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ABSTRACT 

We formulate the general problem of perturbing a (non-self-gravitating) perfect fluid potential 
flow in an arbitrary background gravitational field. We then specialize to the case of perturbing 
stationary, spherical accretion onto a Schwarzschild black hole and derive the following stability 
results : (i) no unstable normal modes exist which extend outside the sound horizon of the back- 
ground flow; and (ii) there are no unstable modes which represent a standing shock at the sound 
horizon. 

We also derive the high-frequency (JWKB) approximation to traveling wave perturbations and 
show that these approximate solutions are regular across the black hole’s event horizon. 
Subject headings: black holes — hydrodynamics — stars: accretion 

I. INTRODUCTION 

In this paper we consider the adiabatic accretion of a perfect fluid onto a nonrotating black hole. We study 
especially the stability of those stationary, spherically symmetric solutions for which the density is nonzero and 
the matter is at rest at spatial infinity. Each of these solutions has a spherical sound horizon, outside the black 
hole’s event horizon, across which the flow becomes supersonic. 

We first show that if the entropy and vorticity perturbations are of bounded extent on some initial hypersurface, 
then they merely advect into the hole (with entropy driving the vorticity), leaving a pure potential flow perturbation 
in their wake. We then show that the potential perturbations (sound waves) have the following stability properties: 

i) A suitable energy norm of the perturbation outside the sound horizon remains bounded by its initial value; 
in particular there are no unstable normal modes extending outside the sound horizon. 

ii) There is no unstable normal mode corresponding to a standing shock at the sound horizon; thus unstable 
modes are excluded from the supersonic region as well. 

We also give the high-frequency (JWKB) approximation to traveling wave perturbations and verify the regularity 
of these approximate solutions down to the black hole’s event horizon. 

We also discuss, in a qualitative way, the corresponding stability problem for potential flow onto a rotating 
black hole. In this case the sound horizon is surrounded by a region in which the superradiance of sound waves 
becomes possible. This region is somewhat analogous to the ergoregion of a Kerr black hole and indeed coincides 
with it in the special case of a stiff fluid (p = p) accretion. 

Our motivation for studying the stability of spherical accretion flows lies in the possibility of their relevance to 
the rapid time variations of certain compact X-ray sources. The same methods used for the black hole problem 
can be adapted to the study of accretion onto a star or to the problem of a stellar wind. For these problems (except 
perhaps for neutron stars) a nonrelativistic treatment is usually sufficient. We therefore sketch the Newtonian 
analog of our relativistic method for completeness. The stellar accretion and wind problems have, of course, 
different boundary conditions and require independent stability analyses from that for the black hole. We shall 
briefly discuss some of the expected results for these cases. 

The Newtonian stability problem for spherical accretion has been previously studied by a number of workers 
(see Garlick 1978; Petterson, Silk, and Ostriker 1978; Balazs 1972; Parker 1966; Bondi 1952). In addition there 
have been numerical analyses (see Stellingwerf and Buff 1977; Cowie, Stark, and Ostriker 1978). Most of this 
earlier work considers only the spherically symmetrical perturbations. Our work treats the general case and 
includes the relativistic effects needed for any discussion of black holes. 

II. RELATIVISTIC POTENTIAL FLOW 

a) Background Solutions 

Consider the flow of a perfect fluid in an arbitrary gravitational field (with metric gßj). The equations of motion 
are 

r^;v = 0, (mO;„ = 0, (II-l) 
1 Research supported in part by NSF grant PHY76-82353 to Yale University. 
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ACCRETION ONTO BLACK HOLE 1039 

where 
= 0 + + pg^ , wX = -1 , dp = ndh - nTds, h = {p + p)ln . (II-2) 

Here n, p, p, h, T, s have their usual meanings, a semicolon signifies covariant differentiation with respect to 
guv, and the above equations imply 

ußs;u = 0 , (II-3) 

the absence of heat exchange between different elements of the fluid. We shall also neglect radiative cooling, 
magnetic effects, and the self-gravity of the fluid. 

