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We consider the status of black hole (BH) solutions with nontrivial scalar fields but no
gauge fields, in four-dimensional asymptotically flat spacetimes, reviewing both classical
results and recent developments. We start by providing a simple illustration on the
physical difference between BHs in electro-vacuum and scalar-vacuum. Next, we review
no-scalar-hair theorems. In particular, we detail an influential theorem by Bekenstein and
stress three key assumptions: (1) The type of scalar field equation; (2) the spacetime
symmetry inheritance by the scalar field and (3) an energy condition. Then, we list
regular (on and outside the horizon), asymptotically flat BH solutions with scalar hair,
organizing them by the assumption which is violated in each case and distinguishing
primary from secondary hair. We provide a table summary of the state-of-the-art.
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1. Introduction

In (electro-)vacuum general relativity, equilibrium black holes (BHs) are very spe-
cial objects. Other celestial bodies, say two stars, with the same total mass M and
angular momentum J can be very different, since these quantities can be differently
distributed within the star; but two BHs under these circumstances will be exactly
equal. Indeed, the most general regular solution, on and outside an event hori-
zon, is the Kerr(-Newman) metric, as established by the uniqueness theorems,!»?
for which all higher multipole moments are determined by only M, J (and electric
charge, if present).® These uniqueness theorems are sometimes referred to as no-hair

2This statement applies to single-BH solutions. Multi-BH solutions, described by the Majumdar—
Papapetrou metric, also exist in electro-vacuum. Moreover, if one is willing to consider magnetic
charges, by electromagnetic duality there are also magnetically charged and dyonic BHs. None of
these, however, seem likely to arise as the endpoint of gravitational collapse.
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theorems, a naming that should be understood as “no-independent-multipole-hair”:
Higher gravitational multipole moments — quadrupole and higher — (and electro-
magnetic multipole moments — dipole and higher) are not independent for electro-
vacuum BHs.

The uniqueness theorems led to the conjecture that the outcome of gravitational
collapse in the presence of any type of matter-energy is a Kerr—-Newman BH, solely
described by mass, angular momentum and electric charge, all of these asymptoti-
cally measured quantities subject to a Gauss law, and no other physical quantities,
to which “hair” provides a metaphor, should exist. This is the no-hair conjecture.
Observe that here, “hair” encodes a much broader use than that in the previous
paragraph.

As just stated, the no-hair conjecture concerns the dynamical end point of grav-
itational collapse, and not just the mere existence of a stationary BH solution with
some type of matter-energy, regardless of its dynamics and, in particular, of its
stability. Throughout the years, however, stationary BH solutions with either new
global charges (primary hair) or new nontrivial fields — even if not independent
from the standard global charges (secondary hair) — which are not associated to a
Gauss law, have been generically referred to as “hairy BHs.” In the 1980s and 1990s,
a variety of hairy BH solutions have been found, typically in theories with nonlinear
matter sources.*® But, in the late 1990s, this was not the case for scalar field hair.
Indeed, as observed by Mayo and Bekenstein”: “The proliferation in the 1990s of
stationary black hole solutions with hair of various sorts may give the impression
that the principle has fallen by the wayside. However, this is emphatically not the
case for scalar field hair.”

Scalar fields are one of the simplest types of “matter” often considered by physi-
cists. Moreover, since 2012, there is observational evidence that fundamental scalar
fields exist in nature, by virtue of the discovery of a scalar particle at the Large
Hadron Collider, at CERN, identified as the standard model Higgs boson.®° But
for decades, scalar fields have been considered in phenomenological models, in par-
ticular, within gravitational physics. A notable example is cosmology, where various
types of scalar fields have been used to model dark energy and dark matter. One
reason is that scalar fields are well motivated by beyond the standard model particle
physics, both as fundamental fields and as effective fields arising as a coarse-grained
description of more fundamental fields. Yet another reason is that scalar fields may
be considered as a proxy to realistic matter, since canonical scalar fields can be
modeled as perfect fluids with some equation of state.!”

Why should scalar fields be different from electromagnetic fields, in terms of BH
hair? A simple illustration is provided in Sec. 2, by comparing electro-vacuum with
scalar-vacuum general relativity, and an essential difference is the existence of a
Gauss law for the former but not for the latter. In any case, due to their simplicity,
it is quite natural that in testing the no-hair idea, scalar fields were one of the first
types of “matter” considered. A set of no-go results — no-scalar-hair theorems —
will be reviewed in Sec. 3, where we shall emphasize the assumptions that go into
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an influential example of a no-hair theorem due to Bekenstein.!! But we shall also
review other no-scalar-hair theorems and, in particular, discuss variations of the
energy assumption that goes into the simplest Bekenstein-type theorem. Then, in
Sec. 4, we shall review solutions of asymptotically flat BHs with scalar hair, orga-
nizing them in terms of the assumption of no-scalar-hair theorems they violate. In
particular, we shall review some recently found solutions with qualitatively differ-
ent properties. The state-of-the-art is summarized in Sec. 5. Finally, in Sec. 6, we
provide some final remarks.

2. Electro-Vacuum versus Scalar-Vacuum: A Simple Illustration

Some simple observations show the distinction between trying to superimpose an
electric field and a scalar field on a BH spacetime. For this purpose, we contrast
electro-vacuum, described by the action (G = ¢ = 4mep = 1)

1, R 1
= — —g|——=F, F" 1
s=p [devma (- ). 1)
and scalar-vacuum, for a massless, real scalar field, described by the action
1 4 R 1 u
S= 47r/d v/ g<4 2VM<I>V <I>). (2)

In both cases, the Schwarzschild metric of vacuum general relativity, with mass M,
is a solution (with F},, = 0 and V,® = 0, respectively). In standard Schwarzschild
coordinates it reads:

ds® = — (1 — %) dt? + _dr +12(d6? + sin® 0dg?). (3)

7 1 2M
,

Linearizing the field equations (1) (or (2)) in F' (or ®) around the Schwarzschild
metric, yields the source free Maxwell (or Klein—Gordon) equation in the back-
ground (3).

2.1. Spherically symmetric fields

As a first example that illustrates the difference between the two types of fields,
consider on the Schwarzschild background (3) a test, spherically symmetric: (i)
Electric field, described by the gauge potential A = ¢g(r)dt and corresponding
Maxwell tensor F' = dA; (ii) scalar field, described by the radial profile ®(r). From
the source free Maxwell and Klein—Gordon equations, one obtains:

D, FM™ =0 = &,QSE(T):% = ¢E(r):_77 (4)
—1
O®(r)=0 = 8,<I>(r)z%<1—¥> = @(T):f_j\jln <¥_1>’

(5)
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where Q g, Qs are integration constants. In the first case, one obtains a solution
which is regular on and outside the horizon. This electric field, moreover, sources a
regular energy—momentum on and outside the horizon,

1
TE = FuF,* — ZgWFaf;Fo‘ﬁ, (6)
with nontrivial components:
r Q7
(TE)', = (T5Y, =~ = ~(T%), = ~(T7)’, ™

By making this electric field backreact on the metric one obtains, solving the electro-
vacuum Einstein equations G, = 2T£,, the Reissner—Nordstrom (RN) BH solution:

2M 2
(120 %)
r T

2
(48 o sin® ), 8)
oM Q5
l-—+-F
T r
A= —%dt. (9)

Curiously, for the nonlinear solution, the form of the electromagnetic potential (9) is
the same as for the test field (i.e. linear) solution (4). The RN solution continuously
connects with the Schwarzschild solution and has a regular horizon as long as the
constant Qg obeys |Qg| < M. Moreover, this constant can be computed as the
electric flux on a closed 2-surface 93, with area element dS,,,:

QE = i FMVdS;w; (10)
T Jos
due to the spherical symmetry, we choose 0% as r,t = const. surface at any r
outside the BH. Thus, Qg is the electric charge, which obeys a Gauss law.
In the second case, the scalar field gradient diverges as (r—7y)~! at the horizon
rg = 2M. Thus, the scalar field diverges logarithmically therein. More importantly,

the scalar energy-momentum tensor

1
TS, = 0,90,% — §gwaaq>aaq>, (11)
also diverges on the horizon:
. Q3 g\t
@), =35 (1-22) == = =@ = —T%7,. (12

Firstly, this shows that the test field approximation for the scalar field always fails
near the horizon, no matter how small Q)5 is. Secondly, this provides evidence, that
no regular (on and outside a horizon), spherically symmetric and static solution of
a BH with scalar hair exists, connecting continuously to the Schwarzschild solution.
But actually, a solution to the scalar-vacuum Einstein equations G, = 2T[f,, does
exist, which reduces to the above test field analysis in the limit of small enough
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scalar field in most of the spacetime. The solution was found by Fisher'? and
independently rediscovered by Janis, Newman and Winicour!? and reads:

_ _ 1Yk 1/p

R+ M(u+1) R—M(p—1)
+7(R)?(d6? + sin? 9dp?), (13)
Qs R—M(p—-1)
P(R) = 1 14
(R) 2MMH[R+M(M+1) ’ (14)
where the areal radius r is a function of the radial coordinate R:
r(R)? = [R = M (= 1)) R M+ )], (15)

and the parameter p measures the nonlinearity of the scalar field:

2

p=y1+ 25 (16)
In particular, if one takes Qs /M < 1, so that g ~ 1 and (when R > 0) r ~ R+2M,
then (13) becomes the Schwarzschild metric (3) and the scalar field reduces to the
test scalar field (5). This limit, however, is subtle when reaching the point where
R = const. surfaces stop being timelike. Taking p ~ 1 this occurs for R = 0, in
which case analyzing the limit of (15), shows that r = 0, no matter how small Q¢ /M
is. Thus, the ¢, R = const. surfaces suddenly collapses from a sphere with radius
slightly greater than » = 2M to zero.'® This is how the fully nonlinear solution copes
with the aforementioned observation that the test field analysis always breaks down
at the horizon. In any case, the main physical feature of this solution is that the
areal radius vanishes at the (would be) horizon, where the geometry possesses a
physical curvature singularity.

