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When a nearly spherical star gravitationally collapses through its event horizon, it cannot
leave behind a static gravitational field with nonspherical perturbations. The dynamics of
these perturbations during collapse is studied with a scalar-field analog. Computations in
comoving coordinates show that the field neither vanishes nor becomes singular as the star
falls inside its gravitational radius. The scalar field on the surface of the star must vary
as a&+a2 exp(-t /2M) due to time dilation. An analysis is presented of the evolution of the
exterior scalar field, based on a simple wave equation containing a space-time-curvature-
induced potential barrier. This barrier is shown to be impenetrable to zero-frequency waves
and thus a&, the final value of the field on the surface of the star, is not manifested in the ex-
terior; the exterior field vanishes. The detailed nature of the falloff of the field depends on
backscattering off the potential. It is shown that an initially static l pole dies out as t '+
If there is no initial l pole but one develops during the collapse it must fa11 off as t '+

Wave equations with curvature-induced potential barriers have been derived by Regge and
Wheeler and by Zerilli for gravitational perturbations. With these equations the analysis of
gravitational perturbations is precisely the same as for the scalar ones. In particular, grav-
itational multipole perturbations (with l «2) fa11 off at large t as t '+ or t '+, depend-
ing on initial conditions. (In an accompanying paper it is shown that this result applies as
well to the radiatable multipoles of a zero-rest-mass field of any integer spin. )

I. INTRODUCTION

A. The Problem and Its History

A central role in relativistic astrophysics is
played by the Schwarzschild geometry and by the
line element

ds' = (1 —2M/r)dt'

—(1 —2M/r) 'dr' —r'(d8'+sin'8 dP'). (1)

(We use units in which c=1,G=1.) The. most in-
teresting and characteristic feature of this line
element is its singular behavior at the gravitational
radius r = 2M. On the one hand, we know that the
r = 2M surface does have very important properties;
it is an event horizon and the limit of a family of
trapped surfaces. But on the other hand, trans-
forming this line element to a freely falling co-
ordinate system reveals that there are no local
pathologies at r = 2M; the geometry of space-time
is quite smooth there.

The most important astrophysical consequence
of the properties of the r = 2M surface is the inevita-
bility of the catastrophic collapse of a star, once it is
inside its gravitational radius. The absence of geo-
metric pathologies at r = 2M in the Schwarzschild
geometry implies that no anomalously large forces
should develop in the star to prevent it from falling
inside its gravitational radius. This expectation
has been fully confirmed by several calculations. "

Whether or not catastrophic collapse can be con-
sidered as a possible phenomenon for real astro-
physical objects depends on the resolution of a re-
cent controversy: Is our picture of gravitational
collapse an idiosyncracy of perfect spherical sym-
metry? The correctness of our qualitative picture
is supported by the argument'4 that initial aspher-
ical perturbations of a body should remain small
during collapse through the gravitational radius,
since there are no strong tidal forces there. If
the perturbations of the body remain small, then
the perturbations of the geometry, and of the whole
collapse process, should also remain small.

Because of the nature of the event horizon, we
should then expect the following: (i) The gravita-
tional field outside the event horizon should be
asymptotically stationary at large f (ii) At larg. e
t, a distant observer "sees" the star as it is at the
moment it crosses the event horizon. We expect,
therefore, that the geometry left behind is a sta-
tionary geometry with aspherical perturbations.
It has been shown, however, that such stationary
perturbations cannot be well behaved at the event
horizon and at spatial infinity. 4 This indicates that,
for our picture to be correct, the star must rid it-
self of all bumps before falling through r =2M. But
if that is true in all cases, there would have to be
pathologically large forces at the event horizon,
contrary to our expectations.

These difficulties have encouraged the viewpoint
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that the r =2M surface does have important local
properties. Arguments have been given' ' to show
that initially small perturbations become large
without bound, stopping the collapse or destroying
the event horizon. All these arguments have relied
heavily on speculations regarding stationary solu-
tions.

The opposite viewpoint was first championed by
Doroshkevitc'h, Zel'dovich, and Novikov4 and by
Novikov. ' The most conclusive evidence that has
been given for this viewpoint, that collapse with
perturbations is qualitatively like collapse without
them, is the work of de la Cruz, Chase, and
Israel. " They have numerically followed the elec-
tromagnetic and gravitational perturbations out-
side a perturbed collapsing thin shell. Their com-
putations show that no singularity develops to halt
the collapse and that the perturbations in the ex-
terior fields die out at large times. It is the goal
of the present work to analyze the evolution of
perturbation fields in somewhat greater generality
and to explain, in physical terms, how singularities
are avoided. "

B. Outline and Conclusions

In this paper we use a first-order perturbation
analysis to see whether initially small asymmetries
can greatly affect the collapse process. This ap-
proach is quite sufficient to resolve the problem.
If, on the one hand, the perturbations grow without
bound our results will be meaningless but we will
be able to conclude that our present picture of
gravitational collapse is wrong. If, on the other
hand, the perturbations remain small, the approach
is justified. Since the paradox of singular station-
ary perturbations occurs for first-order perturba-
tions, as well as in the full theory, then if the
asymmetries do remain small, we shall be able to
see how the paradox is avoided.

In principle the problem is the straightforward
one of putting perturbations on a collapsing star
just as, for example, Thorne and Campolattaro"
put them on a static star. In practice the compli-
cations of coordinate system, gauge freedom, and
many metric components to keep track of make
such an approach discouragingly difficult.

There is good reason to suspect that the paradox
is a result of properties of the event horizon, and
that it should occur for many kinds of perturba-
tions —not only gravitational perturbations. In
fact, it is known that these same difficulties arise
for electromagnetic perturbations, '~" for other
integer-spin massless fields, "and for scalar
fields. '~ In most of this paper we exploit the sim-
plicity of a scalar-field analog.

Section II contains the formulation of such a

massless-scalar-field analog and shows that the
static perturbations are singular. A modification
of this scalar field to a Klein-Qordon field gives
some interesting insights into the nature of the
singularities.

Our investigation of the scalar field is divided
into two main parts: (i) the "local problem, " i.e. ,

the study of the behavior of the scalar field in and
near a star that collapses from an initially static
configuration, containing a source for the scalar
field; (ii) the evolution of the scalar field in the
Schwarzschild exterior. In Sec. II the local prob-
lem is analyzed by a detailed calculation, using
comoving coordinates, of a physically reasonable
collapse situation. The resulting dynamic equa-
tions give no indication that r = 2M has any special
local significance, for the evolution of the field.
Numerical integrations of those equations confirm
this; the scalar field in the star remains finite as
the star falls through its gravitational radius.

Section III deals with the second part of the prob-
lem, the field in the exterior and the resolution of
the paradox. It is shown that a description of the
dynamics using the Schwarzschild time t, and the
r* coordinate of Regge and Wheeler,

r* -=r + 2M ln (r/2M- 1) + constant,

leads to a simple picture of the propagation of
scalar waves in the Schwarzschild geometry. In
this picture the curvature of space-time gives
rise to a potential barrier which is transparent to
high-frequency waves but impenetrable to those of
zero frequency. It is precisely this impenetra-
bility which gives rise to the paradox and which
resolves it.

The resolution of the paradox is simply this:
The field on the surface of the star can be con-
sidered a source for the field in the exterior. Due
to time dilation between the surface and distant ob-
servers, the field on the surface must be asymp-
totically stationary in terms of Schwarzschild
time. The field on the surface then approaches
some stationary final value, but this final value
cannot be manifested in the extexio~ solution. The
curvature potential prevents a distant observer
from ever seeing it. For large time the exterior
field is then sourceless and the field radiates it-
self away, vanishing at t-~.

The simple nature of the process of the field
radiating itself away is somewhat obscured by the
complicated details of the curvature potential, so
these ideas are presented first for a very idealized
model barrier. This idealization permits exact
calculations and results in an exterior field that
vanishes exponentially in time, at large time. For
the nonidealized problem, the outgoing wave front
signalling the onset of collapse is partially back-
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scattered. The resulting ingoing radiation pre-
vents a quick exponential falloff of the field. The
rate of falloff depends on the details of the wave
front, and hence on the initial conditions on the
perturbation field. If a static I,-pole field is pres-
ent outside the star, prior to the onset of collapse,
the field will fall off as t '"'". If there is no field
initially outside the star, but an l-pole perturba-
tion develops during the collapse process, it will
fall off as t "" a.t la.rge time.

