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Abstract

In classical general relativity, the values of �elds on spacetime are uniquely

determined by their values at an initial time within the domain of depen-

dence of this initial data surface. However, it may occur that the spacetime

under consideration extends beyond this domain of dependence, and �elds,

therefore, are not entirely determined by their initial data. This occurs, for

example, in the well-known (maximally) extended Reissner–Nordström or

Reissner–Nordström–deSitter (RNdS) spacetimes. The boundary of the region

determined by the initial data is called the ‘Cauchy horizon.’ It is located inside

the black hole in these spacetimes. The strong cosmic censorship conjecture

asserts that the Cauchy horizon does not, in fact, exist in practice because the

slightest perturbation (of the metric itself or the matter �elds) will become sin-

gular there in a suf�ciently catastrophic way that solutions cannot be extended

beyond the Cauchy horizon. Thus, if strong cosmic censorship holds, the

Cauchy horizon will be converted into a ‘�nal singularity,’ and determinism

will hold. Recently, however, it has been found that, classically this is not the

case in RNdS spacetimes in a certain range of mass, charge, and cosmological

constant. In this paper, we consider a quantum scalar �eld in RNdS spacetime

and show that quantum theory comes to the rescue of strong cosmic censorship.

We �nd that for any state that is nonsingular (i.e., Hadamard) within the domain

of dependence, the expected stress-tensor blows up with af�ne parameter, V,

along a radial null geodesic transverse to the Cauchy horizon as TVV ∼ C/V2
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with C independent of the state and C 6= 0 generically in RNdS spacetimes.

This divergence is stronger than in the classical theory and should be suf�cient

to convert the Cauchy horizon into a singularity through which the spacetime

cannot be extended as a (weak) solution of the semiclassical Einstein equation.

This behavior is expected to be quite general, although it is possible to have

C = 0 in certain special cases, such as the BTZ black hole.

Keywords: strong cosmic censorship, quantum�eld theory on curved spacetime,

Reissner-Nordström-deSitter spacetime

(Some �gures may appear in colour only in the online journal)

1. Introduction

The Reissner–Nordström–deSitter (RNdS) spacetime describes a charged, static and spher-

ically symmetric ‘eternal’ black hole in deSitter spacetime. It is an exact solution to the

Einstein–Maxwell �eld equations with a positive cosmological constant Λ. The part of the

maximally extended spacetime relevant for the discussions in this paper is drawn in �gure 1,

see for example [1, 2] or section 2 for detailed discussion.

The regions II and IV are inside the black hole, the regions I, III outside, and the green line

is a spacelike surface,Σ. By the usual properties of solutions to hyperbolic �eld equations such

as the covariant Klein–Gordon wave equation,

(�− µ2)Φ = 0, (1)

if we prescribe initial data for Φ on such a surface, then Φ will be determined uniquely in

the ‘domain of dependence’ of Σ, which in the case at hand is the union of regions I, II, III.

However,Φ is not determined uniquely beyond—i.e., in particular, in region IV—representing

a breakdown of determinism. The horizon separating region IV from the rest is called the

‘Cauchy horizon’. A similar situation occurs for the more general Kerr–Newman–dS black

holes (not discussed in this paper) and for other �elds such as the linearized gravitational �eld.

The maximally extended RNdS spacetime also extends through the surface labeled as CHL

in �gure 1 to a region isometric to region IV. The surface CHL also comprises part of the

full Cauchy horizon of the maximally extended RNdS spacetime. However, an eternal static

black hole is physically unrealistic. For a black hole produced by the collapse of a charged,

spherically symmetric body, the region exterior to the body would be described by the RNdS

spacetime, but the region inside the body would be replaced by a suitable ‘interior metric.’ The

dotted line in �gure 1 represents a typical trajectory of the surface of a collapsing body. The

region of RNdS spacetime to the right of this line is thus physically relevant for the gravita-

tional collapse spacetime. However, the region to the left of this line would be ‘covered up’

by the collapsing body and is not physically relevant. The key point is that the singularity in

the region beyond CHL will always be ‘covered up’ [3]. Indeed, all of CHL and part of CHR

may be ‘covered up,’ as is the case for the trajectory shown in �gure 1. But even if CHL is not

fully covered up, it will no longer play the role of a Cauchy horizon in a gravitational collapse

spacetime. On the other hand, a portion of CHR ‘near’ the event horizon will never be covered

up and will correspond to a portion of the Cauchy horizon of the gravitational collapse space-

time. In this paper, we will consider the behavior of a quantum scalar �eld as one approaches

CHR in the extended RNdS spacetime shown in �gure 1. Our results will be applicable to the

portion of the gravitational collapse spacetime outside of the collapsing body.
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Figure 1. Sketch of partially extended RNdS. The wiggled line indicates the curvature
singularity and the double line conformal in�nity. Filled circles correspond to bifurcation
surfaces, whereas open circles indicate singular points and/or points at in�nity. Also
indicated, as a green line, is a Cauchy surface for the partially extended RNdS, up to the
region IV beyond the Cauchy horizon CHR. To the r.h.s. of the dotted curve is the outer
region of a shell in a typical collapse spacetime.

It was argued many years ago by Penrose [4] that dynamical �elds such as Φ would have a

very bad behavior at the Cauchy horizon CHR, thereby converting the Cauchy horizon to a sin-

gularity. The conjecture that the maximal Cauchy evolution of suitable initial data generically

yields an inextendible spacetime is known as strong cosmic censorship (sCC). If sCC holds

in general relativity, then there would be no breakdown of determinism. Penrose’s original

argument3 for the instability of CHR, phrased for Reissner–Nordström (RN) spacetime where

Λ = 0, is that a timelike observer staying in the external region, such as A in �gure 2, will

reach future in�nity i+ at in�nite proper time, while an infalling observer such as B in �gure 2

will reach the Cauchy horizon in �nite proper time. Thus, if A sends periodic (according to her

time) light signals into the black hole, illustrated by the green rays in �gure 2, these will arrive

more and more frequently at B according to his time. Similarly, source free solutions Φ that

oscillate only moderately near I+ will oscillate extremely rapidly near CHR, i.e., there will

be an in�nite ‘blueshift effect’ as one approaches CHR. Such a rapidly oscillating �eld would

have an in�nite transversal derivative at CHR, thus resulting in a singular stress tensor. In the

full theory, one might expect this behavior to be suf�ciently singular to render the Einstein

equations ill de�ned at CHR, thus ‘solving’ the problem of indeterminism–or rather relegating

it to the domain of quantum gravity taking over near this singularity.