Physically, one interpretation for the difference between the scalar and the elec-
tric cases described above, is related to the existence of a Gauss law for the electric
field (10), which has no equivalent for the scalar field. Thus, the regular electric field
on and outside the horizon can be sourced by charges that have fallen into the BH.
On the other hand, for model (2), a nontrivial scalar field outside the horizon —
no matter how small at some distance from the horizon — implies an infinite pile
up on the horizon, as any finite amount of scalar field placed outside the BH as
initial data should either disperse to infinity or fall into the horizon. In the latter
case, no trace of the scalar field remains outside the BH, due to the absence of
a Gauss law. The exact nonlinear solution for the scalar-vacuum system (2), then
reveals that this infinite scalar pile up at the horizon compresses the horizon to
vanishing area and renders the geometry singular therein. The Fisher solutions has
been generalized to higher dimensions.!*

As a final observation, to which we shall come back in Sec. 4.2.1, the divergence
for the test scalar field solution, Eq. (5), on the Schwarzschild horizon can be cured
by adding to it a linearly time-dependent term, which also solves the Klein—-Gordon

1542014-5



Int. J. Mod. Phys. D 2015.24. Downloaded from www.worldscientific.com
by RUTGERS UNIVERSITY on 08/13/15. For personal use only.

C. A. R. Herdeiro and E. Radu

equation. Thus,

_ Qs t 2M
O(t,r) = 517 | 207 +1In " 1)1, (17)
solves 0@ = 0 on the Schwarzschild metric (3) and is regular on the horizon.

This solution was suggested by Jacobson!® in the context of scalar-tensor theories
(cf. Sec. 3.2.1). In scalar-vacuum Einstein’s gravity, however, this solution is not
compatible with either stationarity or asymptotic flatness.

2.2. Nonspherically symmetric fields

Is spherical symmetry essentially for the above results? In other words, are there
regular (on and outside an event horizon), asymptotically flat, static BH solutions in
electro-vacuum or scalar-vacuum with higher multipoles? Again, a test field analysis
is informative. Allow now the above fields ¢ and ® to have an arbitrary angular
dependence obtained as a superposition of spherical harmonics Y, (6, ¢). Since the
source free Maxwell and Klein—Gordon equations are linear, one may consider each
harmonic term separately and solve each of these equations on the Schwarzschild
background with the ansatz

¢E(r.0.9) = R{ (NY"(0.¢), @(r,0,9) = Ri (r)Y;"(6,9); (18)
the equations yield:

2M\ d [ ,dRF] B
and
d [, oM\ dRS] 5

One can check that, for both cases, the generic solution for any ¢ # 0 is a linear
combination of one solution that diverges at the horizon and another solution that
diverges at infinity. For instance, for £ =1

RE(r) = c1(r — 2M) + ¢ [%—H(uﬁ) In (1—¥)] (21)
and
R3(r) = c1(r — M) + ¢ [—1+<%—ﬁ) In (1-%)} (22)

where c¢1, co are constants.

This analysis suggests that no static, regular (on and outside a horizon) non-
spherically symmetric, asymptotically flat BH solutions exist for either electro-
vacuum or scalar-vacuum, connecting continuously to Schwarzschild.®? In the

bIrregular solutions can, of course, be found, using, for instance, the Weyl formalism.
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electro-vacuum case — and also for the scalar-vacuum case —, this may be under-
stood along the lines of the discussion in Sec. 2.1: There is no conservation law
for higher electric multipoles (in particular, there is no Gauss law), unlike for the
monopole (total charge). For the electro-vacuum case, the inexistence of regular
solutions with multipoles is proven by one of Israel’s uniqueness theorems.!® For
scalar-vacuum, this is proven by a no-hair theorem, as we discuss in Sec. 3.

2.3. Beyond scalar-vacuum: Conformal scalar-vacuum

There are two important words of caution concerning the lessons of the previous
subsections. Firstly, we centered the discussion around possible BH solutions with
scalar hair continuously connecting to the Schwarzschild solution. Could there be
scalar hairy BHs that do not reduce to the Schwarzschild BH? Secondly, the diver-
gence of the scalar field at the horizon translated into a divergence of the scalar
energy—momentum tensor at the horizon and thus of the curvature. Could a diverg-
ing scalar field at the horizon not translate into a curvature singularity at the (would
be) horizon?

The answer to both these questions is yes, as it is illustrated by the much
debated Bocharova—Bronnikov—Melnikov—Bekenstein (BBMB) BH solution!” ! of
conformal scalar-vacuum, which has the action:

1 . R 1 1,
= — V=g |=-=V,oV'®d - —R®? . 2
S 47r/dx g<4 2 M 12R ) (23)

The scalar field equation, V,V#® — ®R/6 = 0 is invariant under a local conformal
transformation, g, — g = Q2%g,, and ® — b= ®/Q (albeit the Einstein—Hilbert
term, and hence the full action, is not), which justifies the name conformal scalar-
vacuum for this theory. It is a special case of scalar—tensor theories, cf. Sec. 3.2.1.
The BBMB solution of this theory reads:

2 2
ds® = — (1 — %> dt? + % + r%(df? + sin? 0d¢?), (24)
T
T
V3M
P = : 2
M (25)

This is a one-parameter family of solutions (parameter is M, the total mass). When
M = 0, it reduces to Minkowski space. For any other value of M, the geometry
coincides with that of an extremal RN BH, i.e. Eq. (8) with |Qg| = M. In particular,
it has a regular horizon and hence it is a BH. Thus, this BH with scalar hair does
not connect to Schwarzschild. Moreover, the scalar field diverges at the horizon,
even though the geometry is regular therein.

This solution has been shown to be unstable against linear perturbations?
(other authors, however, have made a different claim?!). This proof actually covers

0
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a slightly more general family of solutions obtained by adding a Maxwell field.
As such, one may argue it does not violate the dynamical spirit of the no-hair
conjecture. Also, observe that there is no independent scalar charge. This type
of (dependent on other global charges) scalar hair is sometimes called secondary,
as opposed to primary hair, which has an independent charge. This distinction is
important in the context of understanding the number of independent parameters
that fully characterize a BH. But even secondary hair has physical consequences if
it induces a BH geometry different from those of the paradigmatic BHs of general
relativity. Yet another objection to BBMB solution has been raised in connection
to the properties of the energy-momentum tensor at the horizon.??

3. No-Scalar-Hair Theorems

Chase,?3 following an earlier suggestion,?* first considered if a regular BH solu-
tion could exist in scalar-vacuum by dropping the condition of spherical symmetry.
He established that “every zero-mass scalar field which is gravitationally coupled,
static and asymptotically flat, becomes singular at a simply-connected event hori-
zon.” In other words, a static BH spacetime cannot support a regular massless
scalar field in equilibrium with it; i.e. no static BH (massless) scalar hair in scalar-
vacuum. Bekenstein then developed a different method for proving the inexistence
of scalar hair,'2%26 which became influential, and applied it for massive scalar as
well as higher spin fields. We shall now review (a slight generalization of Ref. 27)
Bekenstein’s original proof!! to emphasize three underlying assumptions.® This will
help in understanding, how the solutions to be described in the next section are
compatible with no-hair theorems.

3.1. Bekenstein’s theorem for V -scalar-vacuum

Consider a rotating, stationary, asymptotically flat BH spacetime. Hawking estab-
lished that, assuming the null energy condition (which is implied by the weak energy
condition), the spacetime is also axi-symmetric — rigidity theorem — and that the
spatial sections of the horizon are topologically spheres.?? We write the spacetime
metric in coordinates adapted to these symmetries (¢, 7, 0, ¢), so that the two Killing
vector fields read k = 0;, m = 0y.