The final justification of the scalar analog is
given in Sec. IV. Curvature-type potential equa-
tions have been derived by Regge and Wheeler"
for odd-parity gravitational perturbations, and by
Zerilli" for the even-parity ones. The difference
between these gravitational equations and our
scalar equation is only in the details of the poten-
tial. In Sec. IV, the Regge-Wheeler and Zerilli
equations are discussed and it is shown that their
solutions at large times are precisely the same as
those of the scalar field equation. In particular,
radiatable gravitational multipoles avoid the singu-
laritj, es of the statj, e solution by vanishing as t
or t "" just as their scalar counterparts do.
The motivation for studying the scalar problem is,
therefore, much greater than if the scalar field
were only a plausible analog.

Certain details of Sec. IV are left to an accom-
panying paper (hereafter referred to as Paper II).
In that paper it is also shown that radiatable multi-
poles of any integer-spin field satisfy a curvature-
potential type equation, and fall off as I, ""or
t-(2&+ 3)

[An earlier form of this paper, which was cir-
culated as a preprint, contained an important
error. The wave-front expansion, the details of
which are given in the Appendix, was done incor-
rectly, giving a wrong expression for the ingoing
baekscatter. As a consequence, it was claimed
that initially static I-poles fall off as (Int) /t""
rather than as t "+'

]

II. THE SCALAR ANALOG

A. The Paradox

The scalar analog will consist of the following.
We imagine a scalar field 4, coupled to a scalar
charge density j with some coupling constant K,
and obeying a wave equation

(2)

There are other possible choices for the wave
equation; at the end of this section we will con-
sider others and see that our results are the same
for any reasonable choice. The curvature of the
geometry appears in the Christoffel symbols used
to form the covariant derivatives in (2). We ex-

2M O'4 2 dC 4-4,'"= 1 — + —————l(l+1) —,=0r dr' r r' dr r'
(3)

for an l pole. To analyze" this we introduce the
convenient r* radial coordinate of Regge and
Wheeler, "

r* = r + 2M ln(r/2M- 1) + constant. (4)

Note that r =r*, for r»M, and that the event hori-
zon r = 2m is at r* = -~. In terms of r* derivatives,
Eq. (3}becomes

2M 'd 4, d4 4
1 —— + 2r ' —I(l+ 1)—= 0.dr~2 Cr* r2

The asymptotic solutions at laige r* are the usual
flat-space forms,

4 -r*' or 4 -r* '+' at r*=+~.

And near the event horizon they are

C - r* or 4 - constant a.t r* = -~.

(6a)

(6b)

The solution 4 -r* is unacceptable at r*=-~.
Specifically, the scala, r field's stress-energy and
its force on the charge carriers would be unbounded
in a comoving frame. The solution 4-r*~ at r*
=+~ is obviously pathological.

The question then is whether we can connect the

pect a contribution to the curvature due to the
stress-energy of the scalar field such as

T„„=4„4„—2g~, 4 4 '".

The great advantage of studying a nongravitational
field is that we can ignore the contribution of the
field energy to the geometry; throughout this sec-
tion ave use the unperturbed Schwarzschild geo-
metry. This is easily justified since we can imag-
ine a limiting process in which j is scaled by a
small number e, then 4 - e and perturbations of
the geometry -e'. Of course, it may be that 4 or
its gradient (in nonpathological coordinates) be-
come large without bound at some point, in which
case we must abandon the perturbation scheme.

The situation we consider is that of a star whose
matter is scalar-charged. On an initial Cauchy
hypersurface, on which the star is still outside its
gravitational field, the star is a source of an ex-
terior scalar field. The first, most critical, ques-
tion we must ask is: Can the star collapse leaving
an asymptotically static scalar field behind, or as
in the ca.se of gravitational and electromagnetic
multipoles, must the scalar field either radiate
away or greatly modify the collapse?

If the star collapses, it leaves behind the famil-
iar Schwarzschild geometry described by line ele-
ment (1}. If a static" 4 field is left behind by the
colla.pse, it must satisfy
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well-behaved solutions at r* = -~ and r* =+~.
we are to connect a constant at one end to a de-
creasing solution at the other there must be a
point of inflection (d'4/dr~' =0) at which the signs
of 4 and d4 /dr* are opposite; this is clearly in-
compatible with (5}. (This analysis is patterned
after that of Vishveshwara. ")

The monopole case, which is just as important
here as the higher-multipole cases, since the
scalar field can radiate in an 1= 0 mode, is some-
what special in that both solutions at x*=+ are
well behaved. For this case, in fact, we have the
simple exact solutions

4 = ln(1 —2M/r} or 4 = constant. (7)

The solution 4 = constant is trivial and the ln(1
—2M/r) solution has the expected C -r* behavior at

go

If the paradox is indeed a manifestation of the
special nature of the event horizon, the precise
form of the wave equation should not be too impor-
tant. In flat space-time we consider the generaliza-
tion of the free-field equation

04+ C(x")4 =0,

where

C] =- e,' —v'.

(sa)

(Bb)

In the absence of other Gelds, translational invari-
ance demands that C be constant and we have the
usual Klein-Gordon equation. When we make the
usual replacement of ordinary partial derivatives
by covariant derivatives we find that in (5} the co-
efficient of 4 is now

-[r 'I(I+ I)+ C(x")].

The emergence of the paradox depends on the sign
of C. Usually C in the Klein-Gordon equation is
taken to be m', where m is the mass of the particle
mediating the field, in this case our derivation of
the necessary singularities of the static solution is
unaffected.

It is intriguing that imaginary-mass particles
have nonsingular static solutions, since imaginary
masses are sometimes associated with faster-
than-light motion. More specifically if C(X") is
negative in some region of space-time, high-fre-
quency wave packets have group velocities greater
than c in that region. It is just such faster-than-
light effects that might be expected to rob the r
= 2M surface of its properties as a one-way mem-
brane for information propagation.

Qne other point must be mentioned. In general-
izing the wave equation from the laboratory to
curved space-time, it is possible that other curva-
ture effects come in, in addition to the covariant
derivatives. In particular, those who consider

conformal invariance to be compelling would write
the free-field equation as

4.,'"+@R4 =0.

Since R = 0 in the vacuum exterior, this modifica-
tion is of no concern. "

a(q) = —,'a, (1+cosy),

7. = —,'a, (q+ sing), (loc)

describes the geometry of the interior of an Qppen-
heimer-Snyder star of density

p = 3a,/8va'(q).

If the maximum X (i.e. , that for the stellar sur-
face} is X„then the mass and radius of the star's
surface are

1M = &a, san'y„

r~ (g}asinX, . --

(12)

(13)

B. The Local Problem

Qur approach to the problem of the scalar field's
evolution can conveniently be divided into two
parts. In the first, the "local problem, " the evolu-
tion of the field in the star and on its surface is
followed, up to the point at which the surface pass-
es through the event horizon and is causally dis-
connected from external observers. The results
are then used as an input for the second part: the
evolution of the exterior field. The local problem
is also important because it resolves the question
of whether perturbations remain small, and wheth-
er a first-order perturbation calculation is suf-
ficient.

Some important work has already been done on
the local problem for gravitational perturbations:
the computer integrations by de la Cruz, Chase,
and Israel" and the analysis by Novikov. ' In view
of the uncertainty still surrounding the question of
the behavior of fields at the event horizon, it was
deemed useful to follow the evolution of the field
in the local problem numerically, with a computer.

The problem is set up in a way that allows an un-
arnbiguous interpretation of the results. The back-
ground problem is the collapse of a momentarily
static uniform pressureless star first described by
Oppenheimer and Snyder. '" Qn the initial t =0
Cauehy hypersurface the 4 field is chosen to be
static (dc/dt=0, d'4/dP =0) in the exterior; a
stationary observer sees this fieM remain static
until information about the collapse reaches him.

The Friedmann line element,

ds' = d7' —a'(q)[dX'+ sin'X (d 8'+ sin'8 d@')],
(10a)

with
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At g =0 the star is momentarily static and is about

to begin its free-fall collapse.
The geometry outside the star is that of

Schwarzschild, but we must avoid Schwarzschild's
coordinates because of their poor description of
the region r = 2M. Instead, we choose "comoving, "
i.e., "synchronous, " coordinates. For a vacuum
this means a system in which points with fixed
spatial coordinate values move on timelike geo-
desics, and for which the time coordinate is the
proper time along these geodesics.

The general comoving spherically symmetric,
vacuum line element'4 is

ds'=dT'- dR'- r'(de'+sin'e dy'),
(sr/sR)'

(14a)

L4-
LLI

3

CL
QJ
CL0 2—
CL
CL

X

2.0

R/2 M

3.0 4.0
t

5.0

where r(R, T) is derived as the solution of

ar 2M—= ——+ 2E(R)aT r (14b)

FIG. 1. The "local problem" pictured in the comoving
coordinates 7, R, and X. At 7 =~p=~2(1+27I)Mthe stellar
surface passes through the event horizon. The details
of the local calculation are explained in Table I.