On the other hand, as observed also some time ago [6–8], in the presence of a positive

cosmolgical constant, the amplitude of a dynamical �eld Φ is expected to decay exponen-

tially in region I (and on HR) due to a similar ‘red-shift effect’ related to the cosmological

expansion. In principle, this decay could counterbalance the blue-shift effect, thus leading

only to a mild—if any—singularity of the stress tensor at the Cauchy horizon, implying a

potential violation of sCC. The earlier investigations of [6–8] remained to a certain extent

3 See [5] for a closely related argument formulated in terms of ‘mass-in�ation’.
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Figure 2. Illustration of the blueshift effect in Reissner–Nordström spacetime.

inconclusive, partly because the precise conclusions depend on the regularity of the initial data

forΦ (see e.g. [9] for a detailed discussion and [2] who advocate less regular initial data). More

recently, the decay of �elds near the Cauchy horizon was analyzed in a mathematically rigor-

ous manner both in RN and RNdS spacetime, see [1, 2, 10–21]. Concretely, it was proven by

Hintz and Vasy [1] (partly building on earlier work by [22–30]) that, starting from smooth ini-

tial data e.g. on Σ, the solution Φ has Sobolev regularity H1/2+β−ǫ for any small ǫ > 0 locally

near CHR. Here the parameter governing regularity at the Cauchy horizon is

β =
α

κ−
. (2)

In this expression, κ− is the surface gravity of the Cauchy horizon and α the spectral gap, i.e.,

the in�mum

α = inf{− Im(ωnℓm)}, (3)

withωnℓm the so-called quasi-normal frequencies [31] of region I. Togetherwith their results on

‘conormal regularity’ at the Cauchy horizon, this implies via the Sobolev embedding theorem

that the �eld Φ is Hölder-continuous (C 0,β−ǫ) across the Cauchy horizon CHR. Taking the

�eld Φ as a proxy for a dynamical metric in the full Einstein–Maxwell equations, this would

correspond to a rather weak singularity in the sense that an observer crossing CHR would not

be crushed/stretched by an in�nite amount4.

Taking derivatives, the Sobolev regularity translates into a behavior not more singular than

TVV ∼ D|V|−2+2β as V → 0− (4)

for the classical stress-energy component TVV = (∂VΦ)
2 near the Cauchy horizon CHR at

V = 0, where V denotes a Kruskal-type null coordinate. (Here D depends on the solution Φ.)

This result is roughly consistent with the results of [8]. The spectral gap, α, which vanishes

4A similar conclusion for RN, where β = 0, was reached a long time ago in the context of the Israel–Poisson mass

in�ation scenario [5, 32] and later in a mathematically rigorous fashion by [13].
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for Λ = 0, has recently been analyzed in detail by Cardoso et al [33, 34] for µ = 0 in this con-

text. They have given strong numerical evidence that there are black hole parameters for which,

e.g. β > 1
2
. This would correspond to a singularity that is suf�ciently weak that a solution could

be extended in different ways as a weak solution across the Cauchy horizon; see e.g. [13] for

a more detailed discussion of such matters. Thus, it seems that, from the classical viewpoint,

RNdS black holes can violate sCC for certain ranges of the black hole parameters.

In this work, we therefore ask whether quantum effects can change this classical picture in

an essential way. For this, we consider a free, real Klein–Gordon quantum �eld equation (1)

propagating in RNdS. First, we set up a class of quantum states that are regular, in a natural

sense, near the initial data surface such as Σ in �gure 1—technically, they are of ‘Hadamard

type’. This condition is necessary and suf�cient in order to have a smoothly varying, and in

particular �nite, expectation value of any ‘composite �eld’ (i.e. a suitably renormalized [35]

monomial in covariant derivatives ofΦ) such as the stress tensor in the regions I, II, III, but not

necessarily at the Cauchy horizon CHR. In this sense, Hadamard states are the quantum analog

of classical solutions that are smooth on an initial data surface Σ. They are thus the natural

class of states to work with because—at least in our opinion—the statement of sCC becomes

obscure if we work with states having singularities already to begin with5, i.e. states which fail

to be Hadamard near Σ already.

Our main result is that the expectation value of the stress tensor operator component TVV in

such a state Ψ generically diverges as

〈TVV〉Ψ ∼ C|V|−2
+ tVV as V → 0− (5)

in terms of the Kruskal type coordinate V adapted to the Cauchy horizon (see section 2 for

details), where C is some function that, in the limit V→ 0−, goes to a constant, depending

only on the black hole parameters M,Q,Λ, but not on the state Ψ. In the following, we will

identify C with its limit and treat it as a constant, but it should be kept in mind that there also

may be subleading divergences associated with the term C|V|−2 in (5). By contrast, tVV is a

piece depending on the state Ψ, diverging, however, no more strongly than the stress tensor of

a classical solution with smooth initial data, so tVV roughly behaves as (4), i.e. tVV ∼ |V|−2+2β .

Our investigations, which partly rely on numerical calculations, indicate that C 6= 0 for generic

values of the black hole parameters, consistent with recent results of [36] for the case of RN,

who have also determined the constant C in that case; see also [37] for related results. We

expect a similar behavior in Kerr–Newman–dS.6

The proof of equation (5) can be given quite easily for the case of a massless scalar �eld

in 2 spacetime dimensions. In this case, the classical divergence (4) of the stress tensor com-

ponent TVV at CHR becomes simply TVV ∼ D|V|−2+2 κcκ− . As we shall show in section 3, the

behavior of the quantum stress tensor is determined by the trace anomaly and the continuity

equation alone. We �nd that equation (5) holds, with C ∼ κ2c − κ2−. Our arguments are techni-

cally rather similar to considerationsmade a long time ago by [38–40], although there are some

minor differences in how we set up the states. By contrast, our arguments for equation (5) in 4

5Our arguments rest on the assumption of regularity across the cosmological horizon, or the weaker condition that Tvv
vanishes on the cosmological horizon, with v the ‘Killing parameter’. This condition has a natural limit in RN, that of

absence of radiation infalling from spatial in�nity. It seems natural to discuss the behavior at the Cauchy horizon in

terms of such asymptotic conditions, as without asymptotic conditions also the classical consideration of strong cosmic

censorship becomes meaningless, as discussed for example in the Introduction to [13]: the domain of dependence of a

compact achronal set in any globally hyperbolic spacetime has a Cauchy horizon, across which it is of course smoothly

extendible.
6The methods of our paper also apply to this more general case in principle.
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dimensions are considerably more involved. Our analysis in 4 dimensions involves arguments

from microlocal analysis (to estimate tVV) and a mode scattering computation in regions I, II

(to obtain a mode sum expression for C, which is then evaluated numerically). The scatter-

ing coef�cients arising in the mode sum are evaluated only in the conformally coupled case

in which µ2 = 1
6
R = 2

3
Λ, and the numerical evaluation is done only in this case as well.