Assumption 1: Consider a canonical and minimally coupled scalar field
to Einstein’s gravity. Allowing the possibility of a potential, V' (®), the action is
a slight generalization of (2) (hereafter, this theory is dubbed V-scalar-vacuum):

S = % /d4x\/—_g (% = %vl@v% = V(@)). (26)

¢Independently, this same proof was also sketched in the paper of Hawking?® on BHs in Brans—
Dicke theory, cf. Sec. 3.2.1.
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Thus, the scalar field obeys the (possibly nonlinear) Klein-Gordon equation:
V,.VED — V'(®) =0, (27)

where the prime denotes derivative with respect to the argument. In particular, this
means the scalar field is minimally coupled to the geometry, and excludes from this
theorem non-minimally coupled scalars, and thus scalar—tensor theories of gravity.
For a nonself-interacting massive scalar with mass y, V(®) = 1u2®2.

Assumption 2: The scalar field inherits the spacetime symmetries. In
particular, for the coordinates chosen above this means that:

0 = 0 = 0y, (28)

Under these two assumptions, multiply the Klein—Gordon equation by & and
integrate over the BH exterior spacetime:

/d4x«/_—g [®V, VP — dV'] = 0. (29)
Now, integrating the first term by parts:
/d4x\/—g [-V, VI D — dV] +/ d*ont®V,® =0, (30)
H

where the boundary term is computed on the horizon and the other boundary term
(at infinity) vanishes since the scalar field should fall off sufficiently fast at infinity
to guarantee asymptotic flatness (exponentially fast if there is a mass term).4

The boundary term in (30) is actually zero. Indeed, the event horizon of a
stationary, asymptotically flat spacetime is a Killing horizon. Thus, the normal to
H, n*, is a linear combination of the Killing vector fields; but the scalar field is

invariant under these by Assumption 2. Thus, n#V,® = 0. We conclude that®
/d4x«/_—g {V, oV ® + OV} = 0. (31)

Assumption 3 (v.1): The potential V obeys
oV’ >0, (32)

everywhere, and ®V’ = 0 for (possibly) some discrete values ®;. Observe
this holds for the aforementioned nonself-interacting massive scalar field: ®V’' =
®24%. In Sec. 3.2.1, we shall see a variation of this theorem leading to a different
condition.

The gradient of ® is orthogonal to both Killing vectors and thus must be space-
like or zero. Thus V,®V#® > 0. Then, since each term in the integrand of (31)

dIn Hawking’s version of this proof?® the volume considered is also bounded “in time” by two
partial Cauchy surfaces. These give rise to two other surface terms upon the integration by parts,
but these two terms precisely cancel one another.

¢Here, we are implicitly assuming that d®c and ® are finite on H.
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is non-negative, the equality holds if and only if & = 0, ®;, which establishes the
no-hair theorem (in the case ® = &, the scalar field is a cosmological constant).
Remarkably, this theorem, did not use the Einstein equations.

3.2. Further no-scalar-hair theorems

Violating one of the Assumptions 1, 2 or 3 does not guarantee, by itself, the existence
of a regular BH with scalar hair as we n ow discuss. We shall address a set of further
no-hair theorems that drop totally or in part one of these assumptions. Following
an order of chronological development, we shall address Assumptions 1 and 3, and
then finally 2.

3.2.1. Reconsidering Assumption 1

Assumption 1 is violated, for instance, by scalar-tensor theories of gravity,3® of
which the pioneering example is Brans-Dicke theory.3! In this family of theories,
there is a scalar field nonminimally coupled to the geometry, so that the scalar
field equation involves the curvature. This scalar, ¢, is part of the gravitational
interaction, whereas the scalar in the previous sections, ®, is regarded as matter.
But this distinction is conformal-frame dependent.

A no-scalar-hair theorem for scalar—tensor gravity was established by Hawk-
ing,?® who showed that in the Brans-Dicke theory, the regular BH solutions are the
same as in general relativity. To establish this result, consider Brans—Dicke theory
in the original Jordan frame, where it is described by the action:

~-| 1 LW e A .
Sto = [ @'V |15 (= LOT0) + Ll V)| 69

1The Brans—Dicke scalar ¢, plays, physically, the role of a spacetime varying
Newton’s constant. Matter fields, here collectively denoted by W¥,,, with matter
Lagrangian den51ty L, couple mlmmally to the Brans-Dicke metric g, which has
Ricci scalar R and covariant derivative V. Thus, matter particles follow geodesics
of this metric. Hawking’s proof consisted on performing a conformal transformation
of the metric § — g (and for clarity, we perform simultaneously a field redefinition

N de 2wy +3

This yields the Brans—Dicke action in the Einstein frame, where the scalar field is
minimally coupled to the conformally transformed metric:

Sk = 1- /d4x\/—_g (% ~ VLBV L, (i’;ﬂ%))- (35)

In this frame, the locally measured Newton’s constant is constant but the masses
of particles vary as ¢~ /2 and thus massive particles do not move along geodesics.
Moreover, the scalar field equation is the Klein—-Gordon equation sourced by the

© — P):
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trace of the matter energy—momentum tensor. Assuming spacetime to be empty
apart from electromagnetic fields — which have vanishing energy—momentum
trace — the scalar field obeys the sourceless Klein—-Gordon equation. Then, the
action (35) reduces to (26) with V(®) = 0, up to the electromagnetic field, which
does not change the scalar equation. Hawking applied precisely the argument of
Sec. 3.1 to establish the Brans—Dicke scalar field must be zero outside the horizon.
Since the scalar field is zero, the Brans—Dicke equations of motion reduce to those
of general relativity and so must the BH solutions. Note that Hawking crucially
assumed that the scalar field is invariant under the action of the Killing vector
fields (Assumption 2 above).

Hawking’s theorem has been recently generalized to a more general class of
scalar-tensor theories of gravity by Sotiriou and Faraoni.?? Again the argument
relies on a slight variation of the reasoning in Sec. 3.1. The class of scalar-tensor
theories considered is described by the Jordan frame action:

str= [ @t/ |15 (o2~ 220,000 - U0) ) + LG 0)]- 60

Thus, the Brans-Dicke scalar has now a potential, U(y) and the parameter wy
becomes a function w(y). Nevertheless, applying the same transformations (34) as
before (replacing wy — w(¢y)), one obtains the Einstein frame action:

SE. = /d4x\/—_g {% (% - %vﬂcwﬂcb - V(<I>)> + Lo <g% fomﬂ (37)
where V(®) = U(y)/p?. For L,, = 0, one can immediately apply the argument of
Sec. 3.1, since (37) reduces to (26). But one may devise a variation of this argument,
which applies for V(@) # 0 and leads to a different condition on the potential energy.
One considers the Klein-Gordon equation and, instead of multiplying it by @, as
in Sec. 3.1, one multiplies by V/(®). Following the same steps, one arrives at

/d4x\/—_g [V"(@)VHeV,e + [V'(®)]?] = 0. (38)

instead of (31). The second term in the integrand is non-negative. Moreover, as
before, under Assumption 2, V,®, must be spacelike or zero, which implies that
V,eV#® > 0. To finish addressing the first term, one considers the following
assumption.

Assumption 3 (v.2): The potential energy is convex. In other words:
V" (®) > 0. (39)

Under this assumption, both terms in the integral (38) are non-negative. Thus,
the scalar fields must be trivial in the exterior spacetime; hence the equations of
motion of the scalar—tensor theory reduce to those of general relativity and so
must the BH solutions. Assumption (39) was given the interpretation of linear
stability of the BH solution.?? As a word of caution, this means that this argu-
ment does not exclude unstable, but long lived, solutions, which could conceivably
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be physically relevant — even though they do not violate the dynamical spirit
of the no-hair theorem in what regards the very final end-state of gravitational
collapse.

How is this theorem compatible with the BBMB solution, Egs. (24) and (25)?
Regarding conformal scalar-vacuum theory, described by (23), as a scalar—tensor
theory of gravity with action (36), we first observe there is no potential for the
scalar field. Hence, the obstruction is not related to (39). The scalar field ¢ in (36)
relates to the scalar field ® in (23) as

1
@:1—5@2. (40)

Substituting the explicit BBMB solution for ®, Eq. (25), one finds that ¢ =
r(r—2M)/(r—M)?. Thus, ¢ = 0 at r = 2M and the conformal transformation (34)
becomes singular at this point. This signals a breakdown of the conformal trans-
formation given by (34) and the inapplicability of the theorem.3? Moreover, ¢ < 0
for M < r < 2M and ¢ — oo at = M (horizon). Thus, in this region, Newton’s
constant “changes sign,” presumably sourcing a type of anti-gravity which explains
the existence of this hairy solution.! As a final remark concerning conformal scalar-
vacuum, Xanthopoulos and Zannias?? and Zannias?* established that the only static
asymptotically flat nonextremal BH solution having the scalar field bounded on
the horizon, is the Schwarzschild BH. Thus, moving away from extremality (of the
BBMB geometry) does not allow hairy BHs with more independent parameters, and
in particular, no primary hair can be found. Other theorems covering nonminimal
coupling were developed by Saa.35:36

Further possible loopholes of the no-scalar-hair theorem for scalar—tensor theo-
ries are discussed in the original article,3? where the authors also invoke the weak
energy condition (cf. Eq. (49) below), so that stationarity implies axi-symmetry by
Hawking’s theorem.??

