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Analytic solutions of the Teukolsky equation for arbitrary spin weight in Kerr geometry are 
presented in the form of series of hypergeometric functions and Coulomb wave functions. Relations 
between these solutions are established. The solutions provide a very powerful method not only for 
examining the general properties of solutions and physical quantities both analytically and numeri· 
cally. The solutions can be regarded as series expansions in terms of a small parameter €=2Mw, M 
being the mass of black hole, which corresponds to the Post·Minkowski expansion by G and to 
post· Newtonian expansion when they are applied to the gravitational radiation from a particle in 
circular orbit around a black hole. It is expected that these solutions will become a powerful weapon 
to construct accurate theoretical templates for LIGO and VIRGO projects. 

§ 1. Introduction 

There are growing interests in analytic solutions of the Teukolsky equation l
) in 

the Schwarzshild and Kerr geometries in the connection with gravitational wave 
astrophysics. Since Teukolsky proposed the master equation for massless fields in 
the Kerr spacetime, many efforts have been made to obtain the analytic solutions. 
The analytic expressions valid for low frequencies were found by Page,2) Starobinsky 
and Churilov3

) by matching the approximate solutions valid near horizon and far from 
it. Leaver4

) made a systematic study to obtain the analytic solutions of the Teukols­
ky equation in the form of series of various functions. He found the solution in the 
form of series of Coulomb wave functions which is valid in the region far from the 
horizon and established the relation between that solution and the one in the form of 
the Jaffe type series which is valid near the horizon. 

Recently, Tagoshi and Nakamura5
) determined numerically the coefficients of the 

post-Newtonian expansion of the gravitational radiation by a particle traveling a 
circular orbit around a Schwarzshild black hole. Sasaki6

) proposed a method of 
post-Newtonian expansion to solve the homogeneous Regge-Wheeler equation by 
using Bessel functions_ Subsequently, the extensive study on this line was made by 
Tagoshi and SasakF) and the result was compared with the one by Tagoshi and 
Nakamura. The application of this method to the Kerr geometries was made by 
Shibata, Sasaki, Tagoshi and Tanaka.8

) Various other applications were discussed 
by Poisson and Sasaki.9

) Now the problem to obtain the analytic solutions and the 
examination of their behaviors in low frequencies became an important and urgent 
topic. 

In this paper, we report that we obtained the analytic solutions of the Teukolsky 
equation in Kerr geometry in the form of series of hypergeometric functions and 
Coulomb wave functions. The series solution of hypergeometric type is shown to be 
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convergent in the region except infinity, while that of Coulomb type is convergent in 
the region Ixl>l, where x=(r+-r)/2M./l-(a/M)2 with r+, M and a being the 
position of the outer horizon, the mass and the angular momentum of Kerr black hole, 
respectively. We establish the relation between the two solutions with different 
regions of convergences. The solutions are interesting not only for the investigation 
of general properties of solutions as mathematical physics, but also are for various 
applications to the gravitational wave astrophysics. The solutions are essentially 
given in the €=2Mw expansion where M and w being the black hole mass and the 
angular frequency, which corresponds to the Post·Minkowskian G expansion and also 
corresponds to the post· Newtonian expansion when they are applied to the problem 
of the gravitational radiation from a particle in circular orbit around a black hole so 
that our solutions are quite powerful to examine the € behavior of various physical 
quantities. Our solutions are expected to become a powerful machine for numerical 
computation also because the convergences of series are fast. Thus the solutions will 
become powerful weapons for the construction of theoretical templates used for 
gravitational wave observations by LIGO and VIRGO. 

Our work was motivated by Sasaki's work.6
) We tried to improve his method for 

solving the Regge-Wheeler equation because his method has several disadvantages: 
(1) it is difficult to obtain the higher order terms of €=2Mw, (2) the expansion is not 
really the Bessel expansion because coefficients are also variable dependent and (3) 
the convergence of the series was unknown. In order to improve these difficulties, we 
considered the solution in the form of series of hypergeometric functions for the 
solutions of the Regge-Wheeler equation and also for the Teukolsky equation in 
Schwarzshild spacetime and showed that the coefficients of series can be determined 
systematically in the expansion of € due to the recurrence relations among hyper­
geometric functions which we found.lO) This solution is valid near the horizon and 
not at infinity so that away from the horizon we have to consider the solution in the 
form of series of Coulomb wave function which was found by Leaver.4

) By matching 
these two solutions in the intermediate region, we obtained a good solution in the 
entire region. After finishing our work, we happened to see the paper by Otchik ll

) 

who discussed the analytic solutions of the Teukolsky equation in the form of series 
of hypergeometric functions and Coulomb wave functions. We found that our 
method is essentially identical to Otchik's method, but our solutions disagreed with his 
ones. We compared our solutions with his ones and found that although various 
formulas which he presented were incorrect, his story itself turns out to be true. 
Since our results are all different from these by Otchikll

) and the results themselves 
are quite important for the application, we present all results in this paper. 