Nevertheless, the fact that we �nd C 6= 0 in this case provides strong evidence that C 6= 0

generically.7

That the divergence of the state dependent term tVV in (5) is not worse than that of the

stress tensor of a classical solution is proven in subsection 5.1 for the range β > 1
2
. This is

not a serious restriction, as this is precisely the range in which sCC is potentially violated

classically, see e.g. [13]. It is remarkable that, provided C 6= 0, the strength of the singularity

is state independent, so that the blow-up at the Cauchy horizon is not restricted to ‘generic

initial data’ as in classical formulations of sCC. Restoring units, one checks that C is of O(~),

so that the leading divergence (5) is caused entirely by quantum effects.

The divergence (5) is suf�ciently strong that, if backreaction of the quantum stress tensor

on the metric were considered via the semiclassical Einstein equation, it would stretch/crush

observers on geodesics crossing the Cauchy horizon into region IV.With a stress-energy tensor

of the form (5), the Ricci-tensor should behave as Rλλ :=Rµν γ̇
µγ̇ν ∼ Cλ−2 for a null geodesic

γ crossing the Cauchy horizon at the value λ = 0 of its af�ne parameter. In contrast with the

behavior found in the classical theory by [5, 32] and [1, 2, 10–21], this would correspond to a

‘strong’ rather than a ‘weak’ singularity, e.g. in the sense of [42, 43]. In more detail, let Z1, Z2
be two Jacobi �elds normal to the null geodesic γ. Denote by n a null vector �eld along γ such

that nµγ̇
µ = 1 and 0 = Z

µ
1 nµ = Z

µ
2 nµ. Wemay use these to de�ne an area element ǫ = 1

2
Z1 ∧ Z2

at each point of γ. Furthermore, the area of this element relative to that induced by the metric is

A where 6n[µγ̇νǫαβ] = Aηµναβ . Writing |A| = x2 we �nd that the geodesic deviation equation

implies in the usual way that

d

dλ
(x2σAB) = −x2CA

λBλ,
d2

dλ2
x = −1

2
(2σABσ

B
A + Rλλ)x, (6)

with σAB, A,B = 1, 2, being the components of the shear tensor in a parallely propagated

frame and CA
λBλ being the components of the Weyl tensor (see, e.g., [44] for details). Since

Rλλ ∼ Cλ−2, the functions x, σAB must clearly behave badly as λ→ 0 unless C = 0, which as

we have argued, should not be the generic case. In fact, ifC > 0, we immediately learn from the

second equation that x→ 0 as the Cauchy horizon is reached, which corresponds to an in�nite

amount of crushing. (A similar conclusion can be reached for time-like geodesics.) On the

other hand, when C < 0, to avoid an in�nite stretching (i.e. x→∞ as λ→ 0), one eigenvalue

of σAB should diverge as λ
−1. Then by the �rst equation, if x stays away from zero as λ→ 0, at

least one eigenvalue ofCA
λBλ must diverge as λ−2. Then, by the Jacobi equation for ZAi , at least

one of the Jacobi �elds must go to in�nity, thus resulting in an in�nite stretching. This kind of

behavior presumably would convert the Cauchy horizon into a singularity through which the

spacetime could not be extended as a (weak) solution of the semiclassical Einstein equation.

If so, quantum effects can be said to rescue sCC, at least in the case of RNdS.

This paper is organized as follows: in section 2, we introduce RNdS spacetime and

some standard coordinate systems. In section 3, we analyze the two-dimensional case. In

7As we shall discuss in section 6, this divergent behavior differs signi�cantly from the results found for the BTZ-black

hole spacetimes by [41], since C = 0 in that case.
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section 4, we recall the basic setup for linear quantum �eld theory, including the construc-

tion of Hadamard states by prescribing data on suitable null surfaces (‘null quantization’). We

construct the Unruh state in RNdS spacetime and show it is Hadamard in the union of regions

I, II, and III. In section 5, we treat the four-dimensional case. This requires (i) showing that

the difference in the stress-energy of the Unruh state and an arbitrary Hadamard state behaves

as in the classical case and (ii) performing a mode sum analysis to estimate the behavior of

the Unruh state stress-energy. Numerical evaluation of the mode sum is required to argue that

generically,C 6= 0 in (5). In section 6 we compare our results to the case of the BTZ black hole

recently analyzed by [41], where, in fact, C = 0. In section 7, we draw our conclusions.

2. RNdS spacetime and coordinate systems

The metric of RNdS spacetime is

g = − f (r)dt2 + f (r)−1dr2 + r2dΩ2, (7)

where dΩ2 is the line element of the unit 2-sphere, and where

f (r) = 1− 2M

r
+
Q2

r2
− Λ

3
r2, (8)

withM > 0, Q and Λ > 0 having the interpretation of the black hole mass, charge and the cos-

mological constant, respectively. For physically reasonable8 parameters, assumed throughout,

this function has three positive roots r− < r+ < rc, corresponding to the Cauchy, the event,

and the cosmological horizon, respectively. In terms of these, one may express f as

f (r) =
(r − r−)(r− r+)(rc − r)(r − ro)

r2(r2o − r−rc − r+r− − r+rc)
(9)

with

ro = −(rc + r+ + r−) (10)

being the the fourth, negative, root. The quantities

κX =
1

2
| f ′(rX)|, X ∈ {−,+, c, o} (11)

are the corresponding surface gravities. One has κ− > κ+, with equality in the extremal case

r− = r+. Far from extremality, we have κ−,κ+ > κc, but in the extremal limit r− → r+, one

has κ−,κ+ → 0 while κc stays �nite. We will refer to the parameter range where κ− < κc as
the near extremal regime.

We frequently use the tortoise coordinate r∗ , de�ned up to an integration constant by

dr∗ = f (r)−1dr. For later convenience9, we choose the integration constant in the interior region

such that, near r = r+,

r∗ =
1

2κ+
log |r − r+|+ D+ O(r − r+), (12)

8 I.e., solutions representing a black hole hidden from the outside by an event horizon, as opposed to a representing a

naked singularity visible from the outside.
9This becomes relevant when matching the phases of the various mode functions across r = r+ in section 5.2.