Another class of theories where Assumption 1 is violated and which have been
focus of recent interest are Horndeski®” and, in particular, Galileon,3® or generalized
Galileon®® theories. Unlike the previously considered cases, these theories include
second-order derivatives of the scalar field in the action. Horndeski showed long
ago — a result recently rederived in the context of Galileon theories*®*! — that
the most general scalar-tensor action with up to second-order derivatives of the
scalar field and with second-order field equations is given by

S = /d4x\/—_g {K(@, X) = G3(®, X)OP + G4 (@, X)R
+Gux[(O9) — (V. V,@)?] + G5(®, X)G,,, VIV O

- G%[(D@)?’ —30®(V,V,®)? +2(V,V,®)"] } (41)

fWe thank C. Charmousis for this remark.
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where K, G; are generic functions of @,
1
X = —§V#<I>V”<I’, (42)

and G;x = 0G;/0X. The reason to focus on theories with at most second-order field
equations is that theories with higher order field equations are generically afflicted
by Ostrogradski instabilities.*? In terms of the requirement on the order of the
equations of motion, Horndeski theories are the scalar field analogue to Lovelock
theories of vacuum gravity.43

Here, we shall focus on Horndeski theories with shift symmetry, i.e. invariant
under & — P-+constant. The most general such theory is obtained from (41) simply
by dropping the ® dependence for K, G;.** From the QF T viewpoint, this symmetry
protects the scalar field from acquiring a mass term, due to radiative corrections.*?
From the classical viewpoint, it implies the existence of a Noether current J*, and
the scalar field equation can be written as a conservation equation for this current,
VuJ# =0.

A no-scalar-hair theorem for static and spherically symmetric BHs (not nec-
essarily asymptotically flat) in shift-symmetric Horndeski/Galileon theories was
proposed by Hui and Nicolis.*® We now sketch the argument. Writing the static
and spherically symmetric line element in the gauge

dR?
ds> = — f(R)dt® + G

one starts assuming that the scalar field inherits the spacetime symmetries
(Assumption 2 above); thus, the scalar field depends only on the radial coordi-
nate: ® = ®(R). Moreover, the 4-current only has the radial component J#. Then,
JWJ, = (JB)?/f. This is a physical quantity that should be well behaved at the
horizon, where f = 0. Thus, J* should vanish on the horizon. Integrating the scalar
equation of motion V,J* = 0 yields r(R)?J® = const. Since the areal radius 7(R)
should be finite at a regular horizon, then J = 0 everywhere. As a final step, it
is argued that J® = 0 implies that ® = const. in the whole spacetime. This final
point in the argument turns out to leave space for the existence of hairy solutions,
cf. Sec. 4.2.

+7(R)*(d6* + sin® 0dp?), (43)

3.2.2. Reconsidering Assumption 3

Assumption 3, both v.1 and v.2, are violated by some physical potentials, like the
Higgs potential. A different type of no-scalar-hair theorem*”4® for theories within
the class (26) that invoke the strong energy condition use scaling techniques, i.e. a
curved space generalization of the original flat space Derrick-type argument,* and
apply to spherically symmetric configurations. Let us take the generic spherically
symmetric line element in the following form,

2
ds* = —N(r)o?(r)dt* + % +r2(df? + sin? 0d¢?), N(r)=1-— p (44)
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in terms of two unknown functions m(r) and o(r) > 0. The function m(r) is
related to the local mass-energy density inside a sphere of radius 7, sometimes
called Misner—Sharp mass function.®® The BH horizon is located at r = rg > 0,
where N(rg) =0 and N'(rg) > 0. Thus, 2m(rg) = ru.

Inserting the anstaz (44) into the action (26) and integrating the trivial angular
dependence, one arrives at the effective action

Sett = /:C dr o(r) [m' - <%N7‘2<I>’2 + rW(@))]. (45)

Let us now assume?748 the existence of a BH solution described by m(r), o (r) and
®(r) with suitable boundary conditions at the event horizon r = ry and at infinity.
Then each member of the 1-parameter family mx(r) = m(rg + A(r —rmg)), oa(r) =
o(rg + Mr —rg)), and ®x(r) = ®(rg + M(r — rg)), assumes the same boundary
values at r = rg and at » = oo, and the action Sy = S[my, oy, 5] must have a
critical point at A = 1, [dS/dA\|x=1 = 0. Thus, any hairy BH solution must satisfy
the virial relation?®

/ dr o(r [(2”{ (1— 7) —1) ; 232 4 (2’%{ —3) r2V(q>)] —=0. (46)

The prefactor of V' and the full first term are negative for » > ry. Then one may
evoke the positivity of V' to establish the result.

Assumption 3 (v.3): The potential energy density is non-negative (strong
energy condition). This must hold everywhere for any timelike observer. Let U*
be the 4-velocity of the observer, which obeys U*U,, = —1. The requirement is

R, U"UY > 0. (47)

For the energy—momentum (50), for a static observer U 44" and under Assump-
tion 2 for a static spacetime, such that 9,® = 0, this requirement is

V(®) > 0. (48)

For V(®) > 0, the integrand in (46) is a negative quantity. Thus, regular BH
solutions with nontrivial scalar hair solving the model (26) must necessarily have
a negative potential for some range of r, i.e. they must violate the strong energy
condition.

Another class of no-scalar-hair theorems make direct use of the Einstein equa-
tions and as such focused on spherically symmetric line elements, for which the
equations are considerably simpler than for the axi-symmetric case.2”:51:52 In par-
ticular, Bekenstein could rule out spherically symmetric, static BHs, allowing the
possibility of many scalar fields, possibly with noncanonical kinetic terms, either
minimally coupled to gravity or with a specific nonminimal coupling (of Brans—
Dicke type), assuming a non-negative energy density,?” rather than Assumption 3
(v.1, v.2 or v.3).
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Assumption 3 (v.4): The energy density is non-negative (weak energy
condition). This must hold everywhere for any timelike observer. Then, the
requirement is

p=1T,U0"U0" >0. (49)
For the energy—momentum tensor derived from (26),

1 (0%
TS, = 0,90,% — 59 0a®O"® = gV, (50)
for a static observer U* o 6 and under Assumption 2 for a static spacetime, such

that 9;® = 0, this requirement is
1
p= 580/138"‘(1) +V >0 (51)

Note that, in the context of spherically symmetric solutions with ® = ®(r), a
violation of the weak energy condition (51), implies, generically, a violation of the
strong energy condition (48); the converse, however, is not true.

Bekenstein’s “novel no-hair theorem”?” (see also Sudarsky’s®?) is based on a
careful analysis of the radial component of the scalar fields’ energy—momentum ten-
sor 17, and its radial derivative 9, 7",.. By using first the energy-momentum conser-
vation equations and subsequently some of the Einstein equations, for a spherically
symmetric line element, describing an asymptotically flat geometry with a regular
horizon, a contradiction for the sign of 9,7, in the exterior spacetime is obtained,
which can only be resolved if the scalar field is trivial outside the horizon. This
argument has been generalized to higher dimensions.??

As a final remark concerning different energy requirements, Hertog®® provided
evidence for a no-scalar-hair theorem of relevance for string compactifications, rul-
ing out spherical scalar hair of static BHs if the scalar field theory, when coupled
to gravity, satisfies the Positive Energy Theorem.?® Another type of no-scalar-hair
theorem using the strong energy condition is based on a mass bound for spherically

symmetric BHs.?6:57

3.2.3. Reconsidering Assumption 2

Assumption 2 has a different character compared to Assumptions 1 and 3, since it
is not associated to changing the theory one is working with. Moreover, it seems
quite natural — almost obvious — to assume that the scalar field has the same
symmetries as the geometry. This is, however, not mandatory. What is mandatory,
is that the energy—momentum tensor of the scalar field should share the symme-
tries of the geometry, which is not the same thing. The difference is illustrated
by allowing the scalar field to be complex and possessing a harmonic time depen-
dence, ¢ ~ e~ (equivalently, one can consider two real scalar fields with opposite
phases and the same mass). The complexity of the scalar field allows the energy
momentum tensor to be time-independent, even though the scalar field is time-
dependent; hence it is compatible with static and spherically symmetric geometries.
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One explicit example are boson stars.?%° These are self-gravitating, solitonic-like,
scalar field configurations, first discussed long ago by Kaup® and Ruffini and
Bonazzola.%! The scalar field must have a mass term and may or may not have
self-interactions.