We start from the Teukolsky equation which is separated by writing 

¢=e-iWteim~sr(8)Rwlm(r) . (1'1) 

The equation for R is 

LlR"+2(r-M)(S+I)R'+[ K2_2is~-M)K +4zSwr-A JR=O, (1'2) 

where M is the mass of the black hole, aM its angular momentum, LI = r2 - 2Mr + a2 
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Analytic Solutions of the Teukolsky Equation 1081 

=(r-r+)(r-r_) with r±=M±JM2-a2 where r+ and r- are positions of outer and 
inner horizons, respectively, K=(r2+a2)w-am, il=E-s(s+1)-2maw+a2w2

• The 
function sr is the spin weighted spheroidal harmonics which will be discussed in 
Appendix A with the eigenvalue E 12

) 

H(l) 
2(12 - m2)(l2 - S2)2 
(2/-1)/ 3(21 + 1) , 

(1·3) 

(1'4) 

where ~=aw and I is the angular momentum which takes an integer or half-integer 
number which satisfies I ~max(lml, lsI). 

In § 2, we give the discussion about how we arrive at the analytic solutions in 
terms of hypergeometric functions and discuss their properties. In § 3, the analytic 
solutios in terms of Coulomb wave functions are given following the work of Leaver. 
The relation between the two solutions in two different convergence regions is 
established in § 4. The low frequency expansion of these solutions is discussed in § 5. 
In § 6, a summary and remarks are given. 

§ 2. Analytic solution in the form of series of hypergeometric functions 

The radial Teukolsky equation has two regular singularities at r=r± and an 
irregular singularity at r = 00. In order to obtain the solution in the form of series of 
hypergeometric functions, we have to deal with these regular singularities. Follow­
ing the discussion in Appendix B, we take the form of R which satisfies the incoming 
boundary condition on the outer horizon. In particular, we choose the form given by 
(a-, /3+) in the notation in Appendix B with the variable x=w(r+- r)/€K as 

(2'1) 

where €=2Mw, q=a/M, K=J1-q2 and r=(€-mq)/K. Then, the radial Teukolsky 
equation becomes 

x(l- x )Pfn" + [1- s - i€- ir-(2 -2ir)x]Ptn' +(11 + ir)(I1+ 1- ir)pfn 

=2i€K[ -x(l-x)ptn' +(l-s+ i€- ir)xPtn] 

+[ -il-s(s+ 1)+ 11(11+ 1)+€2- i€K(1-2s)]Pfn. (2'2) 

Here we introduced the parameter II as the renormalized angular momentum which 
satisfies II=I+O(€). Then, the right-hand side of Eq. (2·2) is of order € so that this 
form of equation is suitable to obtain the solution in the expansion of €. The zeroth 
order solution of Eq. (2'2) is the hypergeometric function. 

From the structure of the above equation, the solution may be written in the form 
of series of hypergeometric functions as 

ptn(X)= f: anlJPn+ll(X) , (2'3) 
n=-oo 
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where 

Pn+ix)=F(n+ J,I+ 1- ir, -n- J,I- ir; l-s- iE- ir; x) (2·4) 

with the use of the renormalized angular momentum J,I rather than t. We expect that 
the series will coincide with the E expansion. In order for the coefficients of series 
(2·3) to be solved, it is essential that the coefficients anll satisfy the three term 
recurrence relation. For this, terms such as x(l-x)p~+JJ and XPn+JJ must be expressed 
as linear combinations of Pn+JJ+l, Pn+JJ and Pn+JJ-l. Amazingly enough, we found the 
following recurrennce relations, 

(n+J,I+1-s-i£)(n+J,I+1-ir) 1 [ ir(s+i£) ] 
XPn+JJ= 2(n+ J,I+ 1)(2n+2J,1+ 1) Pn+JJ+l +2 1 + (n+ J,I)(n+ J,I+ 1) Pn+JJ 

(n+ J,I+S+ i£)(n+ J,I+ ir) P 
2(n+ J,I)(2n+2J,1+ 1) n+JJ-l, 

(2·5) 

(n+ J,I+ ir)(n+ J,I+ 1-ir)(n+ J,I+ l-s- iE) P 
2(n+ J,I+ 1)(2n+2J,1+ 1) n+JJ+l 

1 ( .)[ ir(l-ir) ] 
+2 s+ ZE 1+ (n+ J,I)(n+ J,I+ 1) Pn+JJ 

(n+ J,I+ 1- ir)(n+ J,I+ ir)(n+ J,I+s+ i£) P (2.6) 
2(n+ J,I)(2n+ 2J,1 + 1) n+JJ-l, 

which enable us to obtain the three term recurrence relation among a"lI. The above 
recurrence relations among hypergeometric functions can be proved by using the 
power series expansions. By substituting the form in Eq. (2 ·4) into the radial 
Teukolsky equation (2·2), we find that pm becomes a solution if the following recur· 
rence relation is satisfied: 

where 

iEK(n+ J,I+ 1 +s+ i£)(n+ J,I+ 1 +s- iE)(n+ J,I+ 1 + ir) 
(n+ J,I+ I)(2n+2J,1+3) 

