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ABSTRACT 

We present a new semianalytic technique for determining the complex normal mode frequencies of black 
holes. The method is based on the WKB approximation. It yields a simple analytic formula that gives the real 
and imaginary parts of the frequency in terms of the parameters of the black hole and of the field whose 
perturbation is under study, and in terms of the quantity {n + \), where n = 0,1,2,... and labels the 
fundamental mode, first overtone mode, and so on. In the case of the fundamental gravitational normal modes of 
the Schwarzschild black hole, the WKB estimates agree with numerical results to better than 7% in the real part 
of the frequency and 0.7% in the imaginary part, with the relative agreement improving with increasing angular 
harmonic. Carried to higher order, the method may provide an accurate and systematic means to study black 
hole normal modes. 

Subject headings: black holes — gravitation 

For several years, the normal modes of oscillation of black 
holes have been of great interest both to gravitation theorists 
and to gravitational wave experimentahsts (Detweiler 1979). 
These modes are the resonant, nonradial deformations of 
black holes, analogous to those of the Sun or Earth, that can 
be induced by external perturbations. They are characterized 
by a spectrum of discrete, complex frequencies, the real part 
of the frequencies corresponding to the oscillation frequency, 
and the imaginary parts corresponding to the rate at which 
each mode is damped as a result of the emission of radiation. 
For a given kind of physical perturbation (scalar, electromag- 
netic, gravitational), the complex frequencies are uniquely 
determined by the mass and angular momentum of the hole, 
the angular harmonic index (/, m) of the deformation, and the 
degree of the harmonic of the mode. 

To the gravitational wave astronomer, black hole normal 
modes may be an interesting source of gravitational waves 
emitted at discrete frequencies by a deformed black hole left 
over following a supernova collapse. The identification of the 
frequencies and damping times of such waves could aid in 
estimating the parameters of the black hole. Normal modes 
are also important in analyzing the stability of black holes 
against external perturbations. Although the nonrotating 
Schwarzschild black hole is known rigorously to be stable, the 
situation is not so certain in the case of the rotating Kerr 
black hole (Detweiler and Ove 1983). Normal modes may also 
play a role in the quantum mechanical evaporation of black 
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holes. A recent model for this process developed by York 
(1983) makes use of the fluctuations of the horizon at the 
normal mode frequencies as a means to estimate the tempera- 
ture that characterizes the radiation evaporated from the hole. 

Previous approaches to black hole normal modes have 
relied heavily on numerical techniques (Detweiler 1979). Al- 
though the basic equations describing the perturbations of 
black holes reduce to a single second-order ordinary differen- 
tial equation that is equivalent to the one-dimensional 
Schrödinger equation for a particle encountering a potential 
barrier, the nature of the potential precludes an exact solution 
in terms of known functions. Numerical integration of the 
equations requires selecting a value for the complex frequency, 
integrating the differential equation, and checking whether the 
boundary conditions for a normal mode are satisfied (outgo- 
ing waves at infinity, ingoing waves at the horizon). Since 
those conditions are not satisfied in general, the complex 
frequency plane must be surveyed for the discrete values that 
lead to normal modes. This technique is time consuming and 
therefore costly, and it makes difficult a systematic survey of 
normal modes for a wide range of parameter values. 

We have developed what we beheve is a promising tech- 
nique for determining the normal mode frequencies semiana- 
lytically, using the WKB approximation. Although based on 
an approximation, we beheve this approach will be powerful 
{a) because the WKB approximation is known in many cases 
to be more accurate than one has a right to expect a priori] 
(b) because the method can be carried to higher orders, either 
as a means to improve the accuracy or as a means to estimate 
the errors explicitly; and (c) because it will allow a more 
systematic study of normal modes than has been possible 
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using outright numerical methods. The purpose of this Letter 
is to lay out the basic elements of this method and to apply it 
to a simple test case: the fundamental normal mode frequen- 
cies of the Schwarzschild black hole. The result is a simple 
analytic expression for the complex frequency, that, for / = 2 
agrees with the numerical results of Chandrasekhar and 
Detweiler (1975) within 1% for the real part and 0.7% for the 
imaginary part, with the relative agreement improving with 
increasing /. 

The motivation for using the WKB approximation is the 
similarity between the equations of black hole perturbation 
theory and the one-dimensional Schrödinger equation for a 
potential barrier. This similarity has been emphasized and 
exploited by Chandrasekhar (1983), for example. In both 
cases, the central equation has the form 

d2ÿ/dx2 + Q(x)il/ = 0. (1) 

In the black hole case, xf/ represents the radial part of the 
perturbation variable, assumed to have time dependence c/£0', 
and angular dependence 0(0, <J>) appropriate to the particular 
perturbation and black hole under study. The coordinate x is 
a “tortoise coordinate” r* which ranges from — oo at the 
horizon to T oo at spatial infinity. The function -Q(x) is 
constant at x = ±oo, although not necessarily the same at 
both ends, and rises to a maximum in the vicinity of x = 0 
(Fig. 1). It depends on the mass and angular momentum of 
the black • hole, the angular harmonic indices, and the 
frequency, and it can be complex in general. 