It is reasonable to ask if the boson stars possess BH generalizations. They would
have scalar field hair with the same type of harmonic time dependence, which
renders this case outside the scope of previous no-scalar-hair theorems. The answer,
for spherically symmetric geometries, was provided by a no-hair theorem by Pena
and Sudarsky.%? This theorem established the inexistence of BH with nontrivial
scalar field hair, considering one or more complex scalar fields minimally coupled
to gravity that vary harmonically with time and with an arbitrary potential, subject
to the condition that the energy—momentum tensor obeys the weak energy condition
(Assumption 3 v.3), and that the radial pressure is no less than tangential pressures.
The proof relies on a similar method to that of Bekenstein’s “novel no-hair-theorem”
described in Sec. 3.2.2. In particular, the idea is to show that the harmonic time
dependence changes the energy—momentum tensor into an effective one that still
obeys the energy requirements.

Recently, a theorem was reported by Graham and Jha that further rules out
the existence of stationary, asymptotically flat (in particular) BH solutions of the
Einstein equations coupled to a real, time-dependent scalar field, for a class of scalar
field actions.%® Specifically, the theorem applies to theories with action:

S= % /d4x\/—_g (% + P((I),X)), (52)

where X is defined by Eq. (42). Thus, the action depends only on first derivatives
of the scalar field and not higher order ones, but it can have a noncanonical kinetic
term. In particular, as an earlier theorem by the same authors,%* it applies to the
scalar fields used in K-essence models. The key point in the argument, based on an
earlier observation,% is that, assuming a stationary geometry — which is thus also
axi-symmetric by the rigidity theorem, assuming the scalar field to obey the null
energy condition — and writing it in the form

ds® = —e""dt? + 2p(r, 0)dtdg + "V dg? + A Vdr® 4+ P0de?,  (53)
then, from the Einstein equations and the fact that R;. = 0 = Ry, it follows that
0;90,. D =0 = 0,09 P. (54)

Thus, assuming that ® depends on ¢, it cannot depend on both r and 8 and thus ® =
®(t, ). Then, inspection of the energy-momentum tensor and remaining Einstein
equations reveals that P = P(X), i.e. no potential term is allowed, and ® can only
depend linearly on ¢ and ¢. The latter is excluded from the periodicity of ¢ and
thus ® = at + 3. Finally, asymptotic flatness requires, in general, that « = 0. We
emphasize this theorem does not apply to more than one scalar field, or equivalently,
to one (or more) complex scalar field. The reason is that, considering ® complex,
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Eq. (54) is replaced by
04 ®*0,)® = 0 = 0, ®*0y) . (55)

Taking now, for instance, ® = e~“!f(r,6), we see that this no longer constraints

f(r,0).

3.2.4. Remarks

Two remarks are in order concerning no-scalar-hair theorems for BHs and the hairy
solutions presented in the next section. Firstly, we are focusing on independent
scalar fields. Considering simultaneously gauge fields to which the scalar fields are
nonminimally coupled leads to many different families of solutions. Notable exam-
ples include BHs and branes in supergravity,66 68
with scalar hair.%97" All these have no independent scalar charge and the scalar
field vanishes when the gauge field vanishes. Secondly, we shall be focusing on
four-dimensional (and asymptotically flat) BHs although some remarks are made
concerning higher (see Refs. 72 and 73 for lower) dimensional generalizations.

as well as early examples of BHs

4. BHs with Scalar Hair

We shall now describe explicit examples of asymptotically flat BHs with scalar
hair (and no gauge fields) which are regular on and outside the event horizon.
These solutions, of course, violate one of the assumptions discussed in Sec. 3. The
conceptually simplest route to obtain hairy solutions — albeit physically question-
able — is to maintain a minimally coupled scalar field, with a canonical kinetic
term and allow for a potential energy that violates the energy conditions discussed
above (Assumption 3, v.1-4). We shall start by discussing this case. Next, we will
consider solutions for nonminimally coupled scalar fields, thus violating Assump-
tion 1. In this case, the pioneering example is the BBMB BH already mentioned in
Sec. 2.3. We shall further discuss BH solutions both in the context of generalized
scalar—tensor theories of the Horndeski/Galileon type and for scalar field theories
with noncanonical kinetic terms. Finally, we shall address the most economic exam-
ple of scalar hair, in what concerns the need of some exotic scalar field theory. This
example occurs for a minimally coupled complex (or equivalently two real) scalar
field, with a canonical kinetic term; i.e. in Einstein—Klein—Gordon field theory with
just a mass term. The corresponding “Kerr BHs with scalar hair” are made possible
from the violation of Assumption 2 (and no others).

4.1. Solutions violating Assumption 3

The simplest way to circumvent the no-scalar-hair theorems — and at first glance
the mildest deviation from the original model — is to allow for a scalar field poten-
tial which is not strictly positive, such that the strong (and generically also the
weak) energy condition is violated. Even though no clear physical settings for
this violation appear to exist at this moment, at least in the asymptotically flat
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case, pragmatically assuming it leads to BHs with scalar hair possessing distinct
properties.

Heuristically, a negative potential can provide an extra repulsive interaction
which prevents the scalar field from infinitely piling up at the (would be) horizon —
as seen in the massless, nonself-interacting case — when one requires ® to be
nontrivial. An attractive feature of some of these models is that a careful choice of
the expression for the scalar field potential leads to exact solutions in closed form.

4.1.1. Scalar potential engineering: A test field solution

Consider once more the nonlinear Klein—Gordon equation (27) for a test scalar
field in the Schwarzschild BH background (3). Inspection of Eq. (27) reveals that
choosing a specific scalar radial profile ® = ®(r), one obtains an equation of the
form V' = x(r), for some function x(r). Inverting the radial profile r = r(®), one
may choose the scalar potential to be

V(®) = /X(r(q)))dfb. (56)

Thus, modulo subtleties in the inversion of ® = ®(r), it is always possible to
engineer a scalar potential V' (®) that allows any given scalar profile. In particular,
one can construct smooth configurations with an energy—-momentum tensor which
is regular at the horizon and possess a finite total mass.

As perhaps the simplest example, let us choose the test scalar field to have the
Coulomb-like form found for the electrostatic potential, cf. Eq. (4):

s

a(r) = % (57)
This is a solution of (27) if one chooses the scalar potential to be
V(®) = —\®° <0, (58)
with Qg fixed by the coupling constant A > 0 and the BH mass M
PAVANA
=—|— 0. 59
es=-(35) < (59)

Observe that Qg — oo as A — 0. For any finite A, the energy-momentum tensor
of this test scalar field is finite on the horizon; the time-time component and the
finite total mass-energy are
2/3
14M —5r (M 3
r ( ) E T

_ _ 2\—1/3
= 21735555 \ & = g7gers MAT) (60)

(T°);

4.1.2. Beyond probe limit: Backreacting solutions

The simple example above with the quintic potential (58) captures a number of
basic features of nonlinear hairy BH solutions in V-scalar-vacuum. In fact, this test
field configuration can be promoted into an exact solution of the full theory. As
an example, insisting in keeping the 1/r scalar profile everywhere, in terms of the
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areal radius, the scalar field potential must get corrected in the nonlinear solution
and gains the more complicated form8

2
V(@) :—E)\ W 50 <(1+26‘1>2)(<I>2—3)+M(£27:§7)7 (61)
with
W =30 + \/7 % (@2 — 3)Ext (3). (62)
2 V2
The metric functions which enter the line element — of the form (44) — are
given by
m(r) = 5—; 1+ 63—2% + 67;9 (225)\2625 — 1)

—%egjs_< Q% — Qse_&sf \/7Ef<§_sr)>] a(r):e_gsf. (63)

This solution represents a BH for some range of the free parameters A, Q g, with
a regular horizon of spherical topology. Moreover, the scalar field and its energy
density are finite everywhere (in particular, on the horizon) and decay fast enough
such that the total mass-energy is finite. Surprisingly, the relation (59) between
Qs, A and M still holds at the fully nonlinear level. In particular, this means the
scalar hair here is of secondary type, as there is no independent scalar charge; it
is totally determined by the BH mass and the coupling in the Lagrangian. This
property seems to be common to models of this sort.