(3"lI= -A-S(S+ l)+(n+ J,I)(n+ J,I+ 1)+ £2+ E(E-mq) 

+ E(E- mq)(s2+ E2) 
(n+ J,I)(n+ J,I+ 1) , 

i£K(n+ J,I-s+ i£)(n+ J,I-S- iE)(n+ J,I- ir) 
(n+ J,I)(2n+2J,1-1) 

By introducing the continued fractions 

we find 

(2·7) 

(2·8) 

(2·9) 

(2·10) 

(2·11) 
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Analytic Solutions of the Teukolsky Equation 1083 

(2·12) 

From these equations, we can evaluate the coefficients by taking the initial condition 
aol.l=1. The renormalized angular momentum 1.1 is determined by requiring that the 
coefficients obtained by using Rn(v) agree with those by using Ln(v), that is, by 
solving the transcendental equation for 1.1 

Rn(v)Ln- 1(v)=I. (2·13) 

If Eq. (2·13) is satisfied, we find 

1.1 1.1. 

1· an 1· an Z€K Imn-I.I -= - 1m n-I.I -=--
n-oo an-l n--oo an+l 2 

(2·14) 

From the large n behavior of hypergeometric functions, we find by using the recur­
rence formula of hypergeometric functions (2·5) asl3

) 

1-2x+«1-2x)2-1)1I2. (2 ·15) 

From Eqs. (2·14) and (2·15), we find 

Thus the series converges in all over the complex plane of x except for x=oo. 
As for the recurrence relation (2·8), we find a~~-l= Ynl.l and y~~-l=anl.l so that 

a=~-l satisfies the same recursion relation as anl.l does. Thus if we choose aol.l=ao-I.I-l 
=1, we have 

(2 ·17) 

Also, we find 

Rn( - v-l)Ln- 1( - v-l)=R-n+l(v)L-n(v)=I, (2 ·18) 

which means that if v is the solution of Eq. (2 ·13), then - 1.1-1 is also the solution. 
It is easily seen that the solution Rfo is symmetric under the exchange of v with 

- v-I as follows. By using the formula 

() r(l-s-i€-ir)r(2n+2v+l) (_ )n+l.I+ir 
Pn+v X r(n+ 1.1+ 1- ir)r(n+ 1.1+ l-s- id x 

XF(-n-v-ir -n-v+s+i€· -2n-2v1..) , "x 

+ r(l-s- i€- ir)r( -2n-2v-l) (_ tn-l.I+ir 
r(-n-v-ir)r(-n-v-s-i€) x 

XF( n+ 1.1+ 1- iT, n+ v+ 1 +s+ i€; 2n+2v+2; ;), (2·19) 

we can show 
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1084 S. Mana, H. Suzuki and E. Takasugi 

Rl~=RolI+Ro-II-1, (2·20) 

where 

xi:" r(l-s- i€- ir)r(2n+2v+ 1) 
n;-oo an r(n+ v+ 1- ir)r(n+ v+ l-s- if) 

x(-x)nF( -n-v-ir, -n-v+s+i€; -2n-2v; ;). (2·21) 

The behavior of Rl~ on the outer horizon (x=O) is 

Rfn--'>( - X )S-U/2)(HTl i: an" , 
n=-oo 

(2·22) 

which gives the normalization of our solution. 
We can also show that Ro" and Ro -,,-I are solutions which are independent of each 

other. To see this explicitly, we consider the solution which satisfies the outgoing 
boundary condition on the outer horizon. The outgoing solution which correspond­
ing to (a+, [3-) in the notation defined in Appendix B can be written as 

(2·23) 

N ow we expand P~ut as 

00 

P~ut(x)= L: an"Pn+v(X) , (2·24) 
n=-co 

where 

Pn+v(x)=F(n+v+1+ir, -n-v+ir; l+s+i€+ir; x). (2·25) 

Similar to the solution satisfying the incoming boundary condition, we find that the 
above series becomes a solution if the following recurrence relation is satisfied: 

-,,_ n+v+1-s-i€ n+v+1-ir) II 
an - (n+ v+ 1 +s+ i€ (n+ v+ 1 + ir) an 

- II Yn 
(n+ v+ s+ i€)(n+ v+ ir) II 
(n+ v-s- i€)(n+ v- ir) Yn 

(2·26) 

(2·27) 