R
1+0.7(2M)r'/R' (15)

throughout the region of interest of the variables
R, 7.

In the interior we must evaluate Eq. (2) in terms
of the coordinates of line element (10). For an
l-pole field the result is

There are two arbitrary functions here, E(R) and

r(R, T = 0), corresponding to our initial choice of
velocity for our observers and to the initial scale
for R. By choosing r(R, T =0) =R, we give the R
coordinates the physical interpretation of the ini-
tial radius (i.e., Schwarzschild radial coordinate)
from which an observer starts falling. We must,
of course, eut the geometry off at the surface of
the star, which is initially R =Ro = r. jtjg a, sing, .
We choose E(R) = -M/R so that our observers are
all initially static.

Since (sr/8 T)„„„=0and (sr/ar}„„~=0the
worldlinesof the shells r=r~ and R =R& are ini-
tially tangent and they are both geodesics. Thus,
a consequence of our choice of E(R) is that the
star's surface always remains at R =Ra, and since
both 7 and T are proper time on this geodesic, the
boundary between the interior and the exterior, we
hereafter use only the symbol 7 as the time co-
ordinate in both regions.

The background coordinates are pictured in Fig.
1 where we use, as in calculations to follow, the
specific choices y„,=-,'v and a, = 4v 2M, so that the
star starts collapsing from r,f=4M. The function
r(R, r) is transcendental but is smooth, having no
pathologies where the stellar surface crosses the
event horizon. For our choice of E(R), r(R, O), yo,
and ao it is approximately

[a'(q)4 „]„(sin'y4„)
„

I(1+1)4
a'(rl) sin'y sin'g

(16)
In the exterior (R ~ R~), in terms of the comoving
coordinates of (14}, Eq. (2) becomes

(r'r'C, ), -(1—2M/R) "'[[r'(I —2 M//R)'"/r'] 4p j R

+ r ' l(I + I ) 4 = 0,

(17a)

where

r'=sr/sR (17b)

The matching condition for 4 at the boundary

g = Xo, R =R& is that the derivative of C, with re-
spect to proper distance normal to the boundary,
is continuous and that 4 itself is continuous. (This
can be shown by using Gauss's theorem on a slab-
like volume including the boundary. ) It should be
noticed that the system of Eqs. (16) and (17) and
the matching condition in no way single out r = 2M
as a special surface. Viewing the local problem
in these mathematical terms, we should be very
surprised if a singularity develops there.

To solve the dynamical problem we also need to
know the motion of the scalar charge carriers.
This motion is freely specifiable since we are ig-
noring the forces due to the scalar field. A natural
choice is to have each dust particle in the star
carry a fixed charge; this fixes the time depen-
dence of j at any one value of y, 6I, (I|:

j(T) ~ p(T) ~a '(rl).

The form of j(T, y, 8, @) depends how the charge
per particle varies from point to point in the star.
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We choose the radial dependence so that j vanishes
smoothly at the surface, and we choose the angular
dependence to be a spherical harmonic, e.g. ,

j(~, X, (), 0) = &[a./a'(7))](1 —X'/Xc') YP(e 0').
(18)

Here ~ is an expansion parameter which is chosen
small enough so that we can ignore scalar-field
forces and stress-energy. The coupling constant
a in (2) is taken to be (2M)' so that 4 is dimen-
sionless.

It remains only to specify 4 and its time de-
rivative initially. Outside the star we take 4 to be
static, that is, a solution of (8) for 4'(R). These

solutions characteristically go as 1/R" ' at large
R. In the interior, where there is not so natural
a choice for 4, we choose it such that C, and 4

„

vanish inside. The initial interior field will then
be a superposition of the particle solution- de-
pending on the scalar charge distribution —and the
homogeneous solution of (16):

@interior @pftrticnlar ++@homogeneous ~ (192.)

The exterior field will be

4 exterior Biostatic (19b)

and the constants A and B must be determined so
as to make the initial data satisfy the junction con-

TABLE I. Details of the local calculation.

Feature of the problem

1. Geometry

Region (see Fig. 1)

Interior D

Exterior E, E

Equations

Friedmann line element See Eq (10).

Schwarzschild geometry described in comoving coordinates. See
Eq. (14).

2. Scalar charge density Interior D

Exterior E, E

(i) l =0, Kj=-tap/a (g)](v 2 105/8) cosXcos 2X. [This choice of j
gives a simple particular solution for C in Eq. (16), at q=0.]

(ii) l =3, &j=-[ap/a (g)](1—X /Xp )YB(0 f).
j=0.

3. Equations for
the evolution of C

4. Junction conditions
of the star's surface

5. Initial conditions

6. Results for C fieM

7. Numerical constants

Exterior E, E

Dynamic exterior E
Static exterior F

Stellar surface C

Initial hypersurface
(exterior) A

Initial hypersurface
(interior) B

D, E, F

(v 2 105/8)[ao/a (q)]cosX cost2X
for l =0,[at(q)4 z] z

—(sintxe z) „/sintx

+ l (l +1)4 /sin X= '

~a'/a (n)] (1-X'/Xp') Y3(0, 4)
for l =3.

Equation (16), with j=0,

4 remains static; it is a function of x only and is given by the initial
conditions in feature 5 of this table.

The initial Geld is static outside the star (C, = 0); hence C is given by
(i) l =0, 4 =Bpln(1 —2M/R), Bp=l,
(ii) l =3, C =B34stat,
where C~t is a solution to Eq. (3) and Cstgf 1/R at large R.
B3=-0.0144.

C is a solution to the equations in 3 of this table at q=0. We choose
C such that C

&
——0 and C &&=0 initiany. Then

(i) l = 0, 4 = A p+4p,
where C

&
-—W2/ScosX(-11+sin 2X), Ap=1 ln2,

(ii) l =3, 4=A3C»+4&,
where 4 is the particular solution of

(sin X4 x) /sintX —124/sintX= Y&(4, P)(1—Xt/X~t)
which goes as )X Y3 near X= 0; e~ is the homogeneous solution that
goes as X Y3 near X=O. A3= 0.394.

See Fig. 2 for numerical results.

Xp is chosen as 47] for convenience. The star collapses from initial
radius r =4M, so that ap=4W2M The surface passes through its
event horizon at g=~2, ~/2M =v 2 (1+~x)~ 3.64.

C is continuous and n V4 is continuous, i.e., 4 &/a(g) =C»/v 2(8r/BR).
(Here n is a unit normal to the world line of the stellar surface. )
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ditions at the stellar surface.
The details of the calculation of the evolution of

4 are summarized in Table I and the results of
numerical computations are shown in Fig. 2.

In both the l =0 and l = 3 case, the field increases
as the star grows smaller, but in neither case is
there any strong local effect todistinguishthe point
at which the star's surface crosses the event hori-
zon. At this moment of crossing (at q = -', v) both 4
and its derivatives (in comoving coordinates) are
neither zero nor infinity. The scaLar perturbations
do remain small.

with respect to the Schwarzschild system. The
line element is then (1) or if we use the r* coordi-
nate defined in (4), the line element is

ds' = (1 —2M/r)(dt' —dr~') —r'(d8'+ sin'gdg'),

(20)

where r(r*) is a solution of the implicit Eq. (4).
Note that the null radial lines in the geometry are
dr* = ddt.

Assuming that 4 has the angular dependence of
a spherical harmonic, the equation governing its
evolution is

III. EVOLUTION OF THE SCALAR FIELD

A. The Curvature Potential; Characteristic Data

Having established that no catastrophic local
phenomenon will interrupt the collapse, and having
calculated data on the stellar surface, we now turn
our attention to the evolution of the exterior field.
In particular, we are interested in seeing how the
asymptotic field at t-~ avoids the singularity of a
static solution.

The comoving coordinates which are so useful in
studying the local problem are poorly suited to the
radiation problem. To understand the nature of
the radiation in the exterior we must use a refer-
ence system related to the static nature of the
background —so our system must be stationary

4.„'"=(1—2M/r) '(4 „—4 „g„g)
2r -~C, *+l(I+1)y 24

=0 (21)

If we introduce a modified field variable 4 = rC,
then (21) takes the very simple form

4 « -4 „~,„+F,(r*)4 =0, (22a)

with

F'~(r*) = (1- 2M/r}[2M/r'+ l(l + I)/r'] . (22b)

The function FP (r*) which is very important to
our analysis, is peaked strongly around small ab-
solute values of r*. (See Fig. 3.) Its asymptotic
Arms are

F~ (r*)= 2M/r*~

l(l+1)+1
exp[(&*/2M) + 1], r' « -M

l(l+1) 4Ml(l+1) ln(r*/2M)
+ if l10r+2 r+2

r* &&M

if l=0

[Here the constant in (4}has been chosen such that
r*=0 a.t r=4M. ] The shape of F, (r*) is shown in
Fig. 3.