A particular solution to the above equations will be said to represent a (local) potential flow if it satisfies 

s = ¿o = const, üjaß = P/iyov = 0 , (II-4) 
where 

(ÄWv); u (11"^) 
and Pa

ß is the projection tensor 

Pa
ß = Kß+ uauß. (II-6) 

Equations (II-1) imply that 
^aß = ^aß "b TußS.a — TuaS:ß (II"7) 

so that s = const, and ¿Da/? = 0 imply that 

^ccß := (hU(x)\ß ih^ß)’,a = ^ • (11“8) 

Therefore the vector field huß is (locally at least) expressible as a gradient 

hu, = 0,, (II-9) 
(here and throughout, a subscript comma mu (, p) = d/dx11). If the region of spacetime occupied by the fluid is simply 
connected, then huu is globally expressible as a gradient. For the accretion problems we consider, this will be so. 
A family of fluid disk solutions for which huu is locally but not globally a gradient has been constructed by 
Fishbone (1977). 

For potential flow the Euler equations and equation of continuity simplify to the single scalar equation 

(2^ = 0, (U-10) 

where n is expressed as a function of h through the chosen equation of state, 

"= (á) 
and where h is reexpressed as 

h = +(-ga^ 

which follows from equation (II-9) and the normalization condition, uaußgaß = — 1, on the fluid velocity. Equation 
(11-10) is typically a nonlinear equation for 0, though it linearizes in the special case of a stiff (p = p) equation of 
state. In that case ncc h and equation (11-10) reduces to the scalar wave equation. Another simple limiting case is 
that of dust (p = 0). The problem of dust accretion onto a Kerr black hole has been treated extensively by Shapiro 
(1974). 

These cases require special treatment, so we shall assume that 0 < vs
2 < c2 for the fluids considered here. 

b) Perturbations of a Potential Flow 

Now consider small (Eulerian) perturbations of a background potential flow solution. Since by assumption the 
background is isentropic, we see that the entropy perturbation obeys 

u^-hs^ — 0 . (11-13) 

For a general flow (not necessarily potential) the tensor obeys 

(22»a, = {hT),ßS,a - {hT),as,B , (11-14) 

where 
v — hü, (u)a = ua , (11-15) 

W1'2 , 

(11-11) 

(11-12) 
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1040 MONCRIEF Vol. 235 

and (^ü))aß is the Lie derivative of o>aß with respect to £ : 

V a "h ^ \u^ccv ^ \v^na • (II-16) 

Perturbing equation (11-14) about a background potential flow gives 

= (hT),ßhs,a - {hT),ahsvß , (11-17) 
where 

= mua)\ß - [Khuß)la (11-18) 

and h,T, v = hü are background quantities. 
In the following we shall suppose that the perturbations Ss and are of bounded extent on some initial 

hypersurface (i.e., vanish outside a sufficiently large sphere). We shall also suppose that the background flow is 
totally accreting, (i.e., that every fluid particle eventually falls into the black hole). In this case equation (11-13) 
shows that Ss is dragged into the black hole by the background flow. After às has disappeared into the hole, any 
vorticity perturbation SœaP propagates freely according to (the homogeneous form of) equation (11-17). This 
equation shows that Sajaß is Lie dragged into the hole along the background flow. Thus both 8s and 8o)aß are 
swept away by advection. To the future of some spacelike hypersurface intersecting the black hole’s event horizon, 
the perturbation in the flow becomes purely potential. 

If 8coaß vanishes throughout some region, then 

where 
(SO,/* - (SO,a = 0 , 

= S(Awa) = UaSh + h8ua, 

and so 8va is expressible as a gradient throughout that region, 

8va = Sift'a . 