7
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Figure 3. Same as �gure 1, but with an indication of the coordinates used.

with the same integration constant D for positive and negative r− r+. In terms of the tortoise

coordinate, the metric reads

g = f (r)(−dt2 + dr2∗)+ r2dΩ2. (13)

In the exterior region, r+ < r < rc, the coordinate r∗ diverges to−∞ toward the event horizon

and to +∞ toward the cosmological horizon. Choosing further

u := t − r∗, v := t + r∗, (14)

leads to

g = − f (r)dudv + r2dΩ2. (15)

With these de�nitions, u diverges to +∞ at the event horizonHR, while v diverges to +∞ on

the cosmological (de Sitter) horizonHL
c , cf �gure 3. Choosing

U := − e−κ+u, (16)

one can extend U (and the metric) analytically from (−∞, 0) to (−∞,∞) over the event hori-

zon HR into the interior of the black hole. In this interior region, r∗ goes from −∞ at HR to

+∞ at CHL.

Furthermore, choosing

Vc := − e−κcv , (17)

one can extend Vc (and the metric) analytically from (−∞, 0) to (−∞,∞) over the cosmolog-

ical horizonHL
c . Similarly, choosing

V− := − e−κ−v , (18)

8
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one can extend V− (and the metric) analytically from (−∞, 0) to (−∞,∞) over the Cauchy

horizon CHR. Figure 3 gives a sketch of the geometry and indicates the coordinates and their

range. It is sometimes useful to also consider a u coordinate in the interior region II, where it

can be de�ned as

u = − 1

κ+
log U. (19)

It diverges to +∞ on the event horizonHR and to −∞ on CHL, cf also �gure 3. Due to (12),

this is consistent with (14), also in region II. Finally, a coordinate adapted to CHL, i.e., that

allows for an extension through CHL, can be de�ned as

U− = eκ−u = U
− κ−
κ+ . (20)

For our arguments in sections 4.2.2 and 5.1, we will need estimates on the asymptotic behav-

ior of classical solutions near i+ (or analogously at i−). This has been analyzed in the present

context by Hintz and Vasy [1] and is best expressed resolving i+ (i−) by a blow up procedure

also introduced in [1]. We �rst concentrate on region I where r+ 6 r 6 rc. In this region we

can de�ne, following [1], a new time coordinate (basically the Kerr-star coordinate) by

dt∗ = dt ± [ f (r)−1
+ c(r)]dr. (21)

Here c(r) is a smooth function on the interval [r+, rc], up to the boundary, such that

c(r)

{
= − f (r)−1 r ∈ (r+ + δ, rc − δ),

∈ (−2 f (r)−1, 0) r ∈ [r+, r+ + δ/2) ∪ (rc − δ/2, rc].
(22)

Note that near r+ and rc, the function c(r) is not fully prescribed, but only restricted to a

(r dependent) interval. The + sign in (21) is chosen near r+ and the − sign at rc. For

r ∈ (r+ + δ, rc − δ), dt∗ coincides with dt, and the modi�cations near r+, rc ensure that t∗ can

be extended as a time-like coordinate to r < r+, r > rc. In particular, in the coordinate system

(t∗ , r,Ω) thus set up for r ∈ [r+, rc], the metric takes the form (7) for r ∈ (r+ + δ, rc − δ), and

g = − f (r)dt2∗ ± 2[1+ c(r) f (r)]drdt∗ − c(r)[2+ c(r) f (r)]dr2 + r2dΩ2 (23)

for r ∈ [r+, r+ + δ/2) ∪ (rc − δ/2, rc]. The coordinate transformations has achieved that the

‘point’ i+ has been blown up to the corridor (r+, rc)r × S2Ω which is represented by the lower

part of the boundary at the coordinate location τ = 0 of τ = e−t∗ of a rectangle (t0,∞)t∗ ×
(r+, rc)r × S2Ω representing the region I near i+. A similar procedure can be carried through

with the regions II, III, IV; see section 2.1 of [1]. The blow up of i+ is shown in �gure 4.

The vertical lines in the domain R represent (parts of) CHR, HR, HL
c , respectively, and the

horizontal boundary at τ = 0 represents a blow up of i+.10

As discussed in the Introduction, only parts of the partially extendedRNdSwould be present

in a more realistic spacetime representing a collapsing spherical object. However, even in the

presence of a collapsing star, a portion of CHR near i+ is always part of the spacetime, and our

arguments would apply to that part. To make our analysis simple, we will ignore the collapsing

star, which is inessential to this problem, and work with the portions I, II, III, IV of RNdS

spacetime as described above.

10 In [1], also a further arti�cial horizon beyond the Cauchy horizon is introduced. We refer to [1] for details.

9
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Figure 4. Sketch of the ‘blow-up’ of i+ and of a sequence of Cauchy surfaces as
described in the text. The shaded region is calledR.

3. Quantum stress-energy in two-dimensional RNdS spacetime

In this section, we consider a massless, real scalar �eld Φ satisfying

�Φ = 0 (24)

on the two-dimensional spacetime obtained from (7) by suppressing the angular coordinates,

i.e.,

g = − f (r)dt2 + f (r)−1dr2, (25)

with f given by equation (8).

3.1. Behavior of the classical and quantum stress-energy tensor near CHR

We �rst consider the behavior of the stress-energy component TVV near CHR for a classical

�eld (24). This can be determined immediately from the facts that (i) the stress-energy tensor

is conserved,∇νTµν = 0, and (ii) the classical stress-energy tensor is traceless, Tµµ = 0. Thus,

in the null coordinates u, v of (14), we have Tuv = 0. The µ = v component of the continuity

equation∇νTµν = 0 then yields

∂uTvv = − f ∂v( f
−1Tuv) = 0. (26)

Thus, Tvv is constant along any ‘left moving’ null geodesic, such as the blue line in �gure 5, i.e.,

we have Tvv(U, v) = Tvv(U0, v). We now take the limit as v→∞ with U0 < 0 and U > 0, so

that (U, v) approaches CHR and (U0, v) approachesHL
c (see �gure 5). We transform to regular

coordinates V = V− and V = Vc near CHR andHL
c , respectively, (see equations (17) and (18)).

We obtain

TV−V− =
κ2c
κ2−

(−V−)
2 κcκ− −2

TVcVc . (27)

If the classical solution is smooth on HL
c , then (27) shows that if TVcVc 6= 0 on HL

c and if

κc < κ−, then TV−V− blows up on CHR. However, in all cases, if TVcVc has a �nite limit on

HL
c , then V

2
−TV−V− → 0 on CHR.