The wave Eq. (22} can give us a simple picture
of the nature of the radiation problem. If F, (r*)
were simply the centrifugal barrier, I(l+ I)/r*'
in the region r*&0, then waves of the scalar field
would propagate freely; there would be no gravita-
tional effects on them. The existence of the region
x~ &0 and the fact that F, (r*) is not l(l+ I)/r*' for
r* &0 are due to the curvature of space-time. To
isolate curvature effects from the effects due to
spherical coordinates (i.e., the centrifugal bar-
rier), we can subtract I(l+ I)/r*' from F, (r~) for
r' greater than, say, 20M. The part of F, (r'}
which remains and which is due to curvature we

u=t —r*, v= t+r*. (24)

They are important in that they are null coordi-
nates; if it were not for the scattering by the po-

shall call the curvature Potential.
The useful and interesting property of the curva-

ture potential is that it is a very localized barrier
to scalar waves. It can be thought of as a barrier
between a flat-space close zone adjacent to the
stellar surface source, and a flat-space distant
zone where we are most interested in the mani-
festations of this radiation. "

In this picture of the problem we will find the
coordinates u and v, advanced and retarded time,
to be useful. They are related to t and r* by a
45' rotation:
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tential, information would propagate along u, v co-
ordinate lines without distortion.

The specification of the problem is complete
when we give the initial conditions that 4 is static
at 7 = 0 (and hence on the "first ray"}, and when

we put in the values of 4 and its normal derivative
on the stellar surface, from Sec. II. The problem
is presented in this form in Fig. 4 and Table II.

Consider the initial Cauchy data on the surface
of the star. In Sec. II we saw that 4' and e4/BR are
well-behaved functions of comoving coordinates
from the onset of collapse to the passage through

the event horizon. The fact that the variation of
4 is bounded on a curve of finite length in comov-

ing coordinates means that its variations on the
curve of infinite length in Fig. 4 must be very
small, asymptotically zero in fact at u-~. Math-
ematically we can show that 4 approaches its
final value according to

4' -a+5 exp(-u/4M)

as &-~ (and u -~) (a, 5 constants).
(25)
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U=-4Me " " V=4Me" ' . (25)

Since U and V are well-behaved coordinates at
r = 2M, the partial derivatives 84/8 U and N /8 V
should be finite. This implies that 84/su must
fall off sharply at the event horizon because

84 84—= —exp(-u/4M),
au aU

(27)

and u- ~ at r =2M. The advanced time v is finite
at r = 2M (for an ingoing world line) so that 8%'/Bv

is finite. If we picture the path of the surface
through space-time as v(u) or V(U), then near
r=2Mwe have

dv dV dv du—- exp(-u/4M).
du dU dV dU

The world line of the surface, therefore, appears
in our coordinates to be almost an ingoing null
line, and we conclude that

c% 84 dv 84
+ -exp -u 4M),

du Bv du Bu (29}

for large u. We shall see that the evolution of 4
at large t depends only on the asymptotic, large
u, behavior of 4 on the surface.

For convenience, we will specify data on an in-

This effect is in fact just the ordinary time-dila-
tion phenomenon between a falling frame and a
static one and does not depend in any way on the
surface falling in on a geodesic.

These asymptotic properties can be established
most easily by using Kruskal coordinates"

-4.0—

~/8 ~/4 ~2 2.5

X =l R/2M

I

35 40

going null line rather than on the stellar surface.
If the v distance between these two curves is 5v at
some u, then the error in 4'„is approximately

5(4 „)=(4„)„5v= ,'F~(r'}45v--
~ exp(-u/4M) 5v. (30)

So using the null line is justifiable in that it does
not change the nature of the asymptotic data.
(See Fig. 4.)

Summarizing then, we have reduced the physical
problem to a mathematical problem in wave prop-

FIG. 2. The results of computer integrations for the
evolution of C for l=0 and l=3. In the l=3 case the great
variation of 4 from q=0 to g=2~ necessitates plotting
the logarithm of C. In both the l =0 and l =3 plots, the
scale of coordinates has been chosen to make the curves
for g=0 appear smooth. For later times the radial de-
rivatives appear discontinuous at the stellar surface.
This is wholly due to the change in time of the radial
coordinates. The derivative of 4 with respect to proper
radial distance is always continuous. For curves a and
c: q=0, ~=0, and the values of C are the initial, static
values. For curve b; g=&3', ~/2M =2.973, and c is
static for R/2M &4.344. For curve d: q=~m, 7/2M
=2.111, and 4 is static for R/2M&3. 635. For curves
c and e: g=27I', 7'/2M=3. 636, and 4 is static for R/2M
&4.900. For a description of initial data and further de-
tails, see Table I and the text.
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FIG. 3. The appearance of the peak of I"~(r*) for l=0 and l=1. Here the constant in Eq. (4) has been chosen so that
r*=r-4M+2Mln(r/2M-1), and r*=0 at r =4M, which is the radius from which the star starts to collapse in the calcu-
lations of Sec. III. Note that E~& is sharply peaked in the neighborhood of r*=0. In fact, the peak occurs at r =

3
M

for l=o and for 1& 0 at x~=2M{3(L —1)+[9(L-1)t+32L]'l2)/4L where L=l(l+1). —For l 1, r~=u, =2.88M; for l=2,
r~=2.95M; for l=3, r~l, ——2.97M; for l-~, r~-3M.

4 „„+,'F," (r*)4-=0. (31)

agation, with data given on two characteristics":
the "first ray" u =0, and the "stellar surface"
v = vo. The partial differential equation is (21) or
equivalently

come apparent presently.
Rather than dealing with a general l we shall

specialize to l= 1; the following calculation can be
done in the same manner for any l. It is interesting
that even in this simple model equation, we have
the "paradox. " The static solutions are

The form of the characteristic data is

0 (u, v = v, ) —a+ b exp(-u/4M) a,t u»M

and

(32a)
c,+ c,r*,

C,/r*+ C,r*', r* & l.
(34)

0 (u=0, v}- static solution-r* '- v ' at v»M.
(32b)

B. An Idealized Potential

Before going on to look closely at the manner
in which the fields evolve, it is interesting to look
at a very idealized analog to our wave equation.

:yD

4 «-4 „*„~+F,(r*)4 =0,

where

(33a)

for r*& l.
(33b)

The input data as before will be on characteristics:
an exponentially damped falloff at v= vo, and first-
ray data corresponding to an initially static solu-
tion. The extent io which we have eliminated some
important physics with this idealization will be-

FIG. 4. The "radiation problem" pictured in r, t
or u, v coordinates. For explanations and descriptions
of features of this diagram, see Table II.
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TABLE II. Regions of the radiation problem.

Region
(see Fig. 4) Description

IV

V

VII

The initial Cauchy hypersurface t =0, outside the star. On this hypersurface 4
is chosen to be static. For l =0, 4 =const&ln(1 —2M/R). For l & 0, C is a solu-
tion to Eq. (3).

The first ray, u =0. This first outgoing scalar ray carries information to the
exterior that the star has begun to collapse.

The static region. This region has not yet received information that the star
has begun to collapse. See region F of Fig. 1.
The wave front. Most of the high-frequency radiation from the stellar source
moves on outgoing null lines, is affected only slightly by the potential, and is
contained in a wave front of extent Au -M.
The potential barrier. This region near r*= 0 is the domain in which F, (r*) is
large. (See Fig. 3.)
The distant wave zone. This is the space-time region far from the star and sub-
sequent to the first ray. It is where scalar (and other) radiation would be de-
tected by antennas.

The world line of the surface of the star. The data for 4, and its derivative
normal to the surface, on region VII are a result of the computations of Sec.
IIB. (See also region C of Fig. 1.)
The "stellar surface" v = v 0, This is a null line approximating the world line of
the stellar surface. [See Eq. (30).j

The near wave region. The vacuum exterior near the stellar surface. The field
here obeys 4 «-4 „*„+=0.
The stellar interior. The dynamics of this region affects the star's exterior
only via the data it creates on the stellar surface VII.

We cannot match the two good solutions (with the
usual conditions that 4 and 4,~ are continuous),
so there can be no static solution that is well be-
haved at both ~*=+~ and x*=-~.