(2·28) 

where an", [3n" and Yn" are defined in Eqs. (2·8)~(2·10). By inspection, we see that 
this recurrence relation is reduced to the one in Eq. (2·7) by redefining systematically 
the coefficients as 

r(v+ l-s- i€)r(v+1-ir)r(n+ v+ 1 +s+i€)r n+ v+ 1 + ir) II 
r(v+ 1 +s+ i€)r v+ 1 + ir)r(n+ v+ l-s-i€)r(n+ v+ 1- ir) an 

(2·29) 

where we chose aoll=l. Now we take ao-"-I= ao ll =l, then after some computation 
we find 
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1085 

(2'30) 

(2·31) 

This relation explicitly shows that Ro)) and Ro -))-1 are independent solutions of Eq. 
(2 '1). 

§ 3. Analytic solutions in the form of series of Coulomb wave functions 

Analytic solution in the form of series of Coulomb wave functions are given by 
Leaver.4

) Here, we follow the dIscussion in Appendix B and start the parameteriza­
tion to remove the singularity at r= r-. By using a variable z=c:v(r- r+)= - €KX, we 
take the following form: 

(3'1) 

Then, we find 

z2f:; + [z2+ 2(€+ is)z-v(v+ I)]f)) 

(3'2) 

If we consider J,/ to be v= I + O(€), the right-hand side of Eq. (3·2) is a quantity of 
order € so that this equation is a suitable one to obtain the solution in the expansion 
of €. 

Here we aim to obtain the exact solution by expanding fiz) in terms of Coulomb 
functions with the renormalized angular momentum v, 

(3'3) 

where Fn+ll is the unnormalized Coulomb wave function, 

F -iZ(2 )n+1I r(n+ J,/+ 1-s+ i€) ""( + +1 +. 2 +2 +2 2' ) n+1I=e z z r(2n+2J,/+2) IV n J,/ -s Z€, n J,/ ; zz , 

(3'4) 

where $ is the regular confluent hypergeometric function. 13
) It is essential for the 

solution of Coulomb wave function to be related to the one of hypergeometric func­
tions, in order that the renormalized angular momentum v takes the same value for 
both cases. 

By substituting Eq. (3·3) into Eq. (3·2) and using the recurrence relations satisfied 
by the Coulomb wave functions, 
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(n+ v+ 1 +s-i€) is+ € 
(n+ v+ 1)(2n+2v+ 1) Fn+IJ+1 + (n+ v)(n+ v+ 1) Fn+IJ 

+ (n+ v-s+ i€) F 
(n+ v)(2n+2v+ 1) n+IJ-l, 

(n+ v)(n+ v+ 1 +s- i€) is+ € 

(n+ v+ 1)(2n+2v+ 1) F n+IJ+1 + (n+ v)(n+ v+ 1) Fn+IJ 

+ (n+ v+ l)(n+ v-s+ i€) F 
(n+ v)(2n+2v+ 1) n+IJ-l, 

we obtain the three term recursion relation of coefficients bn
il

, 

fV_ .(n+v+1-s+i€)(n+v+1-s-i€) v 

an -- Z (n+ v+ 1 +s+ i€)(n+ v+ 1 +s-i€) an 

'v_ .(v+n+s+i€)(n+v+s-i€) " 
rn -z (n+ v-s+ i€)(n+ v-s- i€) rn 

(3·5) 

(3·6) 

(3·7) 

(3·8) 

(3·9) 

where an
v

, 13n" and rn" are defined in Eqs. (2·8)~(2·10). By inspection, we see that 
this recurrence relation is deformed to the one in Eq. (2·7) if we systematically 
redefine the coefficients as 

b ,,- ·nr(v+1-s+i€ r(v+1-s-i€)r(n+v+1+s+i€)r(n+v+1+s-i€) " 
n -z r(v+1+s+i€ r v+1+s-i€)r(n+v+1-s+i€)r(n+v+1-s-i€)an 

(3·10) 

where we chose the initial condition bo"=1. Since the recurrence relation obtained 
for the Coulomb expansion case is identical to the one for the hypergeometric case, 
the renormalized angular momenta v derived from both solutions are the same which 
allows us to relate these two solutions. 

As for the convergence of series in Eq. (3·3), we find 

1· bn" 1· bnv 
€K Imn--= 1m n--=--

n-co b~-l n--co b~+l 2' 

and from the recurrence relation (3·5) 

so that 

2 
z' 

€K 

Z 

Thus we find that the series converges for z> €K or Ixl > 1. 

