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We present a family of solutions of Einstein’s gravity minimally coupled to a complex, massive scalar
field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These
hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular
momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs
branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson
stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A
single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event
horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as
J=M2 > 1, a quadrupole moment larger than J2=M, and a larger orbital angular velocity at the innermost
stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other)
models with more general self-interactions.
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Introduction.—Black holes (BHs) are believed to play a
central role in many astrophysical processes, ranging from
the evolution of stars and galaxies to powering active
galactic nuclei and extreme bursts of gravitational radiation
in binary BH coalescence. Central to our understanding
of BH physics are the uniqueness theorems [1], stating that
the only stationary, regular, asymptotically flat BH solution
of the vacuum Einstein gravity is the Kerr metric [2],
suggesting that the myriad of BHs in the cosmos near
equilibrium are all well described by this elegant geometry.
Such a paradigm was summarized by Wheeler’s “mantra”:
“BHs have no-hair” [3].
In this Letter, we will show that this simple picture has to

be reconsidered. We show that a matter field may endow
the Kerr metric with “hair,” i.e., a permanent deformation
that keeps its horizon regular and spacetime asymptotically
flat. The matter we shall consider is a complex scalar field,
minimally coupled to gravity and with a mass term. But,
similar hairy black holes (HBHs) will exist in other scalar
field models with more general self-interactions. Such
scalar fields are ubiquitous in theoretical (astro)physics
and may represent a fundamental field or a coarse graining
of fundamental degrees of freedom. As such, scalar HBHs
provide more plausible astrophysical candidates than other
known examples of hairy BHs [4].
The HBH metric presented here remains stationary and

axially symmetric, in the same sense as Kerr, but the full
solutions—including the matter field—are not preserved
by these isometries, being only invariant under the action
of a single Killing vector field, which is tangent to the
null geodesic generators of the horizon. This is why
these HBH solutions are outside the scope of the no-hair
theorems [5], which apply to stationary solutions. Since
the metric of HBHs is stationary, however, they are

equilibrium states and may play a role in realistic
astrophysical processes.
The model.—The action for Einstein’s gravity minimally

coupled to a complex massive scalar field Ψ is
S¼ R

d4x
ffiffiffiffiffiffi−gp ½ð1=16πGÞR−Ψ�

;aΨ;a−μ2Ψ�Ψ�, where G,
that will be set to unity, is Newton’s constant and μ is
the scalar field mass. The resulting field equations are the
Einstein-Klein-Gordon system:

Rab −
1

2
gabR ¼ 8πTab; ð1aÞ

□Ψ ¼ μ2Ψ; ð1bÞ

where Tab ¼ 2Ψ�
;ðaΨ;bÞ − gab½Ψ�

;cΨ;c þ μ2Ψ�Ψ� is the
stress-energy tensor of the scalar field. Hitherto, the only
BH solution known within this theory is the Kerr family
together with Ψ ¼ 0.
Linearized analysis: Scalar clouds.—The branching off

of the Kerr family into a new family of HBH solutions may
be anticipated from an analysis of linearized scalar field
perturbations around the Kerr metric.
Consider theKlein-Gordonequation(1b)inthebackground

of the Kerr solution with mass M and angular momentum
J ≡ aM. In Boyer-Lindquist (BL) coordinates (t, r, θ, φ),
variables are separated as Ψ ¼ e−iwteimφSlmðθÞRlmðrÞ,
where Slm are the spheroidal harmonics, −l ≤ m ≤ l, and
Rlm satisfies a radial Teukolsky equation [6–9] (the prime
denotes the radial derivative)

ðΔRlm
0Þ0 ¼

�
a2w2 − 2mawþ μ2r2 þ Alm −

K2

Δ

�
Rlm.

Here,Δ≡ r2 − 2Mrþ a2, K ≡ ðr2 þ a2Þw − am, and Alm
is a separation constant. We are interested in solutions of the
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Teukolsky equation that decay at spatial infinity. Since the
boundary condition at the event horizon, located at r ¼ rH,
is that there is a purely ingoing wave (in a corotating frame),
BHs do not admit, generically, bound states with real fre-
quency w. But, they do admit quasibound states, which have
complex ω with a negative imaginary part, manifesting that
the field is decaying, infalling into the BH. For the Kerr BH,
however, there is a critical frequency:

ωc ≡mΩH; ð2Þ

defined by the horizon angular velocity ΩH, such that for
ω < ωc, the imaginary part of ω becomes positive. This is
the superradiant regime [10–16]; the corresponding modes
increase in time, signaling an instability of the Kerr BH in the
presence of a massive scalar field.
Precisely at ω ¼ ωc, the imaginary part of the frequency

vanishes and one may expect bound states to exist. Such
states, dubbed as scalar clouds, were found analytically for
extremal Kerr BHs (a ¼ M) [17] (see also Ref. [18]). They
form a discrete set labeled by three “quantum” numbers
(n, l,m) which are subjected to a “quantization” condition,
involving the BH mass. The label n is a non-negative
integer, corresponding to the node number of Rlm. Fixing
(n, l, m), the quantization condition will yield one
(physical) possible value of the BH mass.
A similar structure of scalar clouds exists in the general

Kerr case 0 < a < M, as we have checked. Fixing l andm,
and for a given rH, solutions with proper scalar field
asymptotics are found only for a discrete set of values of a,
each value corresponding to a given number of nodes n.
Then, fixing l and m and following a scalar cloud with a
given n define an existence line in the (M, J) space for Kerr
BHs. In Fig. 1, we display such lines in an M versus ΩH
diagram, for fundamental modes (n ¼ 0) with l ¼ m and
several values of m. Observe that since scalar clouds lie
precisely at the threshold of the superradiant instability, the
region to the right (left) of a given line contains unstable
(stable) Kerr solutions against the corresponding mode.
Additionally, existence lines for modes with a given m and
l > m (and n ¼ 0) always lie to the right of the line for
m ¼ l. Thus, the line with m ¼ l defines the threshold of
the instability for a given m. Next, we show that precisely
thesem ¼ l clouds can be promoted to Kerr hair in the full
Einstein-Klein-Gordon system.
The nonlinear setup.—To investigate the existence of

exact solutions corresponding to deformations of the Kerr
geometry by backreacting clouds, we consider a metric
ansatz with two Killing vectors ξ ¼ ∂t and η ¼ ∂φ:

ds2 ¼ e2F1

�
dr2

N
þ r2dθ2

�
þ e2F2r2sin2θðdφ −WdtÞ2

− e2F0Ndt2; with N ¼ 1 −
rH
r
; ð3Þ

where Fi and W, i ¼ 0; 1; 2, are functions of r and θ only
[19]. The isometry generators ξ and η are not, however,
symmetries of the full solution, since we take the scalar
field ansatz to be

Ψ ¼ ϕðr; θÞeiðmφ−wtÞ; ð4Þ

where ϕ is a real function, w > 0 is the frequency, and
m ¼ �1;�2;… is the azimuthal winding number. The fact
that the t, φ dependence of Ψ occurs as phase factors
implies that Tab is t, φ independent, which is required for
the geometry to be stationary and axisymmetric. Tab will,
however, depend on ω and m, and so will the geometry.
The boundary conditions for the problem are as follows.

First, asymptotic flatness requires that Fi ¼ W ¼ ϕ ¼ 0, as
r → ∞. Then, the Arnowitt-Deser-Misner mass M and
angular momentum J are read off from the expansion:

gtt ¼ −1þ 2M
r

þ � � � ; gφt ¼ −
2J
r
sin2θ þ � � � . ð5Þ

For the scalar field, the asymptotic behavior must agree

with linear analysis: ϕ ¼ fðθÞe−
ffiffiffiffiffiffiffiffiffiffi
μ2−w2

p
r=rþ � � �. Thus,

bound states require w < μ. Second, axial symmetry and
regularity impose that on the symmetry axis (θ ¼ 0; π),
∂θFi ¼ ∂θW ¼ ϕ ¼ 0, and, to avoid conical singularities,
F1 ¼ F2. Finally, near the event horizon, located at
r ¼ rH > 0, it proves useful to introduce a new radial
coordinate x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p
. Then, a power series expansion

near the horizon yields Fi ¼ Fð0Þ
i ðθÞ þ x2Fð2Þ

i ðθÞ þOðx4Þ,
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FIG. 1 (color online). M versus ΩH for Kerr BHs. The solid
black curve corresponds to extremal BHs, which obey
M ¼ ð1=2ΩHÞ; Kerr BHs exist below it (shaded region).
A scalar cloud with parameters (n, l, m) exists along a line.
Five such (dotted blue) lines are shown, for n ¼ 0, l ¼ m, and
different m’s. Inset: R11ðrÞ, from r ¼ rH , and normalized such
that R11ðrHÞ ¼ 1 for two clouds with m ¼ 1. The corresponding
points in them ¼ 1 existence (blue) line are shown with the same
colors.
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W ¼ ΩH þOðx2Þ, and ϕ¼ϕ0ðθÞþOðx2Þ, with w¼mΩH,
where we take ΩH > 0. Thus, the boundary conditions at
the horizon are ∂xFi ¼ ∂xϕ ¼ 0 and W ¼ w=m. Observe
that the Killing vector χ ¼ ξþ ΩHη is null on the horizon
and that the condition w ¼ mΩH implies that there is no
scalar field flux into the BH χμ∂μΨ ¼ 0.
The field equations (1) with the ansatz [Eqs. (3) and (4)]