We now consider the corresponding behavior of the quantum stress-energy tensor near

CHR. The only difference in our analysis from the classical case is that, as is well-known

10
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Figure 5. The blue arrow indicates the integration path and the red arrows the limit
v→∞ in the discussion of the 2d case.

(see e.g. [38] for a thorough discussion) in any conformally invariant �eld theory in 2

dimensions, we have a trace anomaly of the form

gµνTµν = aR, (28)

where a = 1/24π for the case of a massless scalar �eld. For the metric (25), we have R = −f ′′,
where the prime denotes derivative w.r.t. r, so

Tuv =
a

4
f f ′′. (29)

Therefore, the µ = v component of the continuity equation now reads

∂uTvv = − f ∂v( f
−1Tuv) = −a

8
f 2 f ′′′. (30)

This can be integrated to yield

Tvv(U, v) =
a

8

[
2 f f ′′ − ( f ′)2

]r(U,v)
r(U0 ,v)

+ Tvv(U0, v). (31)

We choose U0 < 0 and U > 0 and take the limit as v→∞. Since

lim
v→∞

r(U, v) =

{
rc U < 0,

r− U > 0.
(32)

we obtain

lim
v→∞

Tvv(U, v) = lim
v→∞

Tvv(U0, v)−
a

2
(κ2− − κ2c). (33)

This differs from the classical case by the step of −a(κ2− − κ2c)/2 that occurs at U = 0.

When we transform (33) to regular coordinates V = V− and V = Vc near CHR and HL
c ,

respectively, the �rst term will give rise to the behavior (27) found in the classical case.

However, the second term will give rise to singular behavior of the form

TV−V− ∼ a

2

κ2c − κ2−
κ2−

1

V2
−
. (34)

11
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Unless κc = κ−, this behavior is more singular than the classical behavior. Furthermore, in the

quantum case, the V−2
− divergence of TV−V− at the Cauchy horizon CHR is present whenever

κc 6= κ− even if TVcVc vanishes on the cosmological horizonHL
c .

Similar arguments for the RN case were previously given in [39]. Apart from not assuming

stationarity, the main difference of our argument is that we impose the ‘initial condition’ of

nonsingularity at HL
c instead of the event horizon, as in [39], which seems physically much

better motivated.

3.2. The Unruh state in two-dimensional RNdS

The main shortcoming of the analysis of the previous subsection is that it does not generalize

to higher dimensions, as the trace anomaly does not give suf�cient information to determine

Tvv . To make an argument, one has to invoke the—very plausible—absence of numerical coin-

cidence of a cancellation between a geometric (from the trace anomaly) and a state-dependent

(from the tangential pressure) contribution to the integral of ∂uTvv [39].
11

In order to make contact with the analysis that will be given in the following sections for the

four-dimensional case, it is useful to analyze the properties of the Unruh state, de�ned in the

usual way (see e.g. [46] or (53) below) by the positive frequencymode solutions�ψ
U,in/up
k = 0

given by

ψU,in
k =

1√
2π

1√
2k

e−ikVc , ψU,up
k =

1√
2π

1√
2k

e−ikU , (35)

We write the metric in the form

g = GdUdVc (36)

The expectation value of the stress tensor in the state de�ned by these modes is given by [47]

〈TVcVc〉U = − 1

12π
G

1
2 ∂2VcG

− 1
2 , 〈TUU〉U = − 1

12π
G

1
2 ∂2UG

− 1
2 . (37)

One easily veri�es that 〈TVcVc〉U is �nite at the cosmological horizon HL
c and that near the

Cauchy horizon CHR

〈TV−V−〉U = − 1

48π

(
1− κ2c

κ2−

)
V−2
− , (38)

consistent with (34) and the conformal anomaly coef�cient a = 1
24π

of the scalar �eld.

We remark that in the stationary state de�ned by the modes (35), also 〈TUU〉U diverges

as U−2 at CHL in adapted coordinates U = U−. However, following [40], it is not dif�cult

to see that it is possible to choose a nonstationary state that is regular on CHL. To do so,

choose a point (u0, v0) in the exterior region of RNdS and de�ne Ũ(u) and Ṽ(v), respectively,
as the af�ne parameter of ingoing and outgoing null geodesics starting at (u0, v0), cf �gure 6.

De�ning the state by positive frequencymode solutions (4πk)−
1
2 e−ikŨ , (4πk)−

1
2 e−ikṼ , one �nds

that 〈TUU〉 is �nite on CHL, but 〈TV−V−〉 is still singular at CHR. The state is Hadamard also

in an extension beyond CHL. See �gure 6 for a sketch of the setup and the domain in which

11Another argument for a divergence at the Cauchy horizon that does not invoke absence of numerical coincidences

was put forward in [45]: under the assumptions of spherical symmetry, stationarity, and a non-vanishing total �ux of

radiation, the stress tensor diverges either at CHR or CHL. However, as discussed in the Introduction, a divergence at

CHL is irrelevant in general.

12



Class. Quantum Grav. 37 (2020) 115009 S Hollands et al

Figure 6. The domain in which the Markovic–Unruh state is Hadamard, cf the
description in the text.

the state is Hadamard. However, since regularity at CHL is inessential for us, but stationarity

is quite convenient for computational purposes, we shall work with the stationary Unruh state

de�ned by the modes (35).

Note that a single ingoing Unruh-modeψU,in
k has a stress tensor at the Cauchy horizon CHR

TV−V− [ψ
U,in
k ] = ∂V−ψ

U,in
k ∂V−ψ

U,in
k =

1

4π
k
κ2c
κ2−

V
2 κc
κ− −2

− , (39)

with a divergence which, of course, is the same as the one found in (27) for the classical stress

tensor and is weaker than that found for the full quantum stress tensor. The divergence (38)

of the quantum stress tensor is thus a UV effect, i.e. it stems from integration over modes

of arbitrarily high frequency. This can be seen more explicitly by—instead of renormalizing

the stress tensor via Hadamard point-splitting, i.e. using (37)—computing the difference of the

expectation value of TV−V− evaluated in the state de�ned by the modes (35) and a ‘comparison’

state which is Hadamard across the Cauchy horizon CHR (so that the latter has TV−V− �nite at

CHR). Such a state can be de�ned by using, instead of the modesψU,in
k , the modes�ψC,out

k = 0,

with

ψC,out
k =

1√
2π

1√
2k

e−ikV (40)

where now V = V−.
This difference in expectation values can be easily computed directly, with a point-split

procedure. Having in mind our later discussion of the four-dimensional case, we perform this

calculation differently.Restricting to the in-modes,we consider the ‘Boulware’ mode solutions

(just as a computational device, not changing the de�nition of the state!)