(3·11) 

(3·12) 

(3·13) 

In order to derive the asymptotic behavior of the Coulomb solution Re", it is 
useful to rewrite as 

Re"=R~ tn+ R~ out (3·14) 
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Analytic Solutions of the Teukolsky Equation 1087 

where 

~bV( 2)n r (n+l/+l-s+i€),Tr( + +1 +·2 2 22·) x ~ n - Z r( + + 1 + . ) '1' n l/ - S l€, n + l/ + ; lZ , n=-oo n l/ s - Z€ 

(3·15) 

00 

x L: bnV(-2z)n1Jf(n+l/+l+s-i€,2n+2l/+2; -2iz) , (3 ·16) 
n=-oo 

where 1Jf is the irregular confluent hypergeometric function. 13
) 

Another independent solution is obtained by replacing l/ with - l/ -1 because 
- l/ -1 is the renormalized angular momentum if l/ is the solution of Eq. (2 ·13). 
Thus, we have another independent solution by Rc -V-I. The coefficients b=;:.-I are 
obtained from bnv by the relation 

(3·17) 

by choosing bov = bo -v-I = 1 in conformity with Eq. (3 ·10). With the use of Eq. (3 ·14), 
we find by using the identity 1Jf( - L±s+ iE, -2L; X)=X 2L+l1Jf(L+ l±s+ iE, 2L+2; x), 

R-V-I--· _invsinJr(l/-s+i€) R V 

Cln - ze sinJr(l/+s-i€) Cln, (3·18) 

(3 ·19) 

Thus the solution Rc -1.'-1 is expressed by 

R -u-I_ . _invsinJr(l/-s+i€)Rv +. inuRv 
C - - le . (+ .) C In ze C out • 

SlllJr l/ S-l€ 
(3·20) 

§ 4. The relation between two solutions 

First we note that Rov and Rcv are solutions of the Teukolsky equation. Second 
we see that if we expand these solutions in Laurent series of x = - Z/€K, both solutions 
give the series with the same characteristic exponent at x-co. Thus, Rov must be 
proportional to Rcv

, 

(4 ·1) 

The constant factor Kv is determined by comparing like terms of these series. We 
find 
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(€K)-I.I- nS2-I.I-r( - i)T(l- s - i€- ir) 
r(l + r+ v+ ir)r(l + r+ v-s- i€)r(l + r+ v-s+ i€) 

x f: r(n+v+1+ir)r(n+r+2v+1) 1.1 

n=r (n- r)!r(n+ v+ 1- ir) an 

[ 
r b 1.1 J-I 

X 2L( - i)n (r- n)!r(n+ r+2v+2) , 

where r is an arbitrary integer. 

(4-2) 

By using these relations, Rtn can be written by using the Coulomb expansion 
solutions as 

-(K· . -inl.lsimr(v-s+i€)K )RI.I +(K +. inl.lK )RI.I 
- 1.1- ze . (+ .) -1.1-1 C In 1.1 ze -1.1-1 C out. 

SInK V S-l€ 
(4 -3) 

The asymptotic behavior at Z-HXJ is 

(4-4) 

where M~t and AI~ are amplitudes of the outgoing and incoming waves at infinity of 
the solution which satisfies the incoming boundary condition at the outer horizon. 
They are given by 

M~t = e(iI2)n(l.I+l+S-i6)2-1-s+ i6(KI.I + ieinl.l K-I.I- 1) f: bnl.l( - i)n (4-5) 
n=-oo 

and 

A SI.I- -(iI2)n(-I.I-l+S-i6)2-I+S-i6(K . -inl.l sinK(v-s+ i€) K ) 
In-e I.I-ze . (+ .) -1.1-1 

SInK V s- z€ 

(4 -6) 

One application of these amplitudes is to derive the absorption coefficients. By 
using the method given in Ref. 14), the absorption coefficient r can be expressed in 
terms of Asln and As out as follows: 

rsl.l = 1 _ r10ut r10ut 

I 
A-SI.I ASI.I I 

Alnsl.I Aisri' . (4 -7) 

In the end of this section, we show how the upgoing solution which satisfies the 
outgoing boundary condition at infinity is expressed in terms of Rol.I and Ro -1.1-1 defined 
in Eq. (2-21). From Eq. (2-30), we find 

R I.I -(A K . -inl.lsinK(v-s+i€)A K )RI.I 
out- 1.1 I.I-ze . (+ .) -1.1-1 -1.1-1 Cln 

SInK V S- z€ 

(4 -8) 

By using Eqs. (4-3) and (4-8), we obtain 
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Analytic Solutions of the Teukolsky Equation 1089 

=[s~n;r(LI-s+~€)(K )-IR "-ieiTtv(K _ _ )-IR -"-IJ 
Sln;r(LI+s-Z€) ,,0 ,,1 0 

(4·9) 

§ 5. Low frequency expansions of solutions 

In this section, we discuss how to derive the solution in the expansion of the small 
parameter €=2Mw. In order to find the solution in Eqs. (2·1) and (4·3) up to some 
power of €, we have to calculate LI and an" to that order by using Eq. (2 ·12) and (2 ·13) 
with the condition (2·14) and aoll =ao- II

-
I=l. Other coefficients bn

ll can be calculated 
from an" by using the formula (3·10). 