yield a set of five second order, coupled, nonlinear partial
differential equations for the functions Fi, W, and ϕ. We
have solved them numerically, subject to the above boun-
dary conditions. We shall focus on even solutions under
θ → π − θ. Quantities are presented in terms of dimension-
less variables, using natural units set by μ (recall that
G ¼ 1). As such, the numerical construction of the sol-
utions relies on four input parameters: the winding number
m ≥ 1, the horizon radius rH, the field frequency w, and
the scalar field node number n. The first and third determine
the horizon angular velocity as ΩH ¼ w=m. We shall only
consider nodeless solutions since these are typically the
most stable ones.
Physical relations and checks.—We have used the Smarr

relation and the first law of BH thermodynamics to test the
accuracy of the results; so, let us consider these relations.

The BH horizon introduces a temperature [20] TH ¼
ð1=4πrHÞeF

ð0Þ
0
ðθÞ−Fð0Þ

1
ðθÞ and an entropy S ¼ AH=4, with

AH ¼ 2πr2H
R
π
0 dθ sin θeF

ð0Þ
1
ðθÞþFð0Þ

2
ðθÞ. On the other hand,

the scalar field has a global U(1) symmetry which leads
to a conserved current ja ¼ −iðΨ�∂aΨ −Ψ∂aΨ�Þ. Thus,
the solutions carry also a conserved Noether charge

Q ¼
Z
Σ
drdθdφjt

ffiffiffiffiffiffi
−g

p
: ð6Þ

The Arnowitt-Deser-Misner quantities M and J
are related with TH, S, and Q and with MΨ≡
−
R
Σ drdθdφð2Tt

t − Ta
aÞ ffiffiffiffiffiffi−gp

, the scalar field energy
outside the BH, through a Smarr formula

M ¼ 2THSþ 2ΩHðJ −mQÞ þMΨ: ð7Þ

The variation of M can be expressed by the first law:

dM ¼ THdSþ ΩHdJ: ð8Þ

Based on testing Eqs. (7) and (8) as well as standard
convergence tests, we estimate a typical relative error
< 10−3 for the solutions reported herein. These solutions
have a regular Kretschmann scalar on and outside the event
horizon, whose spatial sections have a squashed sphere
geometry, just as for Kerr. Further details on numerics will
be presented elsewhere [21].
The HBH phase space.—Solutions are found, after fixing

m, by sweeping the w; rH space. For the same value of w,
there is, in general, an interval of values of rH for which

solutions are found. Then, for each solution, M, J, and Q
can be computed from Eqs. (5) and (6). In the following, we
shall use q≡mQ=J to parametrize the space of solutions,
since it has a compact domain q ∈ ½0; 1�; q ¼ 0 is the Kerr
limit, and q ¼ 1 is the horizonless solitonic limit—boson
stars (see Refs. [22,23] for a review), which obey
J ¼ mQ [24–26].
For a direct comparison with Fig. 1, we plot the phase

space of HBH solutions in an M versus w=m ¼ ΩH
diagram—Fig. 2—obtained from several thousands of
solution points. The large plot focuses on m ¼ 1 solutions;
their domain of existence is the light blue region. For
q ¼ 0, it precisely connects to Kerr solutions that admit
scalar clouds withm ¼ l ¼ 1 (dotted blue line; see Fig. 1).
This shows that the HBHs are indeed the nonlinear
realization of the scalar clouds obtained in linear theory.
For q ¼ 1, on the other hand, rH vanishes and the HBHs
reduce to boson stars (solid red line). The boson star curve
in this diagram spirals inwards into a small central region
where numerics become increasingly challenging. The final
line that delimits the domain of existence of HBHs (dashed
green line) corresponds to extremal HBHs (TH ¼ 0). The
same pattern occurs for other values of m. The inset in
Fig. 2 shows also the existence lines and boson star curves
for m ¼ 1; 2.
The domain of existence of m ¼ 1 HBHs in the M-J