ψin,I
ω (Vc) =

{
(2π)−

1
2 (2ω)−

1
2 e−iωv Vc < 0

0 Vc > 0
, (41a)

13
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ψin,III
ω (Vc) =

{
0 Vc < 0

(2π)−
1
2 (2ω)−

1
2 e−iωv Vc > 0

, (41b)

where for Vc > 0, we de�ned

v = κ−1
c log Vc. (42)

Here I stands for the original exterior region and III for the region beyond the cosmological

horizonHL
c , where Vc > 0, cf �gure 1. As usual [38], the formal mode integral over the Unruh

modes ψU,in
k can also be expressed as

〈Tvv〉U =

∫
dω coth(πωκ−1

c )Tvv[ψ
in,I
ω ] (43)

with

Tvv[ψ
in,I
ω ] = ∂vψ

in,I
ω ∂vψ

in,I
ω =

1

4π
ω (44)

the evaluation of Tvv in the solution ψin,I
ω . For the difference between the expectation value

of Tvv evaluated in the state de�ned by the modes ψU,in
k and the modes ψC,out

k de�ning the

comparison state 〈 . 〉C (the latter being Hadamard across CHR), one thus obtains

〈Tvv〉U − 〈Tvv〉C =
1

4π

∫ ∞

0

dω ω

(
coth

πω

κc
− coth

πω

κ−

)
=

1

48π
(κ2c − κ2−),

(45)

which coincides with the result (33), for the anomaly coef�cient a = (24π)−1 of the scalar

�eld. We note that in terms of the modes ψin,I
ω , the stress tensor for a single mode does give

the correct prediction for the degree of singularity of the stress tensor at the Cauchy horizon,

cf (44). There is no contradiction to the previous discussion in terms of the ψU,in
k modes, as a

single ψin,I
ω mode contains arbitrarily high frequencies w.r.t. Vc. The point is that for a single

ψin,I
ω mode the stress tensor is divergent both at the cosmological and the Cauchy horizon,

but at the cosmological horizon the Boltzmann weights of these modes are exactly such that

their contributions cancel upon renormalization. At the Cauchy horizon, on the other hand,

the Boltzmann weights are then incommensurate, unless κc = κ−, so that a �nite value of Tvv
(and, thus, a singular stress-energy tensor) at the Cauchy horizon is obtained.

4. Construction of the Unruh state in four-dimensional RNdS spacetime

The analysis just given for the two-dimensional case is not adequate to treat the four-

dimensional case because (a) the trace anomaly and continuity equation do not give enough

information to determine the behavior of the stress energy tensor near the Cauchy horizon and

(b) in the two-dimensional case the �eld is an exact linear superposition of left- and right-

movers, whereas the ‘backscattering of modes’ occurs in 4 dimensions. In order to make our

arguments in 4 dimensionswith the necessary clarity and precision,we introduce in this section

some notions and results from QFT in curved spacetime. The main result of this section is the

construction of theUnruh state as a stationaryHadamard state in regions I, II, and III of �gure 1.

The reader not interested in the general discussion of QFT in curved spacetime or in the details

of the Unruh state construction may skip to section 5.

14
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4.1. Quantum fields and Hadamard states

Usually, one thinks of observables, such as the (smeared) stress tensor, as operators on a

Hilbert space. However, properly speaking, it is problematical to �x from the outset a �xed

Hilbert space representation in which the states live as vectors or statistical operators (density

matrices). This is because (a) frequently states must be considered that are not expressible as

density matrices on the �xed Hilbert space, and (b) the usual Hilbert space quantization is tied

closely to the existence of a Cauchy surface (to de�ne canonical �elds), which is not available

in our situation.

Therefore, it is formally much more convenient—and essentially requires no work (!)—to

set up the quantum theory in an algebraic manner for the purpose of the discussion. Recall

that a spacetime (N , g) is called ‘globally hyperbolic’ if it has a Cauchy surface Σ, i.e. a

spacelike or null codimension-one surface such that every inextendible causal curve hitsΣ pre-

cisely once, see [44] for details. In such a situation, the Klein–Gordon wave operator �− µ2

possesses a unique retarded and advanced propagator, called E±. We can think about the prop-

agators as integral operators E± : C∞
0 (N )→ C∞(N ), which are uniquely determined by the

properties

(�− µ2)E±
= 1, supp(E± f ) = J±(supp f ), (46)

where ‘supp’ is the support of a function f (the closure of the set where it is not zero), and

where J±(O) are the causal future/past of a set O, see e.g. [44] for the detailed de�nition of

these notions. The existence and uniqueness property of E± express the fact that the initial

value problem for (�− µ2)Φ = 0 has a unique solution, i.e. they express determinism. The

‘commutator function’ is de�ned as E = E+ − E−, and it is often identi�ed with a distribu-

tional kernel E(x1, x2) onN ×N (this identi�cation implicitly depends on the choice dη of the
integration element, which we take to be that given by the metric g). Associated with (N , g),

we then de�ne an algebra, A(N , g), whose generators are ‘smeared’ �eld observables Φ( f ),

their formal adjoints12 Φ( f )∗ and an identity 1, where f is a complex-valued C∞-function on

N with compact support, and whose relations are:

(A1) For any f1, f2 and any complex numbers c1, c2, we have Φ(c1f1 + c2 f2) = c1Φ( f1)+

c2Φ( f2).

(A2) For any f we have Φ[(�− µ2)f ] = 0.

(A3) For any f we have Φ( f )∗ = Φ( f̄ ).

(A4) For any f1, f2, we have Φ( f1)Φ( f2)− Φ( f2)Φ(f1) = iE( f1, f2)1.

Item (A1) essentially says thatΦ( f ) is an operator-valued distribution. By analogy with the

conventions in distribution theory, we write

Φ( f ) =

∫

N
Φ(x) f (x)dη(x) (47)

as if Φ(x) was a function, and work from now with the formal point-like objectΦ(x). Item (A2)

says that (�− µ2)Φ(x) = 0 in the sense of distributions and item (A3) thatΦ(x) = Φ(x)∗ in the
sense of distributions, i.e. we have a hermitian �eld. Item (A4) gives the usual commutation

relation in covariant form [Φ(x1),Φ(x2)] = iE(x1, x2)1, with E(x1, x2) the distributional kernel

of E.

12Here, the ∗ is an anti-linear operation satisfying the usual rules for the adjoint, namely A∗B∗
= (BA)∗.