For anll with n~l, the equation for Rn(LI) is useful. Since anll, rnll~O(€) and [3n" 
~n(n+2I+l)~O(l), we find Rn"~O(€) for all positive integer n. As a result with 
ao"=l, we find 

(5·1) 

Before discussing the coefficients for n < 0, we derive the renormalized angular 
momentum LI up to 0(€2). For this, it is convenient to use the constraint for n=l, 
RI(LI)Lo(LI)=l. We note that RI(LI)~ O(€) so that Lo(LI) must behave as 0(1/€), which 
requires that /3o"+rO"L_I(LI)~0(€2) because ao"~O(€). In order to obtain LI up to 
O(€), we need to know the information of [3011 up to 0(€2) where the second order term 
of LI is involved. Thus, we need the information about RI(LI), L-I(LI), ao ll and roll up 
to O(€). Here we assume that L-2(LI)~ O(€) whose validity will be discussed later. 
In this situation, RI(LI), L-I(LI), ao" and ro" can be calculated immediately. By 
substituting these to the constraint equation R I(LI)Lo(LI)=l, we find 

LI=I+21~1 [-2- 1(!:1)+~~~~~~~ 
+ 0(€3). 

(/2- s2)2 J 2 

(21-1)21(21 + 1) € 

(5·2) 

The fact that the correction term of LI starts from the second order term of € simplifies 
the calculation of the coefficients up to 0(€2). 

Now we discuss the coefficients for negative integer n for s*O which are derived 
by using the equation for Ln(LI). For large negative value of Inl, Ln(LI)~ - i€K/2n. 
Most of the negative integer value of n, Ln(LI)~ O(€). There arise some exceptions 
for certain values of n because the denominator of anll vanishes at n= -I-lor -I 
-3/2 and also [3n" vanishes at n= -21-1 in the zeroth order of €. Because of this, 
we find for integers I, 

L-l-l(LI)~ 0(1), 

L-21-I(LI)~ 0(1/E) , 
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We also find for half-integers n 

L-(1+1/2)-I()))~ 0(1/e) , 

L-2(I+1/2)()))~ O(l/E) , 

Ln()))~ O(E) for all others. 

From the above estimates, we find for a integer I, 

an" ~ O( Elnl) for -1 ~ n ~ -I , 

a~1-l ~ 0(E1
) , 

an"~O(Elnl-1) for -1-2~n~-21, 

a~21-1 ~ O( E21
-

2
) , 

an"~ O(Eln l-3) for -21-2~ n, 

and for a half-integer I, 

a )) ~ 0(.:-(1+1/2)-1) 
-(1+112)-1 " 

a)) ~ 0(.:-2(1+1/2)-4) -2(1+1/2)" , 

(5·3) 

(5'4) 

(5'5) 

(5'6) 

With the above order estimates, we see that how many terms should be needed to 
calculate the coefficients with the specified accuracy of E. 

Coming back to )), we assumed that L-2()))~ O(E) which is valid if we consider 
1 ~3/2. However, this speciality is due to the fact that we solved the constraint 
equation for n=l in Eq. (2·13). Since)) is independent of what n we used for solving 
the constraint equation, the result in Eq. (5·2) should be valid for all angular 
momentum case. In fact the result is nonsingular for all integer and half-integer 
values of t. 

The coefficients an)) and also bn)) up to 0(E2
) (which are valid for t~3/2) are 

obtained explicitly by 

"_ .(1 + 1-s)2[(1 + l)K+ imq] 
al - l 2(1 + 1)2(21 + 1) E 

(I+1-s)2 [ . (l+l)K+imq 2J 2 (3) 
+ 2(1+1)2(21+1) 1-Z I (l+1)2(l+2)mqS E +0 E , (5'7) 
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(5·8) 

IJ _ . (l+S)2[lK-imq] 
a-1-1 2/2(2/ + 1) € 

(I+s)2 [1+· IK-imq 2J 2 O( 3) 
- 2/2(2/+1) 1 (1-1)/2(1+1) mqs € + €, (5·9) 

(1-1 +S)2(1 +s)2[(I-l)K- imq][IK- imq] 2+ O( 3) 
4(1- 1) 12(2/-1)2(2/ + 1) € €. (5'10) 

The coefficients bn
lJ are given from Eq. (3·10) by 

(5'11) 

(I + 1 + s)2(1 + 2 + s)2 IJ + O( 3) 
(I + 1 - s)2(1 + 2 - S)2 a2 €, 

(5·12) 

b lJ .(I-s)2 IJ +O( 3) -1=-Z(I+S)2 a-1 €, (5'13) 

(5'14) 