(11-19) 

(11-20) 

(11-21) 

The equation of motion for 8$ may be derived by perturbing equation (11-10) or, equivalently, from Schutz’s 
velocity potential formalism (Schutz 1972) specialized to the case of potential flow. This basic perturbation 
equation has the simple form 

(-det©)-1/2^ [(-det©)1/2©"v8fv] = 0 (11-22) 

where ©MV is the Lorentzian metric given by 

<5,‘v = h (í¡) gl,v + (! _ ’ 

where vs is the sound speed of the background flow : 

(?r - (i). 

(we shall demand that 0 < i;s
2 < c2 holds throughout the background flow). Several useful relations involving 

(11-23) 

(11-24) 

©MV are 

where 

s-.. 5 (a) [5.. n\¿ c 
( —det©)1'2 = 1^1 (-detg)1'2 , 

©'‘'’©vy = S“y, = 8«y, = g^uv, 

(11-25) 

(11-26) 

and (det©) and (det g) are the determinants of ©„,,, and gßV, respectively. Equation (11-22) is obviously derivable 
from the variational integral 

/ = -i J í/4x[(—det©)1,2©'iVS!/>j(1S¡/<jV]. (11-27) 

c) Some Geometry of the Sound Metric 

The causal properties of sound propagation are determined by the metric ©MV. In particular the null hypersurfaces 
(relative to©^) are those across which discontinuities in the derivatives of 8ifj (i.e., shocks) may occur. They are 
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No. 3, 1980 ACCRETION ONTO BLACK HOLE 1041 

the characteristic surfaces for sound wave propagation. In addition ©MV will share those symmetries which are 
common to guv and the background fluid flow. More precisely, suppose ^ is a Killing field of gßV, 

(^xg),v = + Xv,ß = 0 (11-28) 
and that 

J?xh = <&xu = 0 . 
It follows that 

(J%©)„v = 0 . (11-29) 

(Note that since s = const., all other thermodynamic functions are invariant provided h is.) This result will be 
useful in the discussion of conservation laws. 

We have mentioned that©MV is always a Lorentzian metric (provided 0 < vs
2 < c2). This follows from noting 

that any vector f which is timelike relative to is timelike relative to gßV, i.e., 

tßtv(5ßV < 0 -> tßtvgßV < 0 , (11-30) 

and that a triad of vectors orthogonal to ü (relative to gßV) is also spacelike with respect to ©MV. A corollary of this 
argument is that the sound cones of©^ lie inside or (if vs

2 = c2) on the light cones of gßV. Since the event horizon 
of a black hole defines a boundary to the region which can send light signals to an arbitrarily distant observer, 
there must also exist a boundary to the region which can send sound signals to a distant observer (who is immersed 
in the fluid at some large distance where the flow is subsonic). In the stationary case this boundary surface (the 
sound horizon //s) defines the transition from subsonic to supersonic flow. 

Now consider the special case of a stationary background so that, in suitable coordinates gßVi ©MV, h, etc., are 
all independent of the time coordinate t. In addition to the sound horizon Hs we may define a surface Bs (the 
stationary boundary relative to©MV) on which the Killing field X = d/dt becomes null,©^^ = 0. (A more refined 
definition would be needed if ©^ vanished on more than one three-dimensional surface or throughout an open 
region. We shall not consider these “degenerate” cases.) 

In the spherically symmetric case /fs and Bs will coincide. However, if the accreting fluid flow were not purely 
radial or if the black hole were rotating or both, then the two surfaces would not in general coincide and Bs would 
lie outside of Hs. As we shall see below, the energy density of the sound perturbations becomes indefinite inside 
this region. This occurrence signals, as it does in the Kerr spacetime, the possibility of superradiant scattering. 
Indeed, for the special (though artificial) case of a stiff (p = p) fluid, the sound metric ©^ reduces to (a constant 
multiple of) the spacetime metric gßV so that the superradiant features of sound wave propagation are identical, 
in the Kerr metric, to those of a massless scalar field. 