15



Class. Quantum Grav. 37 (2020) 115009 S Hollands et al

In RNdS, see �gure 1, the regions I, II, III separately are globally hyperbolic, as is their

union. However, region IV is not globally hyperbolic. Since we somehow want to talk about

the �eld in this region, we must �nd a way to generalize this construction. This can be done

in the following cheap way. Let M be a non globally hyperbolic spacetime such as the the

union I ∪ II ∪ III ∪ IV depicted in �gure 1. We consider all globally hyperbolic subregions

N ⊂ M whose causal structure coincides with that of M, i.e. J±N (p) = J±M(p) ∩ N for all

p ∈ N , where J±N (p) denotes the causal future/past of p in N .13 For two such globally hyper-

bolic subregionsN1 and N2 such that N1 ⊂ N2, one then has A(N1) ⊂ A(N2). In a �rst step,

let us de�ne a (too large) algebra
∨

N⊂MA(N , g) freely generated by the algebras A(N , g) of

such globally hyperbolic subregions of M (i.e. no relations imposed between generators of

different A(Ni, g)). Then we divide out the relation ΦN1
( f ) = ΦN2

( f ) for all f, N1, N2 such

that supp f ⊂ N1,N2, This construction gives a satisfactory way of de�ning the observables

in a spacetime like RNdS which is not globally hyperbolic, by imposing all relations that can

be obtained in globally hyperbolic subregions14.

Of course, to do physics, we not only need an algebra but also states. A state in this frame-

work is simply a positive, normalized, linear functional on A(M, g), where ‘positive’ means a

functionalA(M, g) ∋ A 7→ 〈A〉Ψ ∈ C such that 〈A∗A〉Ψ > 0 for all A, and where ‘normalized’

means 〈1〉Ψ = 1. Since A(M, g) is presented in terms of generators and relations, a state is

given once we know its correlation functions 〈Φ(x1) · · ·Φ(xn)〉Ψ. Among all states, we will

focus on ‘Gaussian states’, which are determined uniquely in terms of their 2-point correlation

(‘Wightman’-) function 〈Φ(x1)Φ(x2)〉Ψ, see e.g. [35] for details. From the de�nitions, we must

have

(S1) (Commutator) 〈Φ(x1)Φ(x2)〉Ψ − 〈Φ(x2)Φ(x1)〉Ψ = iE(x1, x2) whenever x1, x2 are con-

tained in some globally hyperbolic portionN ⊂ M.

(S2) (Wave equation) (�− µ2)x1〈Φ(x1)Φ(x2)〉Ψ = (�− µ2)x2〈Φ(x1)Φ(x2)〉Ψ = 0.

(S3) (Positive type)
∫
〈Φ(x1)Φ(x2)〉Ψ f (x1) f (x2)dη(x1)dη(x2) > 0 for any smooth, compactly

supported function f onM.

Conversely, any distribution 〈Φ(x1)Φ(x2)〉Ψ with these properties de�nes a Gaussian state.

Onemay always represent the �eld algebraA(M, g) on someHilbert space such that the expec-

tation functional 〈.〉Ψ corresponds to some ‘vacuum’ vector in that Hilbert space, although for

a generic state the terminology ‘vacuum’ has no physical meaning. At any rate, it will be fully

suf�cient for this paper to work with the expectation functionals.

While the above three conditions characterize states in general, to obtain physically rea-

sonable states (in a sense explained below), one should impose more stringent conditions on

the short-distance behavior of the 2-point function 〈Φ(x1)Φ(x2)〉Ψ. One such condition is the

‘Hadamard condition’. To state this condition, one introduces the notion of a convex normal

neighborhood, O, in the total spacetime M, which is a globally hyperbolic sub-spacetime

O ⊂ M such that any pair of points x1, x2 fromO can be connected by a unique geodesic. In

such a neighborhood,we can de�ne uniquely the signed squared geodesic distance σ(x1, x2) for

x1, x2 from O, and we can, non-uniquely, de�ne a time function T(x). E.g., in RNdS, T(x) = t

in region I, or T(x) = r in region II.

13The issue that is circumvented with this restriction was pointed out in [48].
14 Imposing ‘boundary conditions’ at the singularity in region IV would in effect render the equation hyperbolic on all

ofM. In this case an algebra A(M) could be de�ned directly. It would correspond to a quotient of the algebra de�ned

previously by additional relations.
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Definition 4.1. (Hadamard condition, see, e.g. [49]). For (x1, x2) ∈ O ×O, whereO is any

convex normal globally hyperbolic neighborhood, the 2-point function has the general form

〈Φ(x1)Φ(x2)〉Ψ =
1

4π2

(
U(x1, x2)

σ + i0T
+ V(x1, x2) log(σ + i0T)+WΨ(x1, x2)

)
.

(48)

Here U = ∆
1/2 is the square root of the VanVleck determinant [50], T = T(x1)− T(x2), V is

determined by the Hadamard–deWitt transport equations [51] and is thereby, as U, σ, entirely
determined by the local geometry within O. The state dependence is contained in WΨ, which

is required to be a C∞ function onO ×O.

Roughly speaking, the Hadamard condition states that the singular part of the 2-point func-

tion 〈Φ(x1)Φ(x2)〉Ψ is entirely determined by the local geometry. In any Hadamard state, one

can de�ne the n-point correlation functions of ‘renormalized composite �elds’. Such �elds are

classically given by polynomials of the �eldΦ and its covariant derivatives∇µ1 . . .∇µkΦ such

as the stress tensor15

Tµν = ∇µΦ∇νΦ− 1

2
gµν(∇σ

Φ∇σΦ + µ2
Φ

2). (49)

At the quantum level, these are de�ned (non-uniquely), as operator valued distributions in

some larger algebra containingA(M, g) [35, 52]. For us, it is only important how their 1-point

function is de�ned. This is easiest to explain if there are no derivatives and if the polynomial

is quadratic, i.e. for Φ2. Then one de�nes

〈Φ2(x)〉Ψ = lim
x1,x2→x

WΨ(x1, x2). (50)

As the singular part of (48)—which is effectively subtracted—is covariant, this ‘point-

split renormalization prescription’16 is covariant—in a sense it is the ‘same’ on all space-

times, see [35, 54] for the precise meaning of this statement. The 1-point functions

〈∇µ1 . . .∇µkΦ∇ν1 . . .∇νlΦ(x)〉Ψ would be de�ned in the same way, except that we take the

derivatives before the coincidence limit. There are certain ambiguities in the de�nition of the

composite quantum �elds∇µ1 . . .∇µkΦ∇ν1 . . .∇νlΦ(x), in the sense that the above point-split

scheme is not the only one which is ‘the same on all spacetimes’. These ambiguities are fully

characterized in a mathematically precisemanner in [35]. Theywould correspond in the case of

Φ
2 to adding a constant multiple of the scalar curvature and the mass, Φ2 → Φ

2
+ c1R+ c2µ

2,

and in the case of more general quadratic composite �elds, to adding linear combinations of

higher curvature invariants of the correct ‘dimension’. In the case of Tµν this freedommust be

used to ensure that∇µTµν = 0. These ambiguities, while important in general, are however of

no consequence for our investigation here, since they only give corrections to the expectation

values that are smooth functions on spacetime, whereas we are interested in their (potential)

divergent part as we approach a Cauchy horizon.