By using these coefficients, we can evaluate the ingoing and the outgoing amplitudes 
at infinity. From Eq. (4'2), we find by taking r=O that KIJ~ 0(€-1+8). On the other 
hand, the estimate of K- IJ - 1 needs some care. By taking into account of the singular 
behaviors of gamma functions and the fact that the deviation of 11 from 1 starts from 
the second order of €, we find that K- IJ - 1 ~ O(€I-l+SsiniJrr). Thus we obtain 

K- IJ - 1 O( 21-1 . . ) 
~~ € smZ7rr, (5'15) 

where r=(€-mq)/K. In the approximation up to 0(€2), we can neglect K- IJ -1 term 
when we restrict I;c. 3/2. We note that for the Schwarzshild case, r = € so that the 
ratio in Eq. (5·15) is of order €21. 

Thus for I;c. 3/2, we get the simple expressions for the outgoing and the incoming 
amplitudes as follows: 

(5·16) 

and 

A SIJ_· -u/2)lr(-IJ+S-i€)2-1+S-i€K ~ b lJ·n r(n+1I+l-s+i€) 
In-ze IJn~2 n Z r(n+1I+1+s-i€)· (5 '17) 

By substituting the coefficients, we can easily calculate the amplitudes up to the order 
€2. Since the explicit expressions are complicated, we present the amplitudes up to 
0(€2) explicitly. We find 
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and 

where 
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M~t= - ie-CiI2JltCl.I+s-iEJ2-1-s+iEKl.Iexp{ { ~ (1 + I (IS: 1) )c+ ¢2C2 J 

+s[ 1(~.$1) C+ ¢2C
2J}[ 1 + 2I2(lfl)2 E+d2E

2
J 

+ 1 { (I - S )2 + (I + 1 + S )2 } { (1- S )2 
4(21 + 1) I 1+1 12 

+(1---> -1-1) , 

(I+l+S)2}J 
(I + 1)2 

¢2= 21 ~ 1 [~ + (mqs)2{ (1_1);3(1 + 1) + 4/~t/:/l)3 } 

+ [,,(I-l~~liD7~a[l~ ~)I)1 +S2] J+(I--->-I-l) , 

[r(1 '-1)/-(mq)2][«/-l)2+ s2)(/2+ S2) +4(1-1)ls2] 
4(1 -1)/2(21-1)2(21 + 1) 

,,2 { S2 }2J +16 1+ 1(1+1) +(1--->-1-1). 

(5 -18) 

(5-20) 

(5-21) 

(5-22) 

(5-23) 

The above result shows that the absorption coefficient r in Eq. (4-7) is zero up to the 
order E2 for Kerr black hole. 

§ 6_ Summary and remarks 

Analytic solutions of the Teukolsky equation are obtained in the form of series 
of hypergeometric functions and Coulomb wave functions. The convergence of these 
solutions is examined. The series solution of hypergeometric type is convergent in 
the region except infinity, while the one of Coulomb type is convergent when Ixl > 1. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article-abstract/95/6/1079/1867350 by 00800 U

niversidade Técnica de Lisboa user on 02 August 2020



Analytic Solutions of the Teukolsky Equation 1093 

The renormalized angular momentum 1/ turns out to be identical for these two 
solutions. This fact enabled us to relate these two solutions analytically. 

We examined the € dependence of an!) and found that the series corresponds 
essentially to € except for some negative integer n where some anomalous behaviors 
occurred for which we need to take care to evaluate the coefficients. We explicitly 
calculated 1/, the coefficients, Af~t and A~ up to the order €2. 

The solutions are useful not only to discuss the low frequency behavior of various 
physical quantities in applications, but also to know the general properties of solu­
tions. For example, we consider the € dependence of the renormalized angular 
momentum 1/ in the Schwarzschild geometry. 1/ is determined by solving the tran­
scendental equation (2-13) which is composed of 13k!) and ak!)r~+1. These quantities 
are even functions of € in the Schwarzschild geometry because r= €. Therefore, we 
conclude that 1/ is an even function of €, i.e., 1/(- €)= v(€). This property is the 
special one and not valid for the Kerr geometry. The fact that the solutions are given 
by the € expansion is important because the € expansion corresponds to the Post­
Minkowskian G expansion and also to the post-Newtonian expansion when they are 
applied to the gravitational radiation from a particle in circular orbit around a black 
hole. The solutions can be used for the analysis of the gravitational radiation from 
coalescing compact binary systems. Since the analytical properties and the conver­
gences are known, the solution will give a powerful method for numerical computa­
tion and will contribute to construction of accurate theoretical templates for the 
gravitational wave observation by LIGO and VIRGO. 
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Appendix A 
-- Spheroidal Teukolsky Equation--