We remark that, recently, an asymptotically flat BH in closed form, with a
regular horizon and scalar hair with the asymptotic scalar field profile (57) was found
by allowing the potential to have a more generic form, but reducing asymptotically
to the quintic potential (58).7 In fact, there are several other similar examples of
closed form solutions with scalar hair, which were constructed in closed form, by
carefully engineering the expression of the scalar field potential.”76-80

By contrast, solutions with simpler and better motivated scalar field poten-
tials can be found only by using numerical methods.8* #* For instance, a model by
Nucamendi and Salgado®? uses the potential

vy =2 |@-ar - IR g g o) @ o)

where A, 7;,a are constants chosen such that the potential violates Assumption 3
v.3 — there is a global minimum which is negative — and a local minimum at
which V' = 0; the field tends asymptotically to this local minimum to guarantee
asymptotic flatness.

gTo the best of our knowledge the solutions (61)—(63) have not been discussed in the literature
previously; a Coulombic scalar profile has been considered in an exact solution”® but not in terms
of the areal radius.
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Given the ambiguity in the choice of the scalar potential, it is rather difficult to
identify generic properties of this class of hairy BHs. However, these configurations
appear to be unstable against linear fluctuations®?:8385 (see, however, Ref. 74).
Another interesting property of most of these solutions is that they do not trivialize
in the limit of vanishing event horizon; the limiting configurations describe globally
regular, particle-like objects, known as scalarons.8? Although no generalizations
of the Kerr BH were found so far within this class of models, there are, however,
slowly rotating solutions.®¢ Also, a set of static axially symmetric deformations of
the Schwarzschild BHs were reported,? for a model with a complex scalar field
violating also Assumption 2.

Finally, let us mention another class of BHs with scalar hair which violates
Assumption 3: phantom BHs. Such solutions exist in models with a “plus” sign for
the scalar field kinetic term in the action (26). By itself, this change in sign does
not suffice to yield regular BH solutions. Indeed, for the model (2) changing only
the sign of the scalar kinetic term, the Fisher—Janis—-Newman—Winicour configu-
ration (13)—(15) still solves the field equations, this time with g = /1 — ]Qw—% In
order to find regular configurations within the theory (26), one needs, therefore,
to turn on the scalar field potential. This potential, however, is still subject to a
number of constraints, as a result of Bekenstein’s theorem and its various refine-
ments mentioned above. For example, V' (®) must have both positive and negative
values. Solutions of this type have been constructed,®” 8% but are expected to be,
generically, unstable.

4.2. Solutions violating Assumption 1

Allowing for more general scalar-tensor gravity theories than V-scalar-vacuum,
different setups can lead to scalar hairy BHs. The pioneering example was found
within conformal-scalar-vacuum, corresponding to the BBMB BH, which has been
generalized (in particular) to include rotation.?® In the following, we shall discuss
examples with noncanonical kinetic terms and more general nonminimal couplings
between the scalar field and gravity.

4.2.1. Horndeski/Galileon theories

BH solutions with a nontrivial scalar field have been the subject of recent interest in
the context of Horndeski/shift symmetric generalized Galileon theories. Loopholes
in the no-hair theorem of Hui and Nicolis,*® cf. Sec. 3.2.1, were pointed out by two
different groups.*44%91 These authors constructed explicit solutions using different
strategies.

Babichev and Charmousis considered the following action®!:

S = / d*2/—g[CR — 1V, dV"® + GV, OV, — 2A], (65)
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where G*” is the Einstein tensor, ( > 0, n and (3 are constants and A is the
cosmological constant. The way these authors circumvent the no-hair theorem of
Hui and Nicolis is related to the last step in their argument. For this theory, the
current is J* = (ng"¥ — G*”)9,P. Thus, eliminating the radial component of
the current can be achieved by imposing ng"” = BGHY, rather than & = const.
Then Babichev and Charmousis observed that regular solutions could be found,
if one allows the scalar field to have a linear time dependence (thus violating also
Assumption 2). This is consistent with requiring the BH spacetime to be spheri-
cal and static, since the scalar field only enters the equations of motion through
its derivatives. Using these methods, these authors constructed, in particular, a
solution with precisely the Schwarzschild geometry (3) and a nontrivial scalar field:

<I>:qt:l:2qu2 m—i—l ? ;

where ¢, ®( are constants. For a nontrivial scalar field, it is essential that ¢ # 0.
But in this case, note that ® is invariant under ¢ — ¢/3,t — gGt,r — Or, M — BM,
whereas the metric scales by $2. It should be noted that, depending on the chosen
sign in the previous equation, the scalar field will diverge at either the future or
past event horizon. Still, the geometry is regular on and outside the horizon. This
construction, dubbed “dressing a BH with a time-dependent Galileon” has been
applied to other shift symmetric subclasses of the Horndeski theory,”? bi-scalar
extensions of Horndeski theory,”® f(R) gravity®® and other examples.?>% Other
static BH solutions in an extension of the model (65) with a scalar field mass which
have also been discussed.®” % Finally, observe the similarity between (66) and (17).
But whereas the latter is a test field solution on the Schwarzschild geometry for
scalar-vacuum Einstein’s gravity (2), the former, together with the same geometry,
forms an exact solution of the model (65).
On the other hand, Sotiriou and Zhou considered the following action**

1
S= /d4x«/_ <— — VOV + a<1>g), (67)
where G is the Gauss—Bonnet combination
G = R"" Rpe — 4R, R + R2. (68)

It is not immediately obvious that this action is a special case of the general
action (41). But indeed this action corresponds to the choice K = G3 = G4 = 0
and G5 = —4aIn|X|.* For this type of theory, the last step of the argument in
the no-hair theorem of Hui and Nicolis is circumvented, cf. Sec. 3.2.1; actually, gen-
eral solutions of this theory, including BH solutions, must have a nontrivial scalar
field.** Spherically symmetric BH solutions were constructed numerically and have
the interesting property of possessing a minimum size, controlled by the Gauss—

(66)

Bonnet coupling constant a.**
We remark that the first example of this subsection actually defines a method
that can be used in obtaining explicit and analytic hairy solutions. Another example
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found in a bi-scalar extension of Horndeski theory“3 corresponds to a nonextremal or
extremal RN geometry with primary scalar hair, cf. Egs. (5.24)—(5.27) therein. By
contrast, the second example is more specific and can only be tackled numerically.
Also, and in agreement with the discussion in the next subsection, the hair is
secondary in this example.

4.2.2. Scalar fields coupled to higher order curvature terms

The action (67) also belongs to a more general class of theories where the scalar
field couples nonminimally to higher order curvature terms. For instance, in string
gravity, wherein the scalar field is dubbed “dilaton,”
the form (67) but with ®G replaced by e®G. Thus, in four spacetime dimension
where G is topological, the former can be regarded as a linearized version (in @) of
the latter.

The action of a general theory of gravity which includes all quadratic, algebraic
curvature invariants, generically coupled to a single scalar field would contain in
addition to (26) the following terms,1%°

one encounters an action of

5= / B/ =G(f1(D)R? + fo(®) Ry R

F [3(®) Ry po RBP4 fa(®@) Ry po "RP7), (69)

where "R, is the dual Riemann tensor. Theories of this type are motivated from
fundamental physics, such as in low-energy expansions of string theory. Also, in
most studies, the scalar field has no potential. Heuristically, the existence of BHs
with scalar hair for such models can be traced back again to the occurrence of
effective negative energy densities. Indeed, the modified Einstein equations leads to
an effective energy—momentum tensor that involves a supplementary contribution
from (69). This effective energy-momentum tensor may violate the weak energy
condition.

The existence of these new couplings between the scalar field and curvature
leads to source terms in the Klein—-Gordon equation, which may circumvent the
various no-hair theorems. The most studied case in this context corresponds to the
Einstein-Gauss-Bonnet dilaton model, with f; = ae?®, fi = —4f; and f3 = fi.
Although the BHs in this theory cannot be found in analytical form," the static
solutions were studied perturbatively in the small coupling limit'°"1%2 and numer-
ically for general coupling.'?3 19 The scalar hair is, however, of secondary type, as
it is not independent from the BH mass. The Kerr BH with dilatonic Gauss—Bonnet
corrections was considered numerically for slow rotation,'%® whereas its highly spin-
ning counterpart was constructed by Kleihaus et al.'%7 Slowly rotating solutions
to (69) taking f; to be linear functions of ® have been considered by Pani et al.'%%

hNote that these studies usually consider a more general matter content, with extra-gauge fields
coupled to dilaton, which, however, are not required for the existence of hairy solutions.
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Such solutions have many similar properties to those of their general relativity
counterparts; for example, the spherically symmetric solutions were claimed to be
linearly stable.!9%:110 There are, however, some novel properties. For example, some
spinning BH solutions to Einstein—Gauss—Bonet dilaton gravity may violate the
Kerr bound.!?” Also, in contrast to some other cases of scalar hairy BHs, they do
not possess a solitonic limit.

Another situation of interest has fi = fo = fo = 0 and fy = a®, in which case
the theory (69) reduces to Chern—Simons gravity.!'? The solutions of this model
would differ from those of general relativity in the spinning case only. However,
only perturbative BHs have been constructed so far, 112113

Further properties of the hairy BHs induced by the general action (69) with
generic values of f; are discussed in the recent review by Berti et al.''* Let us also
mention that BHs in theories with a scalar field coupled to even higher curvature
terms (quartic) have been considered by Myers.!1?