In quantum mechanics, ~ Q(x) = (2m/h2)[V(x) - E], 
where E is the energy of the particle of mass m, and F(x) is 
the potential barrier, assumed to tend to constant values as 
x —► + 00. 

Since Q(x) tends to a constant for large |x|, ^ takes the 
form e±lax, Rea > 0. As x -> oo, outgoing (ingoing) waves 
correspond to the negative (positive) sign, and as x —► — oo, 
outgoing (ingoing) waves correspond to the positive (negative) 
sign. Here, “outgoing” means moving away from the potential 
barrier, so in the black hole case, “outgoing as x -> — oo ' 
corresponds to waves crossing the horizon into the black hole. 

For a wave incident on the barrier from x = oo with a 
given amplitude, it is a standard calculation in quantum 
mechanics to determine the amphtude of the wave reflected 
back to x = oo and that transmitted to x = - oo. If the 
function —Q(x) is positive anywhere, i.e., if the energy is 
below the peak of the potential, the reflected amplitude is 
generally comparable to the incident amphtude, while the 
transmitted amphtude is much smaller. When the WKB 
approximation is apphed to such problems, it leads to an 
estimate for the transmitted amphtude of e~B, where 2? is a 
“barrier penetration factor,” given by an integral of 
[ — 0(x)]1/2 between the classical turning points of the poten- 
tial V(x), where Q vanishes. Similar reflection-transmission 
calculations have been done for black holes (for review and 
references see Chandrasekhar 1983). 

Normal mode problems, on the other hand, involve a rather 
different set of boundary conditions. A normal mode is a free 
oscillation of the hole itself, with no incoming radiation driv-/ 
ing it. The boundary condition at x = oo is therefore purely 

Fig. 1.—The function -Q(x) 

outgoing waves; moreover, causality demands that at x = — oo 
the wave flux be into the horizon, i.e., “outgoing” again. One 
therefore expects the “reflected” and “transmitted” waves of 
the standard scattering problem to hctve comparable ampli- 
tudes, with the incident amphtude zero. At first glance, one 
might expect the WKB approximation to be useless for nor- 
mal modes, because it always seems to lead to an exponen- 
tially small factor e B relating the transmitted to the reflected 
amphtude, rather than a factor of order unity. However, there 
is at least one case in which this is not true, namely that in 
which the maximum value of -0(x) is precisely zero. In 
quantum mechanics, this occurs when the energy coincides 
with the peak of the potential F(x). In this “second-order 
turning point” problem, the WKB approximation leads to 
equal magnitudes for the two outgoing waves, each a factor 
2“1/2 times the incident amphtude. This suggests that, if nor- 
mal modes exist for a given potential, they must exist 
“nearby”; in other words, for complex frequencies such that 
[-Ô(*)]max Ä However, if [-0(x)]max > 0, the classical 
turning points will in general be too close together to allow 
application of the standard WKB approach, which involves 
matching of two WKB approximations to the solution across 
each turning point. Nevertheless, a simple modification of the 
matching procedure allows a complete solution of the normal 
mode problem. 

The modification involves matching two WKB solutions 
across both of the turning points simultaneously. Outside the 
turning points (regions I and III of Fig. 1), the WKB functions 
are given by (see Bender and Orszag 1978 for discussion) 

’M*) Ä Ô“1/4exp|±/y [0(/)]1/2<*J> 

œ ‘[ôO)]172**}- (2) 

In region II, we approximate 0(x) by a parabola. This is 
justified provided the turning points are closely spaced, i.e., 
provided [ —0(*)]max ^ |ß(±oo)|. Then Q has the form 
Ô(*) = ôo + 20ó'(* - *o)2 + 0(x - X0ÿ, where Q0 = 
Q(x0) < 0, and Q'0' = d2Q/dx2\Xo > 0. The definitions 

k = kQö, t = W^e^ix - x0), 

«' + Î - -'Óo/(20¿')1/2, (3) 
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bring equation (1) into the form 

d2Wdt2+{v+l2 -it2)i = 0, (4) 

whose solutions are parabolic cylinder functions Dv(t), with 
the general solution given by ÿ = ADv(t) + For 
large 11 \ the asymptotic forms of these solutions (Bender and 
Orszag 1978) yield 

