11385 220 39.8 0.564 0.159

106 105 0.3 5.0 0.8 2.0 1318 1809 152 1.67 1.55 0.107
106 105 20.1 2.0 20.2 4.0 1943 2820 164 16.6 1.35 0.077
106 105 20.8 1.0 0.5 3.0 4280 6666 99.5 25.3 0.274 0.049
106 105 20.5 3.0 20.6 22.0 3402 4561 135 23.8 0.940 0.061
106 105 0.9 2.0 20.8 5.0 6246 9104 43.0 10.5 14.3 0.031
106 105 20.6 1.0 0.2 3.0 3241 5355 109 34.5 0.508 0.055
106 105 20.1 3.0 20.9 6.0 4628 5405 289 60.0 0.650 0.055

105 105 0.3 5.0 0.8 2.0 667 913 294 4.54 2.49 0.199
105 105 20.1 2.0 20.2 4.0 982 1425 331 42.4 2.18 0.145
105 105 20.8 1.0 0.5 3.0 2157 3359 238 62.4 0.436 0.086
105 105 20.5 3.0 20.6 22.0 1715 2301 312 61.5 1.51 0.118
105 105 0.9 2.0 20.8 5.0 3154 4595 90.1 24.1 20.9 0.059
105 105 20.6 1.0 0.2 3.0 1633 2698 269 90.9 0.813 0.105
105 105 20.1 3.0 20.9 6.0 2335 2727 647 144 0.977 0.104

105 104 0.3 5.0 0.8 2.0 239 324 642 14.4 4.28 0.120
105 104 20.1 2.0 20.2 4.0 348 508 942 118 3.78 0.084
105 104 20.8 1.0 0.5 3.0 751 1172 848 197 0.787 0.049
105 104 20.5 3.0 20.6 22.0 599 807 1086 186 2.58 0.068
105 104 0.9 2.0 20.8 5.0 1116 1620 279 69.2 33.3 0.035
105 104 20.6 1.0 0.2 3.0 570 939 1197 316 1.48 0.057
105 104 20.1 3.0 20.9 6.0 821 958 2252 488 1.94 0.061

104 104 0.3 5.0 0.8 2.0 109 148 684 19.2 3.11 0.343
104 104 20.1 2.0 20.2 4.0 156 234 1290 85.4 2.69 0.250
104 104 20.8 1.0 0.5 3.0 306 478 1184 113 0.794 0.153
104 104 20.5 3.0 20.6 22.0 247 338 1159 106 2.31 0.210
104 104 0.9 2.0 20.8 5.0 487 698 250 51.8 29.3 0.115
104 104 20.6 1.0 0.2 3.0 235 378 1494 170 1.33 0.178
104 104 20.1 3.0 20.9 6.0 343 403 2457 443 2.46 0.200
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chromatic source is likely to be low, it is not clear ho
reliable our Fischer matrix approximation is in this cas
Thirdly, one could clearly do a much more systematic ana
sis of the parameter space: the parameters in Table II w
chosen more or less at random. Finally, a better treatmen
the SMBH case would allow for eccentric orbits and sp
induced precession of the binary’s orbital plane, and wo
include information in higher-order multipoles and in th
merger and ringdown waveforms. Work to incorporate th
last effects in our analysis is now in progress@10,11#.
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