4.2.3. Scalar field multiplets and non-canonical kinetic terms

As already mentioned, generalization of the setting in Sec. 2 is to allow for multi-
ple scalar fields, eventually subject to some constraint. Moreover, the scalar fields
Lagrangian may posses a global O(n) symmetry. A further ingredient is to allow for
noncanonical kinetic terms for the scalar fields. This makes possible the existence
of localized, globally regular, finite energy field theory solutions already in the flat
spacetime limit. Such configurations have found important physical applications
in various contexts ranging from the models of condensed matter physics to high
energy physics and cosmology, as discussed in various reviews.!16-118

Self-gravitating lumps based on such Lagrangians minimally coupled to Ein-
stein’s gravity exist as well, and can be further generalized by replacing the regular
center by a BH with a small horizon radius. As such, in contrast to most of the
solutions in Secs. 4.2.1 and 4.2.2; this class of BHs follow the paradigm of “event
horizons inside classical lumps” 119

A simple example of BH solutions with scalar hair in this context is found in a

model featuring an O(3) scalar isovector field, with the action
_ 1 4 R 1 a7 FHa )\ aFfya 2
S—4Tr/dx\/ g<4 2VM<I>V<I> 4(<I><I> v7) |, (70)

where v and A\ are the vacuum expectation value and the self-coupling constant
of the scalar fields, respectively. The spherically symmetric solutions have a scalar
field ansatz!

d' = f(r)sinfcosp, ®* = f(r)sinfsinp, &> = f(r)cosé, (71)
INote that this leads to spherically symmetric configurations, such that the Assumption 2 is
violated; this applies as well for Skyrme hair.
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(where f(r) — v as r — ), and a line element given by (44). These are BHs
inside global monopoles,*?® which were discussed by Liebling'?! and Maison.'?? In
contrast to, for instance, the BBMB case, such solutions — including the scalar
fields — are regular on and outside the horizon. However, their energy density
decays too slowly at large distances. Consequently, their mass, as defined in the
usual way, diverges, even though a proper ADM mass can still be defined.!?3:124
This leads to a deficit solid angle in the geometry of the space and the resulting
spacetime is not strictly asymptotically flat. In fact, a number of no-hair theorems
could be generalized*®°6 for the case of scalar multiplets, by assuming the kinetic
term of the scalar fields to be of the form Gqp(®)V,P*VHP* (with Ggp > 0).

The situation changes when allowing for nonstandard kinetic terms of the scalar
fields in addition to the usual one. Such Lagrangians are used in flat space field
theory models''6 118 to evade Derrick-type scaling arguments,*® which forbid the
existence of static scalar solitons. Physically, the repulsive force associated with the
extra-term allows for bound states.

The best known example in this context stems from the flat space Skyrme
model,*25:126 which can be regarded as an effective theory in the low energy limit
of QCD. This model contains four scalars ®* satisfying the sigma-model constraint
®2d® = 1, with a Lagrangian density featuring a global O(4) symmetry. The action
of the Einstein—Skyrme model can be written as’

1 R 1 o o «
S = yp /d4x\/—g <Z — §V#(I) VHOY — H|V[M(I) VV}(I)bF), (72)

with £ > 0. This model has been studied by various authors, mainly for the spherical
case, for a scalar ansatz

®! = sinx(r)sinfcos¢, ®? = sin x(r)sinfsin ¢,
®3 = sinx(r)cosh, ®* =cosx(r),

(with x(r) the scalar amplitude), and the line element (44). The corresponding BH
solutions — BHs with Skyrme hair — were first discussed as test field Skyrmions
around a Schwarzschild BH,'2” and later including the backreaction.!?® Arguably,
these provide the first physically relevant counter-example to the no-hair conjecture
in the literature. Further studies of their properties followed.'?%7134 In contrasts to
the BHs in the previous sections, the hair of the Skyrme BHs is primary, possessing
a topological origin.

Interestingly, the BHs with Skyrme hair have a number of features generic to
certain models involving non-Abelian gauge fields, with an intricate branch struc-
ture. Similar to other models possessing flat space solitons, the limit of zero horizon
size corresponds to the smooth particle-like gravitating Skyrmions. Moreover, one

JHere, we use a slightly different formulation of the Skyrme model as compared to the standard
one in the literature in terms of an SU(2)-valued matrix U.
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finds stable hairy configurations against spherical linear perturbations. A review of
these solutions in a more general context is provided by Volkov and Gal’tsov.’

It is interesting to note that, in contrast to the models discussed in Sec. 2,
cf. Sec. 2.2, the Einstein—Skyrme model has BH solutions which are static, have
a regular horizon and possess axially symmetry only.'3%136 A further comment is
that no rotating BHs with Skyrme hair have been constructed so far, even though
they should exist and their solitonic limit has been studied.37

An interesting extension of this type of solutions is found when relaxing the
sigma-model constraint ®*®* = 1, imposing it only asymptotically. For exam-
ple, the total mass of the BH solutions of the O(3) scalar isovector field model
discussed above is regularized for an action with Skyrme-like higher derivative
terms.'3® This leads to asymptotically flat BHs with scalar hair which are reg-
ular on and outside the horizon, with the scalar field asymptotically approach-
ing a nonzero vacuum expectation value. Moreover, some of these solutions are
stable against time-dependent linear fluctuations. Such BHs possess a regular
extremal BH limit, despite the absence of a scalar charge associated with a
Gauss law.

4.3. Solutions violating Assumption 2: Kerr BHs with scalar hair

The solutions in the previous two subsections involve endowing the scalar field with
some nontrivial dynamics due to either some (often unphysical) self-interactions
or some modification of its propagator/coupling to gravity. Are there, however,
scalar hairy BHs in a theory with canonical kinetic terms, minimal coupling to
gravity (Assumption 1) and abiding all energy conditions (Assumptions 3)? The
only possibility is then to violate Assumption 2. Such BHs indeed exist as we shall
now describe, and have a clear physical motivation.!39 14!

We consider a complex scalar field ¢, with a mass g, minimally coupled to

Einstein’s gravity. The corresponding action is:
1 4 R * 2 *
S=4— d*z\/—g Z—VMPV’“I’—u@@. (73)
m

It is again useful to start with a test field analysis. Linearizing the field equations
on the scalar field one must solve the massive Klein-Gordon equation O0® = p?®
around a vacuum solution of the Einstein equations R,, = 0. We take the lat-
ter to be the Kerr solution in Boyer—Lindquist coordinates (¢,r,0,¢) as, by the
uniqueness theorems, this is the most general regular (on and outside an event
horizon), asymptotically flat BH solution of vacuum general relativity. Next, in
order to violate Assumption 2, we take the scalar field to depend on t,¢. Since
our final goal is to find some nonlinear solution of (73), we must guarantee that
the energy-momentum tensor of the scalar field is compatible with the background
symmetries of a stationary (and thus, axi-symmetric) BH. The presence of the mass
term rules out, for instance, the linear time dependence considered in Secs. 3.2.3
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and 4.2.1. But one may take a harmonic ¢ and ¢ dependence. Thus, the scalar field
ansatz is

O = e WM G,  (0)Rym (1), (74)

where w is the frequency, m € Z and Sy, are the spheroidal harmonics, —¢ < m < ¢,
which can be defined as solutions of a second-order ODE (for #) and Ry, obey
a second-order ODE (for 7).142 This type of ansatz is reminiscent of that used
for stationary states in quantum mechanics, which have a real frequency w. In
particular, the mass term creates a potential barrier at infinity which, in principle,
can allow for bound states with an exponential fall-off towards infinity.

For a scalar field on a BH background, however, one must impose a purely
ingoing boundary condition on the horizon (in a co-rotating frame). Thus, one
expects to find only solutions with complez frequency w = wg + iw; and wy < 0
signaling a decay of the scalar field towards the horizon. This is indeed the only
type of solutions found in the Schwarzschild case (wherein e™?S,,, — Y;™(0, ¢));
such states are dubbed quasi-bound states,X which evolve in time.!#5"147 In the Kerr
case, however, this only occurs for w > m€Qy, where Qg is the angular velocity of
the Kerr horizon. For w < my, it turns out that w; > 0 and the amplitude of the
scalar field grows in time. This is due to the phenomenon of superradiance'*®: The
scalar field can be amplified in a scattering process with a Kerr BH, by virtue of
extracting rotational energy from the BH. For bound states, multiple superradiant
scattering triggers the BH bomb as discussed by Press and Teukolsky.'#? At the
threshold of superradiance, i.e. when

w=my, (75)

Hod observed that there are bound states with real frequency.'®%:'%! These scalar
bound states are regular on and outside the horizon and, due to the complex nature
of the scalar field, they source a t, p-independent energy—momentum tensor. These
have been called scalar clouds around Kerr BHs,140:150-153

Scalar clouds can be promoted to a nonlinear solution of the full massive complex
scalar-vacuum system, much in the same way as the analysis of the Maxwell field in
Sec. 2.1 leads to the existence of the RN solution. A crucial aspect in this scalar case,
however, is that the requirement of a real and time-independent energy-momentum
tensor demands considering a model with a complex scalar field, or equivalently,
two real fields with the same mass, and an U (1) = O(2) global symmetry. The exis-
tence of these nonlinear solutions was established, by numerical methods and the
corresponding solutions dubbed Kerr BHs with scalar hair."3°141 These are asymp-
totically flat, regular on and outside an event horizon rotating BH solutions with
primary scalar hair. Indeed, there is an independent charge counting the amount
of scalar hair, a Noether charge associated to the U(1) global invariance of the
action (73).