^ Ä Be-^v+X)/\4ky{v+W\x - xoy^+l)eikl/2(x-*°)2/2 

+ [/l + /T{v + 1)] 

X(x- xoye-k'/2^-^2^, 

X x2 

t « Ae~3'”^4(4ky/4(x0 - xye-
k'/2^-^2/3 

+ [b- iA(2ir)1/2e-'n'’/2/r( — i')] e','<‘' + 1>/4 

x(4/c)_<r+1>/4(x0 - o)V2> 

x xx, (5) 

where F(^) is a gamma function. It is straightforward to show 
that the exp [ —îâ:1/2(x — jc0)

2/2] pieces of both solutions in 
equation (5) match to the outgoing wave of the WKB solu- 
tions of equation (2). For a normal mode, the coefficients of 
the exp[ikl/2(x - jc0)

2/2] pieces must therefore vanish: this 
can only be achieved iî B = 0 and if F(-p) = oo. The latter 
condition implies that v must be an integer. This leads to the 
simple condition for a normal mode, 

Ôo/(2eo)1/2 = '(« + î). « = 0,1,2,.... (6) 

Since Q is frequency dependent, this condition will lead to 
discrete, complex values for the normal mode frequencies. 

This result is completely general. It applies to any one- 
dimensional potential problem of the form of equation (1). As 
a simple application, we apply it to the Schwarzschild black 
hole. 

The radial equation for scalar, electromagnetic, or gravita- 
tional perturbations of a Schwarzschild black hole is given by 

d2Wdd+{a2 -[1 -(2/r)][\r2 +(2ß/r3)]}t = 0, 

(7) 

where X = /(/ + 1), where / is the angular harmonic index; 
ß = 1,0, —3 for the three types of perturbation, respectively; 
and a = Mco, where M is the mass of the black hole. The 
radial coordinates have been expressed in units of M, and r* 
is related to r by dr/dr* = 1 - (2/r). With Q identified as 
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TABLE 1 
Normal Mode Frequencies for Schwarzschild: 

WKB versus Numerical3 

Re a iMa 
/ WKB Numerical % WKB Numerical % 

2 0.3988 0.3737 7.0 0.0883 0.0889 0.7 
3 0.6166 0.5994 2.9 0.0923 0.0927 0.4 
4 0.8223 0.8092 1.6 0.0939 0.0941 0.2 

a Numerical results from Chandrasekhar and Detweiler 1975. 

the quantity in braces in equation (7), we obtain 

ô'(r,) = [1 -(2A)]{(X/r3)[2 -(6/r)] +(2ß/r4) 

X[3-(8A)]}, 

Q"(rm) = [1 -(2A)]{ - ( V'-4)[6 “(WO +(60A2)] 

- (20A5) [12 - (70A) + (96A2)] } ■ 

(8) 

The peak of -ß occurs at r = r0 = fX_1(X - ß + [À2 + 
(14/9) Xß + ß2]1/2 }. Then from equation (6) we have 

a2 = [1 — (2Ao)] [(^Ao ) +(2/*Ao3)] + K2Ôo)1/2(" + 0- 

(9) 

The results for a for gravitational perturbations (ß = -3), 
for / = 2,3,4, and for n = 0 (the fundamental mode) are 
listed in Table 1. For comparison we have shown the values 
obtained from the numerical calculations of Chandrasekhar 
and Detweiler (1975), together with the percentage agreement. 
It turns out that, for the first overtone mode (n = l), the 
agreement breaks down, a consequence, we suspect, of the 
inadequacy of the parabolic approximation. This question is 
currently under investigation. For large /, equations (8) and 
(9) imply that Ima « ^(21)~1/2 ~ 0.096225 for any ß, a limit 
which has been observed numerically (Detweiler 1979). 

The method presented here is to be contrasted with that 
adopted by Mashhoon and co-workers (Blome and Mashhoon 
1984; Ferrari and Mashhoon 1984) in which the function 
— Q(x) is replaced by an alternative function that approxi- 
mates -ß(x), but for which exact analytic solutions of 
equation (1) are known. The normal mode frequencies ob- 
tained agree with the numerical results where available, but 
there is no systematic way in this method to estimate the 
errors or to improve the accuracy. This may be a drawback 
when one works in uncharted areas, such as regimes where 
unstable modes might exist. 

In future papers in this series, we will discuss (a) the 
second-order WKB approximation for normal modes, (b) 
application of the method to overtone (n > l) modes, (c) 
application to Kerr and a search for unstable modes, and (d) 
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the possible use of this technique in other normal mode We are grateful to Carl Bender for valuable insights into the 
problems in physics and astrophysics, such as the normal WKB approximation, and to Sai Iyer for checking portions of 
modes of stars. the calculations. 
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