d) The Spherically Symmetric Case 

We now specialize to the case of stationary, spherical accretion onto a Schwarzschild black hole. This solution 
may be expressed as 

where 

hut = —hoo = const. ^ 0, hur = 
ha 

nr2{\ - 2GMIc2r) ’ 

- - = 
477 

with Á > 0 the particle accretion rate. The enthalpy h is 

const. / 0 

determined (implicitly) from 

where 

In requiring that 

we force 

lim /i = /Zoo / 0 
r-> oo 

lim wr = 0, 
r-+ oo 

(11-31) 

(11-32) 

(II-33) 

(11-34) 

(11-35) 

so that the flow becomes subsonic at sufficiently large distances. For accretion onto a black hole we must demand 
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1042 MONCRIEF Vol. 235 

regularity of the fields h, u, etc., across the black hole’s event horizon. Finiteness of A as r -> IGMjc2 gives, from 
equation (11-33), the condition 

lim 
r-*2MGIc2 (11-36) 

This condition will generally freeze one of the adjustable constants (hœ and a = —NI4tt) in terms of the other. Not 
every equation of state admits a solution satisfying both boundary conditions. For accretion onto a star, condition 
(11-36) is absent, but it must be replaced by an appropriate boundary condition at the star’s surface. 

III. CONSERVATION LAWS AND STABILITY RESULTS 

From the perturbation equation (11-22) one can derive 

Vv3/ = 0, (HI-1) 

where 

3/ = i[¥.^.y®Vy - W®VaW,vW,a] (HI-2) 

and in which signifies the covariant derivative with respect to©MV. 3/ is the usual energy-momentum tensor 
associated with the scalar wave equation. 

If Z is a Killing field of ©^v, we have 

¿[(-det©)1'2^/] = 0 (m-3) 

and thus obtain the associated conservation law. In particular if X = d/dt is a timelike Killing field, then 

=-2 f ¿/^(-det©)1'2^ (HI-4) 
J Q 

is the energy contained in the volume Q of a7 = constant hypersurface. The energy density is given explicitly by 

© = -2(-det®)1/23í
í = (-det©)1/2{-i©íí(á/<,í)

2 + Wf , (HI-5) 

where i,j range over the spatial coordinate labels. In this formula (—©¿í) > 0 since the surfaces t = constant are 
spacelike by assumption (it is straightforward to show that surfaces spacelike with respect to gßV are also spacelike 
with respect to ©^v provided 0 < vs

2 < c2). 
The symmetric form&j becomes indefinite inside that surface (the sonic stationary boundary Bs) across which 

©¿i changes sign. This follows from the identity 

-NiNj™&i(Stt = N^'NíNj, (IH-6) 

where 
N = (-©“)-1/2 , N, = ©ff, (3)©i;- = ©i;- (HI-7) 

and (3)&j is the inverse of the (strictly positive definite) metric (3)©i;. For accretion problems = ©^ is nonvanish- 
ing so that the sign of ©V/VfA^, must change whenever that of ©ff does. Furthermore, 

©^y.7. = ™&iYiYj >0 (III-8) 

for any nonzero Yi which satisfies 

YiN^W3' = 0 (HI-9) 

so that &3 has signature (—1, +1, +1) in the interior region. 
In the spherically symmetric case it is easy to show (using = — 1) that (in Schwarzschild coordinates for gßV) 

©" = -($) ®i( (in-10) 

so that the surface r = rs = const, at which ©ff = 0 is a null surface. It is in fact the sound horizon Hs of the 
background flow (we shall assume for simplicity the nondegenerate case in which ©ft = 0 defines a unique three- 
dimensional surface outside the event horizon of the black hole). 
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No. 3, 1980 ACCRETION ONTO BLACK HOLE 1043 