We get perhaps the clearest picture of the na-
ture of the paradox if we regard this problem as
a purely mathematical problem in the propagation
of waves, in one dimension, under the influence
of a rather strange potential. Prior to the first
ray, a distant observer sees a static field, the
source of which is the charge in the star, or
equivalently the field on the stellar surface. At
u- ~ the stellar surface field again becomes stat-
ic, and nonzero, so we might expect the distant
observer to see a static nonvanishing field. This
is impossible without singularities. In a sense
then, this idealization is a reduction of the essence
of the paradox to its simplest terms.

The advantage of the idealization is clear; the
solutions in the two regions r* ~ 1 and r* &1 cau
be written in very convenient forms depending on

four arbitrary functions:

df(v) f(v) dg(u) g(u)
dv r* du r*

o(u)+P(v), t'+ (1.
(35)

For further convenience we redefine, for now, u
and v as

v =t+r* —1,

u=t -r*+1, (38)

+ = 1+ (2k) —(2k) (37)

(The constants are chosen so that 4' and 4 „are
continuous at t= 0.) The solution to (33) with this
input is

so that u = v when r* = 1, and we use characteristic
boundaries at u = 0 and v = 0.

At u=0 we choose the condition 4 = 1/r*, while
at v=0 we choose

4' =-(2k) 'e "+(Aj4k)e "+kA' 'e ""cos(~v —P) for r* (1,
4 = 2kAe '" —kA'"e-"+sin(2u —Q)+r* 'I 2Ae ""+&2kA' 2e "icos(~ u —p ——,

' s)] for r~ ) 1,

(38a)

(38b)
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where

A= 1/(k' —k+ ),

tang = 1/(2k —1), 0 ~ P ~ 4&

(39a)

(39b)

The terms in 4 that go as exp(-ku) represent
the outgoing waves from the "stellar surface";
the exp(-kv) term represents reflected waves.
The coefficients

T = 2 kA/(2k) ' = k'/(k' —k + 2),

R = (A/4k)/(2k} ' = —,'/(k' —k+ —', )

indicate the strength of the radiation transmitted
through and reflected from, respectively, the po-
tential peak near r* = 1. In the limit that the input
waves have very high frequency (k-~), the waves
are transmitted completely with no reflection.
But in the low frequenc-y limit (k-0) they are
completely reflected and there is no transmission.
The exponentials with frequencies ~ = --,'+ —,'i are
transients which are characteristic of the poten-
tial, and which enable the conditions at r~ = 1 to
be satisfied.

The crucial thing to notice is that the solution
falls off exponentially in time everywhere —i.e.,
at any r~ —thus avoiding the catastrophe of a static
asymptotic solution. The paradox was founded on
a belief that the value of 4 at v =0 and large u
would penetrate the potential and show up at large

We now see that the potential acts as a very
effective barrier against zero-frequency waves
from the "surface of the star. " It is this potential
barrier that causes the paradox (there would be
well-behaved static solutions if not for the poten-
tial) and that resolves it.

Although it seems likely that this vanishing of
the field is really the essence of the resolution of
our paradox, we shall go on to look into the de-
tails of the real problem. We shall in particular
be concerned with the question: Does the solution
to (22) vanish asymptotically at large t and, if so,
how fast? We shall see that for more realistic
potentials than those of the idealized example, the
solution does not fall off exponentially but rather
develops a power-law falloff asymptotically, which
dominates the exponential falloff of the previous
example. Nevertheless, the solution does fall off
at large t.

The power-law tail is caused by scattering of
the radiation off the anomalous curvature part of
the potential —i.e., from the fact that the real po-
tentials do not have the convenient forms l(I+1)/
r*', but have higher-order terms at large r* also.
The convenient forms of (35) correspond to unim-
peded ingoing and outgoing waves. When we add
the other curvature-induced pa.rts of F,(r*) we
scatter these waves, effectively slowing the dilu-

tion of the field. Another viewpoint on this comes
from the study of the spreading effect of potentials
by Kundt and Newman. " In effect, they show that
there is a zero measure of potential functions
which give a nice separation of ingoing and outgoing
waves as in (35). It seems that an exponential
falloff of @ (in the case of exponential falloff of
surface data) is associated with these nonspreading
potentials; our potentials —the anomalous parts of
which come from the curvature of space-time—
will not be in this exalted class and we must ex-
pect scattering and other, slower, falloffs.

[Heuristically, we may argue for a nonexponen-
tial falloff as follows: In the Kundt-Newman for-
malism we may formally write a solution for any
potential in a form like (35). For the spreading
potentials, however, an infinite number of deriva-
tives of f(v) and g(u) are required. This gives rise
to an infinite number of transient frequencies.
(In our idealized case we had only &u=--,'s —,'i. ) The
sum of an infinite number of transient terms may
be viewed as the Fourier integral of a function
other than an exponential. ]

We shall now investigate the solution for the
case af the actual potential and we will concern
ourselves chiefly with the asymptotic solution
(large u, large t} The s.implicity of the monopole
case makes it particularly suitable to a detailed
discussion and to numerical solution.

q (u, v) = a+ bexp(-u/4M), (40)

representing free propagation outward of the data
on the stellar surface. Although this cannot be the
total solution, this should be the behavior of the
high-frequency components of the radiation (e'
with &u»[max(Fo )]'~- 1/2M). This phenomenon
has appeared in our simple example and is a, well-
known occurrence in quantum mechanics where an
energetic wave train is little affected by a poten-
tial barrier of much lower energy. Equation (40)
is then a first approximation to the behavior of the
solution. Inasmuch as it predicts a concentration

C. Monopole Fields

Since the scalar monopole can be radiated just
as well as higher multipoles, there is no reason
to expect its asymptotic solution to differ qualita-
tively from that of multipoles with l & 0. The great
advantage in considering the monopole case is that
the l(l+ 1)/r' centrifugal-barrier term vanishes
and we can think of the total potential as localized
near r*=0.

If FP (r~) vanished everywhere —this would be
the idealized potential for l = 0- then the solution
to our wave equation, with the characteristic data
of Eq. (25), would simply be
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4 „„=0(in regions VI, IX of Fig. 4). (41)

From (41) and the data on the v = v, character-
istic boundary (32a) it follows that the solution for
0' at large u in region IX is

4' = &exp(-u/4M)+f(v), (42)

where f(v) is an, as yet, unspecified function. On
the other characteristic boundary u=0, we have

of the waves near the first ray u=0, this solution
represents a wave front which will be the dominant
solution near u=0. The exact form of this wave
front depends greatly on the details of the collapse;
the crucial point here is that the wave front is ex-
ponentially damped. '

It is obvious that it is the low frequencies which
are really involved in the paradox and in its reso-
lution. These low frequencies make the greatest
contribution (e.g. , to a Fourier integral) at large
times and so may very well lead to a modified as-
ymptotic solution.

For now we assume that F," is absolutely local-
ized" in some region ~r*~&PM. (It should be clear
that the exponential tail of the potential at r*- —~
is ignorable. Later we must also justify ignoring
the effects of the M/r*' tail on the evolution of the
asymptotic solution. ) So now we have

B

gs —%)„=+—,0 (t) F," (r*)P(r*)dr*. (45)

Now 'll = 0 (modulo an exponential falloff) in region
IX so that there

(46)

and also in region IX, for t»r*,
&(B)= g „,=P(t)Q(r*). (47)

Now if U(B) falls off in time as g(t) and hence faster
than g(t), it must be that 'V(A) cancels the integral
in (45) —i.e., in region VI p(t) must fall off like g
for t »r*. Furthermore, %. „='U„implies that

e(D) —e(C) = &(B)-&(A) = - g(A) + O(il'(A))
(48)

at large t Since. ~(C) =0 we conclude that 'It(D)
= -g(A), or the incoming and outgoing parts of the
tail are equal in magnitude for t »r*. This almost
total reflection of the ingoing waves is another
manifestation of the impenetrability of the barrier
to low-frequency waves.

Now from (43b) we see that in region VI, u must
be 2M/v' so

(i) g(t) must fall off as 1/t' for t»r*.
(ii) From (48) and (43b), in region VI,

4'(u = 0, v) = ln(l —2M/r)
2M

1 1 y4' =2M ——— + —, (y some constant).
u v v

(49)

= -1 ——+ O([ln(v/2M)]/v 2) . (43a)
v

According to (7), 4' in region VI must be

2M4 =-1——+ ~ ~ ~ +g(u),
v

(43b)

For convenience let us use the symbols %f, '0 for
S4/Su and S4'/Sv, respectively. If A is a point in
region VI and B is a point in region IX with the
same v coordinate (see Fig. 4), then by (31) and
(44)

where g(u) is a function we must determine along
with f(v) Notice that.f(v) and g(u) represent waves
which propagate away from the potential in regions
IX and VI, respectively.