KThese states can, however, be very long lived.143.144
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Kerr BHs with scalar hair reduce to a subset of Kerr BHs in the limit of vanishing
scalar field and to spinning boson stars in the limit of vanishing horizon. They can
be regarded as a bound state of “bald” BHs and boson stars, following again the
paradigm of “event horizons inside classical lumps.”'1® For instance, they have
ergo-surfaces which, in a region of parameter space, are a union of an ergo-sphere
(like for Kerr) and an ergo-torus (typical of some rotating boson stars).!>* They
also exhibit some distinct physical properties, as an independent quadrupole which
can be more than one order of magnitude larger than that of Kerr and violation
of the Kerr bound for the angular momentum.'3%140 Also, unlike some spherically
symmetric hairy BHs that do not admit “short hair” i.e. a concentration of the
scalar field very close to the horizon,'®® a test field analysis suggests this model
does. 136

Could Kerr BHs with scalar hair form in gravitational collapse? This issue is
related to their stability properties which, at the moment of writing, have not
been fully clarified. But arguments have been put forward to support that some
of the solutions can be very long lived.!3® One could then imagine two scenarios
for the formation of hairy BHs. The first one is that gravitational collapse would
form initially a Kerr BH which would subsequently grow hair via superradiant
amplification of a scalar field. An analysis using a quasi-adiabatic evolution has
been used to argue that, in this case, at most around 29% of the BH mass can
be transferred to the scalar hair around the BH.!5” The second scenario is that
gravitational collapse produces from the outset a Kerr BH with scalar hair. It was
shown in the 1990s that indeed gravitational collapse of scalar fields can produce
boson stars, within spherical symmetry.>?:158 It would be very interesting to revisit
such numerical evolutions in more general axi-symmetric setups to investigate the
formation of Kerr BHs with scalar hair.

Asymptotically flat solutions based on the condition (75) have also been found
in higher dimensions,'®® and a pioneering example was found in higher dimen-
sional Anti-de-Sitter spacetime.!%? Other families of analogous solutions must exist
allowing the scalar field to have self-interactions (abiding Assumption 3),139:161
some of which were recently constructed.'6?

Let us conclude by remarking that recent work!'93:164 discussed constraints on
classes of solutions based on a violation of Assumption 2.

5. Summary

In Table 1, we summarize no-scalar-hair theorems and known scalar hairy solutions
for models discussed in this review (four-dimensional, asymptotically flat, with a
regular geometry, on and outside the horizon). The theories are presented by their
Lagrangian density, S = [d%z\/—¢gL, and organized by a criterion of increasing
complexity (which at times is arbitrary). The no-hair theorem is placed together
with a reference theory, but sometimes has a more generic applicability; obviously
it applies also to special cases. When there are both no-hair theorems and solutions,
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Table 1.

Summary of no-scalar-hair theorems and asymptotically flat scalar hairy BHs.

Theory
Lagrangian density £

No-hair theorem

Known scalar hairy BHs with
regular geometry on and outside H
(primary or secondary hair;
regularity)

Scalar-vacuum
1 1
+R—=35VuoVrEe
Massive-scalar-vacuum
1 1 1,252
tR=3VuoVHES — Sp=d
Massive complex scalar-vacuum
TR =V, VD — 205D

Conformal-scalar-vacuum
1 1 1 2
1B —5Vu@eVHED — S5 RO

V-scalar-vacuum
iIR-1v,0oVre — V(D)

P-scalar-vacuum
iR+ P(®,X)
Einstein—Skyrme
iR - 1v,00vVHoe
— K|V, 2V, ®b|2
Scalar—tensor theories
ph — 2V, oVie — Up)

Horndeski/Galileon theories
Full £ in Eq. (41)

Chase?3

Bekenstein!?

Pena-Sudarsky®?2

Xanthopoulos—
Zannias33

Zannias34

47,48,51
7

Heusler
Bekenstein?
Sudarsky®?2

Graham—Jha%3

Hawking?8
Gaa35:36

Sotiriou—Faraoni

Hui—Nicolis46

Herdeiro-Radu!39:140
(primary, regular);
generalizations!62:

Bocharova—Bronnikov—Melnikov—
Bekenstein (BBMB)17-19
(secondary, diverges at H);
generalizations?0:

Many, with nonpositive
definite potentials74-78,81-83.
(typically secondary, regular)

Droz—Heusler—Straumann29

(primary but topological; regular);

generalizations!32:134;

Sotiriou-Zhou*4
(secondary; regular)
Babichev—Charmousis
(secondary®! or primary,%3
diverges at HT or H™);

91,93

generalizations?496:

the latter violate some assumption of the former. Also, solutions are not repeated
in more general theories. Further solutions including explicit scalar couplings to
higher order curvature invariants were discussed in Sec. 4.2.2.

6. Final Remarks

In this paper, we have reviewed the status of four-dimensional asymptotically flat
BHs with scalar hair in various types of scalar models coupled to gravity and
without gauge (or other types of) fields. We have started in Sec. 2 by pointing out
that a test field analysis immediately shows the different behavior of scalar fields and
electromagnetic fields on a BH background. This different behavior can be traced
to the existence of a Gauss law in the latter case, but not the former. Thus, keeping
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scalar fields in equilibrium with a BH as a regular configuration is certainly more
difficult than for gauge fields. This difficulty was formalized in a set of no-scalar-
hair theorems, reviewed in Sec. 3. But as in any theorem, there are assumptions
which, when violated allow the existence of BHs with scalar hair. These have been
reviewed in Sec. 4. An overview of these solutions shows that there are various
possible mechanisms to construct regular asymptotically flat BHs with scalar hair.
This, in particular, means that physical properties may vary substantially.

Nevertheless, some patterns emerge. One pattern that can be observed from this
overview is that scalar field theories that, when minimally coupled to gravity, allow
the existence of gravitating solitons, also allow the existence of BHs with scalar hair.
Three examples are: (i) scalarons in V-scalar-vacuum; (ii) gravitating Skyrmions in
Einstein—Skyrme theory; (iii) boson stars in massive complex scalar-vacuum. In all
cases, the possibility of placing “event horizons inside classical lumps”’ is observed,
even though sometimes with subtleties. For instance, in the case of boson stars, the
BHs need to have angular momentum, cf. Sec. 4.3.141

Another mechanism which leads generically to scalar hair on BHs is to consider
higher curvature term corrections to Einstein gravity, coupled with the scalar field.
Note also that, as proven by this class of solutions (or by the BBMB solution of
conformal-scalar-vacuum) not all hairy solutions admit a nontrivial zero horizon
limit.

FEither due to the existence of gravitating solitons, or due to the existence of
some particular scalar-gravity couplings, the conclusion is that despite the fact
that scalar fields do not have a Gauss law and consequently are hard to keep in
equilibrium with an event horizon without trivializing, BH solutions with scalar
hair exist nevertheless. In that sense, the no-scalar-hair conjecture has been proved
to be false.

Still, a relevant question is: Do these solutions possess new “quantum num-
bers,” i.e. primary hair? The pattern seems to be that primary hair only occurs
if the scalar field theory possesses a global symmetry and, associated with it, a
conserved current and a conserved Noether charge(s). Three examples are the O(4)
symmetric Einstein—Skyrme theory, the shift symmetric Horndeski/Galileon theo-
ries and the U(1) symmetric massive complex scalar-vacuum. The existence of such
global symmetry allows a conserved charge; but it does not guarantee that asymp-
totically flat, regular BH solutions with nontrivial scalar hair exist with that charge.
Indeed, out of these three examples, the only case where a clear new continuous
(nontopological) charge exists is the case of Kerr BHs with scalar hair of massive
complex scalar-vacuum (and generalizations thereof).

The next question is if the dynamical spirit of the no-hair conjecture has also
been falsified. As discussed in the Introduction, the backbone idea of this conjecture
is that the end point of gravitational collapse are very simple configurations without
hair. Thus, dynamical stability or at the very least, the presence of only long-term
instabilities, is fundamental. Some of the models described — for instance Einstein—
Skyrme — allow physically reasonable solutions in this respect. In some other cases
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this is not yet known, and probing stability may only be possible using numerical
relativity techniques.'6®
The final question is if any of these models is phenomenologically interesting to

describe the BH candidates identified in the Cosmos. In this respect, the final word

must come from matching with observations.!!4
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