From equations (III-2) and (III-3) specialized to the spherical case we see that the energy Eirotri) contained 
between the spherical surfaces r = rQ and r = rx > r0 obeys 

lF 
dt <r°’ri) Í ddd<p[2(—det ©)1,23(

r] 
JS2 

= Í —det©)1/2Si/ffí((5
ríSi/f>í + ©rr8i/f,r)] 

JS2 

= Ff i ~ FrQ . (III-ll) 

As a special case, we take r0 = rs and r! ^oo. From the boundary conditions discussed in § \ld and the requirement 
of finiteness of the energy, which implies that 

a 
r 3/2 + e ’ SlA,r y oí ¿i ~r t y Oi 

as r ^oo (where a, ß', and e are constants and e > 0), we find that 

Fn7I^+0. 

Using the results derived above for the sound horizon we get 

(-detSy^T^O 
and 

( -det©)1'2©* [z-2 sin d(fy (l - ^2)«vj = sin (l - 
ha 

nh{\ - 2GMIc2r) > 0 

where the inequality follows from a = —ÑI4tt < 0 (for accretion) and c2 > vs
2. Thus 

[hx (c2lvs
2 - 1) dF N C 

—¡- (rSy 00) = ——! ddd<p sin 6 Clt ’ 477 J S2 h2 (1 - 2GM/c2r) W,t)2 < 0, 

(III-12) 

(III-13) 

(III-14) 

(III-15) 

(III-16) 

so that energy outside the sound horizon can only remain constant or decrease (as it flows inward across the 
horizon). 

Since dE(rs, cc)Uit < 0 for all finite energy solutions, it follows that the L2 norm of (Ñ>).u defined by the energy 
functional (eqs. [III-4], [III-5]) remains bounded by its initial value E0 = E(t0) for all t > t0. Since 

8ip u = 8vu = (uu8h -I- h8uu) . (Ill-17) 

< E0 (III-18) 

we thus get the bound (holding for t > t0) 

I Sß||2 = IJ i/
3x(-det©)1'2J + L(8/zMt + h8ut)

2 +&}(8hui + h8ui){8hui + h8Uj) 

(recall that ©iJ' is positive definite outside the sound horizon). 
In particular no unstable normal mode solution [i.e., solution with time dependence exp (À/), Re (A) > 0] with 

finite energy can extend beyond (i.e., have nonvanishing outside of) the sound horizon since it would then 
contradict the above result (by having exponentially growing energy). 

Since the sound horizon Hs is a characteristic surface, it might seem possible to have an unstable normal mode 
solution which vanishes outside Hs but which has a discontinuity across this surface. Such a solution would 
represent an unstable standing shock at the horizon. We shall now show, by a purely local argument, that such 
solutions do not exist. 

First we separate the angle variables by seeking an elementary solution of equation (11-22) of the form 

W = mr)e"YLM(d,<p), 

where YLM(0,99) is the usual spherical harmonic. The eigenvalue equation for S</i(r) is: 

(III-19) 

0 = A2r2 

S [-(■ - IBMIcV + (‘ - + 

¿ H (' ■ +£ H ((‘ -1^)+ (‘ ■ 

8tjj 

(III-20) 
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Now consider a function S0(r) which vanishes for all r > rs, is continuous at r — rs, but has 
derivative at r = rs. Thus 

Si/j >0. T r-*rs- K^O. 

discontinuous first 

(III-21) 

Taking the limit of equation (III-20) as r -> rs (i.e., from the interior to rs), we get 

0 = 2A[rIi (‘ - $)"■"'] L;+ [l{r1 [(' - + (‘ - 5)"]}] 
(III-22) 

where no term in Si/i>rr(rs) (which is assumed to be finite) occurs because of the vanishing of ©rr(rs). Thus since 
K ^ 0 by assumption and since 

we obtain 
©rr(rs) = 0, ©rr,rW > 0 , (5tr(rs) > 0 , 

2A < 0, 
rs 

(III-23) 

(III-24) 

we get A strictly less than zero in the (nondegenerate) case ©rr
>r(rs) >0. 