To expand the radial Teukolsky equation, we have to derive the eigenvalue of the 
spheroidal Teukolsky equation. Fortunately, our method is also available in expan­
sion of the spheroidal Teukolsky equation. Fackerell expands the spheroidal Teu­
kolsky equation in terms of Jacobi functions. 12

) In our expansion method, we can 
derive the eigenvalue of the spheroidal field equation which appears in the radial 
Teukolsky equation. The separated spheroidal Teukolsky equation is 

2s~x+ E ]S(x)=O, (A-I) 

where ~=aQ), x=cosB. We make transformation as 

( I-x)a( l-x)f3 S(x)=etx -2- --2- u(x) , (A-2) 

where a=lm+sl, /3=lm-sl, then we recast the equation: 
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(l-x2)u"+[S-a-(2+a+ S)x]u'+[ E- a~ 13 ( a~ 13 + 1) Ju 

=.;:[ -2(I-x2)u' +(a+ S+2s+2)xu -(.;:+ S-a)u] . (A'3) 

As a solution of the first order equation, we use a Jacobi function which is the solution 
of the equation 

By using recursion relations of Jacobi functions, we can analytically expandu in 
terms of Un(a,{J),I2) 

00 

Un= ~ cjUi."tf> , 
j=-oo 

(A'5) 

where l=n+(a+S)/2. We can expand Cj, E in';:: 

(A'6) 

where we set co=l, dOlo=o and E(O)=/(t+l). 

(21 +2)2_(a+ SY 
Cl (21 + 1)(21 + 2)2 (t + s + I)';: , (A'7) 

(2I)2-(a- 13)2 
C-l (21)2(21 + 1) (t -s)';: , (A'8) 

(A·9) 

(A'10) 

and E in Eq. (1·3) which is identical to that of Fackerell 12
) who also has shown that 

the convergency of the expansion in terms of Jacobi functions. 

Appendix B 
--Derivations of Equations (2'2) and (3'2)--

The radial Teukolsky equation is written by using the variable y=wr with y+ 
=wr+ and y-=wr- as 

d
2
R +(s+I)(_I_+_1_) dR 

dy2 y-y+ y-y_ dy 

+[1 +_1_ (€+is+ €+2is )+_1_ (€+ is €+}is) 
y-y+ K y-y-

+ 1 (€- is+ rY+s2 + 1 (€- is- r)2+s2 
(y- y+)2 4 (y- y_)2 4 

(B·l) 
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(a) The expansion in terms of hypergeometric functions 
We define a new variable x by 

Y-Y+=€K(-X) , Y-Y-=€K(l-x). 

We rewrite R as 

1095 

(B-2) 

(B-3) 

in order to eliminate the terms proportional to 1/x2 and 1/(1-x)2. Then, a and /3 are 
determined to be one of the following values, 

(B-4) 

respectively. With these choices of a and /3 and the change of R in the following 
form: 

(B-5) 

the equation for p is expressed as 

x(l-x)p" +[(2a+s+ 1)-2(a+ /3+s+ l)x]p' - abp 

= -2i€Kx(1-x)p' +2i€K(a+ /3+ 1 + i€)xP+[ -A+2a8+(s+ l)(a+ /3) 

-i€K(2a+s+1)+€K(€+is)+~ €2_ ~ r2+i€s-€mq-ab]p, (B-6) 

where a and b are chosen such that the equality 

a+ b=2(a+ /3)+2s+ 1 (B-7) 

is satisfied and also they take some simple forms. 
If we take one of choices (a-, /3+) and (a-, /3-), the form of R defined in Eq. (B-3) 

becomes a suitable form for the solution which satisfies the incoming boundary 
condition on the outer horizon. On the other hand, the choice of (a+, /3-) or (a+, /3+) 
is suitable to obtain the solution which satisfies the outgoing boundary condition. In 
the text, we took (a-, /3+) for the solution satisfying the incoming boundary condition 
in which case the above equation (B-6) reduces to the one in Eq. (2-2), by taking a 
=v+1-ir, b= -v-ir. For the solution satisfying the outgoing boundary condition, 
we took (a+, /3-) in which case the equation takes a similar form. 

(b) The expansion in terms of Coulomb wave functions 
We take the parameterization 

(B-8) 

and determine r to eliminate the singularity proportional to l/(y- y-)2. Then we find 
r should take one of the following values: 

(B-9) 
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If we take one of these values of r, the equation for / becomes with z= y - y+ = - €ICX 

. €K[2r- r(€- is)] z2f" +[z2+2(€+ is)z]/= - €KZ(j" + /)-2r€K/' - / z 

(B'10) 

Equation (3·2) in the text is obtained by taking r=r-. The choice r=r- gives a 
Coulomb type solution which matches with the hypergeometric type solution with (a-, 
/3+) as we saw in Eq. (4 '1). We can also obtain the solution by choosing r+ which 
matches with the hypergeometric one with (a-, /3-). 
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