space is exhibited in Fig. 3. From this figure, it becomes
clear that there are HBHs with the same M and J as Kerr
solutions. The latter exist above the solid black line, which,
as before, corresponds to extremal Kerr. In this sense, and
because M and J are the only global charges, there is
nonuniqueness. Moreover, as exhibited in the inset, in the
region of nonuniqueness, a HBH can have the largest area
or entropy for the same M and J, showing that HBHs
cannot decay adiabatically to Kerr. Our numerical analysis
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FIG. 2 (color online). Domain of existence of HBHs for m ¼ 1
in M-w space (shaded blue region). The solid black line and the
dotted blue lines are the same as in Fig. 1. Inset: The boson star
lines for m ¼ 1; 2.
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indicates, however, that further specifying q raises this
degeneracy: no two distinct solutions with the same (M, J,
q) could be found. Another observation from Fig. 3 is that
HBHs can violate the Kerr bound J ≤ M2. This is not
surprising. Indeed, boson stars can violate this bound [27];
since HBHs are continuously connected to boson stars, the
same should occur for at least some HBH solutions with q
close to unity. Figure 3 confirms this expectation.
Further physical aspects of HBHs.—The fact that they

are continuously connected to boson stars implies that
HBHs are more starlike than Kerr BHs; i.e., their physical
properties are less constrained. Starting from q ¼ 1 sol-
utions and slightly decreasing q, one is effectively placing a
small rotating BH inside a boson star. Thus, the physical
properties of the spacetime do not change dramatically.
For instance, boson stars can have quadrupole moments
hundreds of times larger than the Kerr geometry [27], for
which the quadrupole moment is determined byM and J as
−J2=M [28]. We find an analogous situation for HBHs, as
illustrated in Fig. 4. Here, the quadrupole moment is the
Geroch-Hansen [28,29] quadrupole, computed with the
method of Ref. [30]. In general, in a stationary axisym-
metric geometry, the multipolar moments determine the
observable properties (frequency and number of cycles) of
the gravitational radiation emitted by a slowly inspiraling
small mass object. As such, large quadrupole deviations,
relatively to Kerr, leave observational signatures in gravi-
tational wave physics. Another spacetime property that has
an impact on a number of astrophysical observations is the
orbital frequency at the innermost stable circular orbit
(ISCO). For Kerr, in BL coordinates, the ISCO varies from
r ¼ 6M to r ¼ M (9M) for corotating (counterrotating)
orbits [31], as J grows from 0 to M2. Consequently, the
orbital frequency Ωc ¼ dφ=dt at the ISCO varies with J.

In Fig. 5, we plot the corresponding results for HBHs.
Significant deviations of Ωc from the Kerr values leave
imprints in astrophysical observations, for instance, in
synchrotron radiation from accretion disks.
Further implications.—The potential (astro)physical rel-

evance of HBHs will depend on a number of factors. One
such factor is their mass. As it is manifest from Fig. 2, these
solutions have a maximal mass ∼M2

Pl=μ, which will only
reach the solar mass if μ≲ 10−11 eV. Particles within this
mass range are not known but have been suggested within
the string axiverse [32]. Scalar field models with more
general interactions can, however, alleviate this require-
ment on μ [23]. A second factor is their stability. In general,
HBHs have an ergoregion. Does this imply the existence
of superradiant instabilities? What are the corresponding
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time scales? Answering these questions will be crucial to
understanding HBHs.
HBHs connect Kerr BHs to boson stars. As such, they

may be presented in two complementary perspectives.
First, from the boson star perspective, HBHs clarify a
lingering issue: that a small BH can be added at the center
of a boson star, as it can for other solitons. The crucial new
ingredient, in this case, is that the solution must be
spinning. Second, from the BH perspective, HBHs exist
because of the superradiant instability of Kerr, which
justifies why HBHs have no static limit. The branching
off of a family of solutions of Einstein’s equations into a
new family of solutions at the onset of an instability is a
recurrent situation. An earlier example is the Gregory-
Laflamme instability [33] of black strings, which branch off
to a family of nonuniform string solutions at the onset of the
instability [34,35]. This perspective suggests that any field
(and not just scalar fields) triggering a superradiant insta-
bility will induce BH hair. A nonscalar field example is the
Proca field [36]; thus, BH solutions with Proca hair should
exist. Other generalizations of HBHs include gauging the
scalar field to obtain hairy Kerr-Newman BHs or imposing
anti–de Sitter asymptotics—even with μ ¼ 0; see the first
example in Ref. [37]. Indeed, HBHs substantiate the
parallelism between mass and anti–de Sitter asymptotics
as confining mechanisms.
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