Thus the only normal mode solutions which represent a standing shock at the sound horizon are necessarily either 
stable (A < 0) or (in the degenerate case) stationary (A = 0). Of course, such solutions might actually be excluded 
by further considerations (e.g., the inner boundary condition at the horizon of the black hole), but such considera- 
tions are not required to exclude the unstable case. 

We can exclude the possibility of an unstable shock of “higher order” by a similar argument. Suppose that 
Si/j(r) and all of its derivatives up to the nth are zero as r rs" but that 

>/c ^ 0. 

Then by differentiating equation (III-20) n — l times and taking the limit as above, we can derive equation (III-24) 
exactly as before. 

We conclude this section with a sketch of the Newtonian analog of our approach. In this limit, potential flow 
means simply 

v = Vifj, s = s0 = const. (III-25) 

The (Eulerian) perturbations of entropy and vorticity can be handled as in the relativistic problem; they leave 
a purely potential perturbation in their wake. The wave equation for Si/j may be derived by combining the perturbed 
Bernoulli equation and the perturbed continuity equation. A variational integral for this wave equation is given by 

/ = i J d3xdt(detgy^2 , (III-26) 

where gi:, is the metric of the Euclidean three-space (with detg its determinant) and where p and vs
2 = (dpldp)s 

and vl are background fluid quantities. One can identify the Lorentzian sound metric ©MV for the Newtonian case 
by writing 

/ =(III-27) 

and proceeding as in the relativistic problem. For the case of a stationary background one has the conserved 
energy (Hamiltonian) function 

h = - ^y1'2 ¿ w.y, (in-28) 

where(the conjugate momentum to 8$) is given by 

p, = (det g)1'2 f2 (Sf f = -(det g)1'2 S, . (III-29) 

The Hamiltonian obeys 

f - /„ ^+(*" ' 
(III-30) 

which, by Gauss’s theorem, may be reexpressed as a surface integral over the boundary of the volume O. 
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If we specialize to the case of spherical symmetry (stationary purely radial flow) and put vr = u, then the energy 
(between two spheres at r = r0 and r = rf) obeys 

dE 
dt {■ ddd<pl\(det g)ll2p -Acs«2 + S'A, •s4-5) 

(III-31) 

which is the Newtonian analog of equation (III-ll). The stability argument can be carried out exactly as in the 
relativistic case by noting that (for accretion) u < 0 and (1 — u2/vs

2) vanishes at the sound horizon. 

IV. ASYMPTOTIC SOLUTIONS 

We can construct approximate (JWKB) solutions to the eigenvalue equation (III-20) in the limit of large (real) 
frequency. Such elementary waves reduce to plane waves at large radius and so have infinite total energy. One 
could construct finite energy solutions from them in the usual way by taking Fourier integrals. The corresponding 
solutions for the Newtonian problem have been given by others for adiabatic accretion (see Petterson, Silk, and 
Ostriker 1978) and for the case of a stellar wind (see Parker 1966). Our computation is essentially the same except 
that we include the effects of spacetime curvature and verify the regularity of our approximate solutions at the 
event horizon of the accreting black hole. Our approximate solutions are not regular near the sonic point r = rs 
(which is a singular point of the differential eq. [III-20]) but could be matched across this singularity with some 
additional effort. We put A = za> (with co real) in equation (III-20) and look for a solution of the (JWKB) form 

8i/t(r) = exp < ico Mr) + t!« + «3 +• l(x) M2 (IV-l) 

Substituting this into equation (III-20) and collecting terms in various powers of œ gives equations which successively 
determine the functions k^r). The first two terms give 

and 

= I dr- 
/■ 

(c2lvs
2 — l)w¿wr ± c/Vs 

[(1 - 2GMIc2r) - (c2lvs
2 - l)urur] 