Now let us assume that the solution in the region
t »r* is not an exponential in time —but rather
something slower like a power law. (This will be
justified in the results. } The solution in this region
then can be written as

4' = g(t)p(r*)+terms which fall off faster in time

than $(t) for t » ~r*(, (44)

(iii) In region IX, V must fall off as 1/t ' for
t »r~ so that

u —O(1/v'),

O(1/v') .- (50}

In (49) we see that at any r* if t »r*, then 4
= (4Mr*+y)/t', that is, 4' falls off as 1/t', and
from (50) we see that this must be true for region
IX also. Thus, a sufPcxently long time after the
&eave front Passes in region VI, or after the sur-
face Passes in region IX, the solution will fall off
in time as 1/t'.

Before going on to discuss the meaning and im-
plication of these results, we must justify having
ignored the 2M/r*' tail of the potential. It is clear
that ignoring this tail in our analysis of the evolu-
tion amounts to assuming that in region VI, '0 is
transported unchanged (on a line of constant v)
from the first ray to the edge of the potential bar-
rier. We can calculate how much '0 will change on
this path for our solution, due to the 2M/r*' tail
of the potential:

5'Q = (change in 0 in region I, on a line of constant
v, due to the tail of F,: 5F,- 1/r*')

y+~8+
du OFT'

~ 14=0
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M "="-8" l 4 ~1 near u=0
dQ 3X

~= 0 + 4' CC M(1/u —1/v)

(51)
We can divide the integral into two parts: (i}

the contribution at small u due to the wave front
and (ii) the contribution, mostly near the barrier,
due to the tail 2M(1/u- 1/v}+y/v' which we have
calculated for 4. The first contribution is of or-
der M/v' and we need give it no further considera-
tion. The contribution of the tail is of order
M/Pv' and thus falls off at the same rate as %), but
we can make this error as small as we wish mere-
ly by making P sufficiently large.

The problem of monopole radiation just dis-
cussed was attacked numerically with an IBM 360/75
computer. The exact problem was investigated.
That is, the exact potential Fo (r*) as given in
(22b) was used as well as the exact first-ray solu-
tion 4' = (r/2M} ln(1 —2M/r}. The results were in
perfect agreement with the arguments presented
above. Specifically, 4' was found to have a large
wave front at small u which gave way to an asymp-
totic solution for t»~* that did in fact go precisely
as 2M(1/u —1/v) +y/v' in region VI. In region IX
the solution was found to be very accurately inde-
pendent of u, and to go as 4' = const/v'. Further-
more, the program kept track of 'tl and g in re-

gion VI; from the first ray to quite small values
of r* it was found that O'U as defined in (51}does
fall off as 1/v' but is always much smaller than u
for r* & 20M or so. Results of these computations
are presented in Figs. 5, 6, and 7.

D. Multipoles of General l

-4%„„=0, r* & -PM (52)

, F, 4, -PM&~* &PM.

[This is justified by the calculation in the Appen-
dix. ] With this simplification we can write the so-
lution for 4, in the regions 1r*1&pM, in terms of

We shall now discuss the asymptotic evolution of
multipoles of general l for two initial conditions.
(i) A static perturbation field exists outside the
star prior to the onset of collapse. (ii) There is
no initial perturbation field outside the star, but
one develops during the collapse. These calcula-
tions are only outlined here; details are left to the
Appendix.

As in the monopole case we can correctly analyz&
the large-time dynamics using a localized idealiza-
tion of the potential

4 l(l+ I)/~*', r* & PM
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FIG. 5. The results of computer integrations of the
asymptotic falloff of 4' for a coordinate stationary observ-
er in the case 5 =0. The slopes of the log% vs logt curves
all approach a slope of -2 at large t, verifying the t 2

falloff derived in the text. The computations for these
curves use R~&(t=O) =4M, and 4 =(x/2M) in/ —2M/x)
on the first ray. The "surface" data at v = 0 were taken
to be a + b exp(-u/4M), with a and b chosen so that 4 on
the "surface" and on the first ray matches smoothly at
t =O. (As in Fig. 3, r* is defined as zero at r =4M. )
The dashed lines in the circled insert depict the points
for which 4 is plotted in the three curves.
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FIG. 6. The results of computer integrations for the
behavior of + in region Vl of Fig. 4, along a line of con-
stant u. The "corrected" value of 4 is defined: 4'coR(u)=—4 (u) +[1-4(u=0)] ~ 4'(u) +2M/v. According to the an-
alysis in the text Co should be approximately 2M/u
except very near the wave front or the potential barrier.
The computer results verify this. The dashed line in the
circled insert depicts the points for which values of 4coR
are plotted here. Note that CcoR = 2M/u even for x*=0.
For further discussion, see the text [especially Eq. (49)].
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four unknown functions [a generalization of (35)]: f(v) = const/v (59)

+ = &(~)+y(v) (53) if a static l pole is initially present, and
for r* &.-PM and

4= f "(v) -A'f" "(v)/r*+ ~ ~ ~ + (-I)'AI f(v)/~*'

+g' "(u) +A', g" "(u)/r+ + ~ ~ ~ +AIg(u)/r*', (54)

where

(55)

for r*&PM.
From the arguments preceding (44} we have that

(56)

in the asymptotic region t»r* By. expanding (54)
for t »r* and comparing the result with (56) we
find the functional relations

g(t)= (-1)"'f(t)+[terms that fall off at least as
fast as f!""!(t),at large i] (57)
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F.G. 7. The justification for localizing the curvature
potential in the monopole case. The computer integra-
tions show that 'U—= 4 „onthe first ray falls off as v 2.
Also plotted here is O'U: the change in U, on a line of
constant v, between the first ray and r*=20M (i.e. , the
change in 'U along one of the dotted lines in the circled
insert). The plot of O'U as a function of v (i.e. , as a
function of which dotted line in the insert is used) shows
that N3~1/v2. Though O'U falls off at the same rate as
Q, it is only 10+ as large. For further discussion, see
the text |especially Eq. (51)].

|Ip(t) =constxf'""'(t)+[terms that fall off faster at
large t]. (58)

A large-v expansion of + near the wave front, car-
ried out in the Appendix, shows that for general l

f(v) = const/v' (60)

E. A Picture of the Decay of 4
In general, invariance of a problem under some

group of transformations leads to a conserved
quantity. For our radiation problem, the back-
ground space is independent of time and we can de-
rive an energylike conserved quantity for the
scalar field. This quantity can help us picture

if there is no initial perturbation field. [These are
the two most interesting cases, but the form of
f(v) for any initial condition can easily be calculat-
ed. ) From (58) it then follows that (i) an initial
static multipole perturbation will die out as t '"+'
at large time and (ii) a multipole perturbation
Mhich develops during the collaPse will die out as
t ~"+'~ at large time.

Let us now summarize the physics of the evolu-
tion of scalar-field multipoles.

(i) Near the first ray (i.e., at small u) the so-
lution is dominated by a wave front: outgoing waves
from the stellar surface that have passed through
the potential barrier. These primary waves fall
off exponentially in u since the variation of 4' on
the stellar surface is exponentially damped.

(ii) The wave front of primary waves is back-
scattered by the tail of the potential and the "in-
put" to the post-wave-front region is the ingoing
radiation caused by this backscattering. This in-
going radiation has the form, near the wave front,
4 - v '" if the field was initially static, and 4- v " if there was no initial field.

(iii} From (57} we see that the ingoing radiation
from the wave front is almost totally reflected by
the potential barrier near r* =0.

(iv) In region IX (see Fig. 4) the outgoing radia-
tion from the stellar source dies out exponentially.
At large t the solution is dominated by the ingoing
radiation, from the wave front, that does manage
to penetrate the potential barrier. This radiation
falls pff as t '+ pr t '+ depending pn initial
conditions.

(v) In region VI, for t»r~, in- and outgoing
waves interfere destructively, leaving an uncan-
celed field which falls pff a,s t '+ pr t ~'+

(vi) Though we have started the collapse from
a very relativistic static configuration, it is easy
to see that our conclusions are independent of this.
If the collapse starts from a radius»M, then the
primary waves of (i) dominate for a longer time,
but the qualitative evolution after the primary
waves have passed is unchanged.
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the decay of the field. The wave equation

4 „-4„g„*+F,(r*)4 =0

leads us to define

x—= -'(4' )'+-'(4 ~)'+ 2F,4'
= (4' „)'+(4 „)'+—,

'
F,4" (6l)

s=4' p „~=(C„)'—(4 „)',
so that the equation of motion takes the form

(62)

&K 03
at sr* '

r+=+t
II:—

r+= -t
(64)

We can interpret K as being like an energy density,
S a sort of energy flux, and (63) as a divergence
equation. We take comfort in the fact that K is
positive definite.