+ const. (IV-2) 

kx = In + const. , (IV-3) 

the latter being valid for both k0
+ and k0 . Thus to a first approximation (for large œ) the elementary mono- 

chromatic waves have the form 

S>A = {“+ exp MV + 0] + “- exp MV + 0]} YLM(6, <p). (IV-4) 

At large radii, r » rs, we have the limiting forms 

k0
± ~ ± (—I r* + (lower order terms), (IV-5) 

\VS/ 00 

where r* is the “tortoise coordinate” defined by 

r* J (1 - 2GM¡c2r) ' 

Thus cc+ is the amplitude of the incoming wave while a_ is that of the outgoing wave. 
For the region far inside the sound horizon the same form of the asymptotic solution applies, but this form 

becomes singular at the sonic radius itself. One could match the two asymptotic expansions to find the relation 
between the inner and outer values of (a+, a_), but we shall be content to verify the regularity of the inner solutions 
as r2GM/c2 (i.e., at r * ^ — oo). 

Consider a nonrotating orthonormal tetrad “carried” by observers riding with the background fluid flow. 
Such a tetrad may be defined by the vector fields 

h(t) = ü, 

we shall show that the functions 

k(x) — ut 
e_ 
dr 

d 
U'8t’ 

£ _ 1 0 

V - rde’ ^<<p) r sin 6 dcp 
(IV-7) 

(IV-8) 

have finite limits at the black hole’s event horizon. 
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First note that and will have finite limits provided that ty itself does. By expanding the integrand 
in equation (IV-2) near r = 2GM¡c2 we may derive the limiting form 

fc0
± ~r* + c±(r), (IV-9) 

where c±(r) is a slowly varying function of r with a finite limit at the horizon (provided vs
2 < c2 outside and on 

the horizon). Thus, near r = IGM/c2, 

ty ~ [r(w//,)i/2(c/t,5)i/2]^0!+ exP ^ + r* + c+('•))] + «_ exp [iw(t + r* + c_(r))]} = a+8^+ + a_S,p~ ; 

(IV-10) 

and since v = i + r * is finite at the future horizon, the two phase functions in S</r are finite on the horizon. Recalling 
the limit (H-36), we see that the overall amplitude function is also finite. 

Similarly we find, as r 2GM/c2, 

(1 + cfa)2 

(1 - c2lvs
2) 

1 r 5 , 
“J" 8iln (IV-11) 

which is finite by virtue of the finiteness of 80, the regularity of the background flow across the horizon, and the 
requirement that vs

2 be bounded away from c2 in our background solution. Finally we get 

(, + ^) - S [(, + i)7(1 - $)] 

-î(?)“’ê‘"(w)+■h- 

+ • 

The only potentially troublesome term is the first; but, recalling equation (11-33), we have 

ah \ //, 2GM\ ( hV 1 1 ¡h^\2 

(-Æ)/('-w)-(0 [1 — (Ä/Aoo)«/«/*2] r-*2GMIc2 
1 /^2mV 
iXhn) 

(IV-12) 

(IV-13) 

where A2m is the value of h on the horizon. 
It is worth noting that since = 0, 

+ hhUfi) = - hh . 

V. CONCLUDING REMARKS 

One can study the stability of spherical accretion onto nonrotating stars by the methods used here for black 
holes. If the star’s surface lies inside a sound horizon, the arguments given in § III apply just as in the black hole 
problem. We can conclude as before that no unstable modes exist which either extend into the subsonic region or 
exhibit standing shocks at the horizon. On the other hand, if the star’s surface lies in the subsonic region, then a 
more detailed consideration of the inner boundary condition would be needed. 

For the problem of a stellar wind the density approaches zero while the velocity remains nonzero as r ->oo. In 
this case the energy outside the sound horizon (assuming such a surface exists) is fed by the interior region (i.e., the 
flux of energy at rs has opposite sign from that in the accretion problem). No simple energy argument for stability 
applies unless one has, on physical grounds, a bound on the energy flux at the sound horizon. 
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