Let us apply this to the radiation problem with

boundary values given on the null lines u =0 and

v =0. On a spacelike hypersurface of constant t
the total "energy" in the wave zone is

light cone, 4 would fall off everywhere as t "'.
This is the familiar case of the so-called diffrac
tion of waves studied by Lewis" and others. On the
other hand, if there were no backscattering the
waves would not spread at all so the integral for
H would have a nonvanishing contribution in a spa-
tial region independent of t, and 4 would have a
constant value on an ingoing or an outgoing charac-
teristic.

For our problem neither limit applies. In a
sense the high frequencies propagates on the char-
acteristics and the low frequencies tend to spread,
but the correct asymptotic solution demands a
deeper analysis. While arguments based on the
conserved flow cannot tell us just what sort of
asymptotic solution will develop in the presence of
our curvature potential, they do help in picturing
the physics of the situation. One way of interpreting
this picture of "energy" flow is to say the "final"
value of 4 on the surface of the star, as the sur-
face crosses its gravitational radius, is ineffective
in stopping the decay of the field.

In Paper II we shall deal with a complex field
satisfying an equation like (22); the only thing that
must be changed to accommodate the complex field
is that we define K and S as the real quantities

This total "energy" can only be changed by "ener-
gy" flowing across the boundaries

r*= +t
dr* —+Xl *= ~+XI *=-~

dt
=+t

x= 214,~1'+414,,*1'+ l&il4'I'

s=-,'(4,4 „„+4p „,),

(67)

(68)

, a3dr*, +xl,* ,~+xi,=*= (a~~

where the bar over the 4' denotes the complex con-
jugate.

=[x+s]„*„+[x-s]„,
=[24 „'+—,'FP']„,+[24 „'+—,'F4"]„,. (65)

The two terms in the last line represent, respec-
tively, the "energy" flowing across the first ray
and across the stellar surface. If we consider
what the asymptotic contributions at large t are,
we find that the second term is exponentially small
and hence negligible. The first term at most gives
a contribution that falls off as t ' so that dH/dt ~ t '
or less, which means that Ho:a —0/t at large t.

Now we notice that K is a positive definite quan-
tity and

H a —,
'

F,C 'dr* cc t(4)' (66)

where 4' is some sort of average value of 4 on the
hypersurface. This tells us that this average value
of 4 must fall off essentially as t '" or faster since
II is essentially constant at large t.

If the information at t = 0 were dispersed by a
very strong potential uniformly through the future

IV. GRAVITATIONAL PERTURBATIONS

The study of the scalar field is more than a
plausible analog; from the mathematics of the pre-
vious sections we can directly infer the dynamics
of gravitational perturbations. In Paper II a uni-
fied view of all integer-spin massless field per-
turbations will be given with the aid of the null-
tetrad formalism of Newman and Penrose. " Here
we shall describe the physical nature of the falloff
of gravitational perturbations. To be concise, we
shall usually refer specifically to the evolution of
an l -pole perturbation field which is initially
static.

Although the mathematical description of gravi-
tational perturbations is not greatly more difficult
than that for other perturbations, the physical in-
terpretation is complicated by gauge arbitrariness.
Gravitational perturbations (e.g. , perturbations in
the Riemann tensor) are unavoidably mixed with
perturbations in the background geometry. In phys-
ical terms, to give a value for a gravitational per-
turbation we must specify how it would be mea-
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sured. Nevertheless, the physical nature of the
falloff of the perturbations is fairly clear.

The description of gravitational perturbations
used here is essentially that of Regge and Wheeler
(RW)."34 This involves the use of vector and ten-
sor spherical harmonics to separate the angular
variables, and a convenient choice of gauge. In

this RW gauge two functions of radius and time
describe the odd-parity perturbations and three
functions suffice to describe the even ones.

Q,« —Q,r*,*+I'i" (r*)Q = 0. (69a)

Here the curvature potential for odd-parity gravi-
tational waves is

I"',~ (r*)= (1-2M/r)I l(l+ 1)/r' —6M/r'j . (69b)

The RW metric perturbations h, and h, can be de-
rived from Q according to

h, =rQ(1 —2M/r) ',

h~, ——(rQ), g.

(70a)

(70b)

The formal similarity of (22) and (69) is striking
but to continue the analogy between the odd-parity
gravitational perturbations and scalar perturba-
tions we must ask whether Q, as a measure of the
gravitational perturbations, is free from patholog-
ical coordinate effects. We shall see that it is not;
Q vanishes at the event horizon even though locally
measured perturbations are finite there.

Let us define

q(r, t) = Q(r, T)dT. (71)

A. Odd Parity

We are not concerned with multipoles of /&2.
Such multipoles for the spin-2 gravitational field
are nonradiatable. Specifically there can be no

l = 0 odd-parity perturbation, and the /= i multi-
pole has been fully investigated. As Vishveshwara"
and independently Campolattaro and Thorne" have
shown, the odd-parity dipole perturbation must be
stationary (a consequence of the field equations)
and corresponds to a small angular momentum in
the star.

For quadrupole and higher-multipole perturba-
tions, Regge and Wheeler" found that the field
equations lead to a wave equation similar to (22):

tion effects Q on the stellar surface will vanish as
(1 —2M/r), when the surface crosses the event
horizon at t=~.

If we now integrate (69a) over the time variable
from ~ to t, we find'6 that q must satisfy the same
equation as Q,

q « —q „+„++F7(r')q=0. (72)

The behavior of q on the stellar surface follows
from the measurable nature of q. Since q and its
proper time derivative are finite, the argument of
(25) to (30) implies that for u»Mon the stellar
surface,

q = q, + q, exp(-u/4M). (73)

Q
t-(2t+3)

j.

Equation (70b) implies

(74)

so that

ho = (rq) „~+ b(r). (76)

But b(r) must be zero or h, would be nonzero at
large t and there would be a physical singularity"
at r = 2M or r = ~. At large t then

t-(2 t+2)

The initial-value problem for q also requires data
on a line u=constant. If we choose the star and
field outside it to be momentarily at rest, then q
on the first ray signalling the onset of collapse
must be the static solution of (72) which is well be-
haved at spatial infinity.

The structure of the initial-value problems for
4' and for q are then almost identical. The only
difference is in the details of the potentials, but
the calculation in the Appendix makes it clear that
it is only the dominant asymptotic terms in the po-
tential, at r*=+~ and r~=-~, which are impor-
tant to the large-time behavior of the solution.
The analysis and results of Sec. III therefore ap-
ply immediately to q. The asymptotic evolution of
q (for l ~ 2) is precisely the same as that of O'. In

particular, at a fixed r, q falls off as t "+'~ if the
Perturbation zvas initially static.

The evolution in time of the RW functions Q and

b, can be found easily from (70). They fall off for
large time at constant r, as

In Paper II it is proven that q is measurable in the
following sense: It is a linear combination of the
components of the Riemann tensor referred to the
orthonormal tetrad of a falling observer, and the
coefficients in this linear combination are finite
at r = RM. This implies that on the stellar surface
q and its proper time derivative are finite at the
event horizon. Since Q = q, then due to time-dila-

B. Even Parity

As in the odd-parity case, the properties of the
nonradiatable l& 2 even-parity multipoles are well
known. (i) By Birkhoff's theorem an l =0 perturba-
tion can only be a small static change in the mass.
(ii) Even-parity dipole perturbations correspond
to a coordinate displacement of the origin. Such
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displacements have no physical meaning and can
always be annihilated by a gauge transformation. "
To analyze the l ~ 2 radiatable multipoles we need
a wave equation like (22) or (72). Fortunately,
Zerilli" has recently supplied such an equation.
Zerilli's equation is in the context of the RW for-
malism and the RW gauge. Thus, we describe the
even-parity perturbations by three functions: H,
II„andK in the RW notation. Zerilli assumes
perturbations to have exp( ikt) t-ime dependence.
This does not suit our purposes here so while
Zerilli replaces H, by R =H, /—h, we define" it as

K=ag+aQ,
R =a,K+ a+,

where

a, =r'/(Ar+3M),

-i(r 2M)a =
Ar+3M

-At +3AMr+3M
(Ar+3M)'

(Vsa}

(Vsb)

(79a)

(79b)

(79c)

i (r —2M)[A(A+ 1)r'+ 3AMr+ 6M']
r'(Ar + 3M)'

A = ,'(L 1)(L+-2)-. (79e)

(The third function, H, can be found from R and K
by means of the field equations. ") With the defini-
tions of (V8) and (V9), we can put the field equa-
tions in a very simple form:

K„+=R,

R,~ =FP'(r~)K+K„,
with

r'(r') =
(1

-r—

(soa)

(80b)

2A'(A+ 1)r'+ 6AIMr'+18AM'r+ 18M'
r'(Ar+ 3M)'

R(r, t) i
~

=— H, (r, T)dT.

Following Zerilli we define certain linear com-
binations of R and K:

gravitational perturbations are finite on the stellar
surface during the passage through the event hori-
zon, then K and its proper-time derivative on the
stellar surface are also finite. From the argument
of (25) to (30) it follows that for u»M on the stellar
surface,

K =K,+K,[exp(-u/4M)] . (82)

As we did for scalar and odd-parity waves, we

may start the star and K field from a momentarily
static situation. The remaining input is then a
static solution to (81) on the "first ray", u= con-
stant. The initial-value problems for 4, q, and K
are now quite similar. Furthermore, from (80c)
Fp'(r*) has the same asymptotic behavior, at r*=+~
and at r~ = -~, as the potentials in (22} and (72),
so that we may apply the results of Sec. III to K.
In particular an initially static K will fall off at
large t as t t""'. From (80) we see that R has
this same large-time behavior" and therefore by
(78), K and R also die out as t t""~. Using the
field equations" we can show that H therefore dies
out at this same rate. Since 0, is a time derivative
of R, it must fall off faster, as t "". With these
results and those for odd-parity perturbations, we
conclude: Initially static gravitational multipole
perturbations vanish at large time as t ",and
it is this vanishing of the perturbations that re
sotves the Paradox of the sjnguLarities.
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APPENDIX

We shall consider here the evolution of 4 at late
times, for l & 0. The wave equation to be used,

2M 'L(L+ 1)
.-- """I- '. R. e=o

(Ala)
(80c) 2M (2 M)R(r)=R~ s +R 4 + ~ ~ ~1 re 2 r4 y (A1b)

Kug, r +r+ ,+ Fl~ (r+ }K 0 r (81)

an equation of the same form as (22) and (V2).
In Paper II it is demonstrated that K describes

the even-parity perturbations with no pathological
coordinate effects. That is, if locally measured

We can now combine (80a) and (80b} to get Zerilli's
effective-potential equation,

is general enough to encompass the wave equations
of (22), (72), and (81).

If 4 =0 before the first ray u = u~ then the solu-
tion after the first ray can be written as an expan-
sion for u«r:

q =+A~r ~G" ~'(u)+g R~(r}G" ~ "(u) (A2)
P~0
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in which G(u) and its first l derivatives vanish on
the first ray,

G(u, ) =G'(u, ) = =G(()(u, ) =0.

The negative-order derivatives, to be interpreted
as integrals

G' "(u)—= G(u)du,
4 ft

This can be thought of as the dominant backscatter
of the primary waves, ' if there is no initial static
multipole.

If there is an initial static multipole of magni-
tude t(, then to (A2) we must add the static solu-
tion of (A1): „„,2M]i(l 2) R] O(M) „,)]+r 2(l+ I)

G' "(u) -=G' "(u)du, . . . ,
0

(A5)

also vanish on the first ray. In (A2) the coeffi-
cients Ak( are those given in (55) [solution to flat
space-time wave equation], and the functions Bk)(r)
[curvature-induced corrections) have yet to be
calculated. The first sum in (A2) represents the
primary waves in the wave front; the second sum
represents waves backscattered by the anomalous
part of the curvature potential.

By putting (A2) into the wave equation (Al) we
can derive the recursion relation

-A)kr ~+ k)[p (p + 2)2 M + r 'R (r)]. (A6)

(Prime denotes d/dr )From. this recursion rela-
tion B~ can be found as a power series

Bk( = a k(/r k+'+ bk(/r k+'+ ~ ~ ~ . (A7)

Some expansion coefficients which follow from
(A6) and (A7), and which will be important later,
are

2 MA,'[ (I —1)(l + 1)+R,)
2(I+1)

AI 2M(2l+ 1)
2(l+2)

(Aga)

(A8b)

If there were no tail of the potential at large r
(i.e., if it consisted of a centrifugal barrier only,
as in flat space-time), 0 could be made to vanish
at late time by "turning off the source, " i.e., by
specifying G(u) =0 for u &u, &u, . But the negative-
order derivatives and the nonzero values of the co-
efficients B', (r) when space-time is curved, show
that backscattered waves persist, even after the
source is turned off.

In general we do not expect G (u) to go strictly to
zero at some finite u, but we do know that G (u)
and its (positive-order) derivatives fall off as
exp(-u/4M), becoming negligible for u,u&M»
After the passage of the primary waves, when
u &u„ the dominant term at large r is

(Al0)

When the source of the primary waves is "turned
off' (i.e., they become exponentially small) at
u =u„ then G(u) must be constant (i.e., it has ex-
ponentially small variation) for u &u„ in order to
cancel C,f f.i. , in fact we must have

AIG (u~) = —t(, . (A11)

Thus after the primary waves are "turned off' the
dominant backscatter at large r is

a', ~G(u, )+ t(2M[i(l+2)+R, ]/2(l+I)
r r+1

2 M tt [ (2 l + 1)/2 (l + 1)]
r 2+1

(A12)

It is significant that (A12), the dominant backscat-
ter in the case of an initially static perturbation,
and (A9), the backscatter in the case of no initial
perturbation, are both independent of the R(r) term
in the potential. Mathematically, it is the relation
of r to r* which is critical in determining the dom-
inant backscatter; potential terms of order M/r'
only influence backscatter to a higher order.

Next we shall calculate the asymptotic evolution
of 4, as outlined in Sec. IIID. For r»M the
ingoing and outgoing waves can be written [see
(54)]

~ &l(-I)'f "-"(~)
r kkA

-0= 0

&: [1+0(2Mr* ln(r*/2M))], (AI3a)

~k (i-k)
[1+0(2Mr* ' ln(r*/2M))].

a

(Alsb)

We have seen that )I - (t) (t )(t),„„,(r*), asymptotically
for t»r*, so that for t»r*»M,

4 =(t)(t)r*"~[1+0(2Mr* ~ ln(r*/2M))]

+ terms which fall off faster in t than (t) (t),

(A14a)
B'(r)G' "(u)=a'G' "(u)/r"' (A9) and for t» -r*»M,
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0 =const&g(t)+terms which fall off faster in
r* or in t. (A14b)

[The constant in (A14b) can be found by numerically
solving the static wave equation. ] We can now ex-
pand (A13) for t» r* and write @ as a superposi-

tion of ingoing and outgoing waves:

Q Qt~en[f (l +n)($)+ ( 1)n gil+n&(t)]
n=-l

x [1+O(2Mr* ' in(r*/2M))],

where

K„'=0 if l-n is odd,
for -l (n &l.—n !K'„=(—.')'(-1)" ""

[, ( }],[, ( }],ifl nis eve-n, I

ZI„,=1/(2!+1)!!.

(A16)

lay comparing (A14) and (A15) we can conclude that

d ""f(t)+(-1)"'g(~)
t (2l + 1)!!

and that f (t) = (-1)"'g(t) or, more precisely,

g(f) = (-1)'"f(t) o((2M)""f"""(t)),
so that

q(t) =2f' '" '(t)/(2l+1)!! .

(A1V)

(A18)

(A19)

From (A9) and (A12) we know the behavior of 4
as a function of v on a line of constant u =u„where
v»u, »M,

q =a'G' "(u )[-'v] "'"[1+O(2Mv 'ln(v/2M))]

if no initial l pole (A20a}

=2M', L'v) "'i'[1+O(2Mv iln(v/2M))]
2l+1

2(l+1}

if initial static l pole of magnitude p.

(A20b)

Now we can compare (A20) with (A13a) in the re-
gion r*» u to find that

f (v) = (-1)'2MG ' "(u, )/v', (A2la}

g(&)=, „G(u)du, (A21b)
2( 1) +|(2l+2)! 2M

t4 0

if there is no initial static multipole, and

f (v) = (-2)'2Mp[l!/(2l)!] /v,

(-2)"i(2l+1)l! 2M p,

(2l+1)!! t""
if there is an initial static multipole of magnitude
p, . Notice that these asymptotic solutions do not
depend on the potential term R (r) since the initial
backscatter does not depend on it. The asymptotic
solutions for (22b), (69b), and (80c) are identical.

Another approach to this calculation, using La-
place transforms, will be published elsewhere by
Thorne. ' Yet another method has recently been
devised by Fackerell. ~
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ence to 4, q, or K in region IX, but it gives the dominant
asymptotic time behavior for 4' „+,q „+,and K „+.

39The interpretation of these integral terms as back-
scatter is reasonable because they depend on data spread
out over a section of the past light cone. Outgoing waves
depend only on data at a fixed u.
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