For us, the following properties of Hadamard states will be relevant:

(H1) For any Hadamard state, 〈∇µ1 . . .∇µkΦ∇ν1 . . .∇νlΦ(x)〉Ψ is a C∞ function of x onM.

15There is an ambiguity in the de�nition of the classical stress tensor, as one could interpret the mass term also as a

curvature coupling.
16The ‘point-split’ prescription is equivalent to saying that Φ2 is the �rst non-trivial, i.e. aside from the identity,

operator in the OPE, see [53].
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(H2) For any pair Ψ,Ψ′ of Hadamard states, 〈Φ(x1)Φ(x2)〉Ψ − 〈Φ(x1)Φ(x2)〉Ψ′ is a C∞

function on N ×N on any globally hyperbolic portionN ofM.

(H3) For any pair Ψ,Ψ′ of Hadamard states and x ∈ M, we have

〈Φ2(x)〉Ψ − 〈Φ2(x)〉Ψ′ = lim
x1 ,x2→x

(
〈Φ(x1)Φ(x2)〉Ψ − 〈Φ(x1)Φ(x2)〉Ψ′

)
,

(51)

with a similar formula for general quadratic composite �elds

∇µ1 . . .∇µkΦ∇ν1 . . .∇νlΦ(x).

Properties (H1) and (H3) are immediate consequences of the de�nition since W is locally

smooth. Property (H2) is remarkable, because the Hadamard form only refers to an arbi-

trarily small neighborhood O, while (H2) makes a statement about arbitrarily large globally

hyperbolic subsets of M, such as the union of regions I, II, III in RNdS. Its proof com-

bines nontrivially the commutator, �eld equation, and positive type property of Hadamard

states [55]. It can only be given using ‘microlocal’ techniques, which we will brie�y describe

in the next subsection. States which are not Hadamard typically have in�nite �uctuations,

e.g. 〈Φ2( f1)Φ
2( f2)〉Ψ = ∞, of smeared composite �elds, even if their expectation value should

be �nite 〈Φ2( f )〉Ψ <∞ (which need not be the case either, see e.g. [56]). Furthermore, inter-

acting quantum �eld theories (e.g. adding a Φ4-interaction) require Hadamard states [52, 57].

Reasonable states in �at spacetime such as the vacuum, thermal, �nite particle number, steady

states are Hadamard, and if a state is Hadamard near any Cauchy surface Σ in a globally

hyperbolic spacetime, i.e. ‘initially’, then it remains Hadamard [58].

Together, these properties strongly suggest that Hadamard states are the reasonable class

to consider as ‘regular states’ (analogous classically to C∞-functions) on globally hyperbolic

spacetimes. In this paper, we will study in a sense whether a state which is initially Hadamard

(in regions I, II, III) remains Hadamard across the Cauchy horizon CHR of RNdS.

4.2. Hadamard states from null surfaces

Having de�ned Hadamard states, we must ask whether (a) such states exist, at least on globally

hyperbolic spacetimes, and (b) how to construct/characterize concretely Hadamard states on

given spacetime representing given physical setups. (a) has been established by several rig-

orous methods, see [59–63]. In particular, given any one Hadamard state Ψ, we may go to a

representation of the �eld algebra by operators on a Hilbert space, in which the state is rep-

resented by a vector. Then, applying any product Φ( f1) · · ·Φ( fN) to this vector, we get a new

vector giving a new expectation functional. It can be shown that this is again a Hadamard state.

Thus, in globally hyperbolic spacetimes, there is an abundance of Hadamard states. (b) In the

present context, it is particularly natural to de�ne particular Hadamard states with a concrete

interpretation by ‘prescribing positive frequency modes’ on suitable null surfaces. This idea

goes back already to the beginnings of the subject [64]. The Hadamard property of such a state

was �rst established by [62] in the speci�c context of null-cones in curved space, and later

independently by [65] in the case of the ‘Unruh state’ in Schwarzschild.

4.2.1. ‘Local vacuum states’ defined on null-cones.. To motivate the constructions in RNdS,

we �rst consider the case of a massless scalar �eld on Minkowski spacetime. There, we have

of course the global vacuum state with the usual Wightman 2-point function 〈Φ(x1)Φ(x2)〉0 =
1
4π [(x1 − x2)

2 + i0(x01 − x02)]
−1. If we restrict attention to the causal future J+(0) of the origin

0, we can alternatively write this state in terms of modes with characteristic initial data on the
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null boundary, J̇+(0), of this cone. For this, we let ψωℓm be the mode solutions�ψωℓm = 0 such

that

ψωℓm(x) = (2π)−
3
2 (2ω)−

1
2 Yℓm(θ,φ)r

−1e−iωr on J̇+(0). (52)

Here, r is viewed as an af�ne parameter along the null generators of J̇+(0). As shown in [62],

the vacuum 2-point function can be written inside the future cone as

〈Φ(x1)Φ(x2)〉0 =
∫ ∞

0

∑

ℓ,m

ψωℓm(x1)ψωℓm(x2)dω. (53)

This formula can be rewritten as follows. LetΦ( f ) =
∫
Φ(x)f(x)dη(x) be the smeared �eld, and

let f1, f2 beC
∞-functions supported inside the future light cone J+(0). Let E = E+ − E− be the

commutator function (retardedminus advanced fundamental solution) and letF1 = E− f1|J̇+(0),

with a similar formula for F2. Then we can write alternatively, with Ω = (θ,φ) and d2Ω =

dθ2 + sin2 θdφ2,

〈Φ( f1)Φ( f2)〉0 = − 1

π

∫ ∞

0

∫ ∞

0

∫

S2

r1r2F1(r1,Ω)F2(r2,Ω)

(r1 − r2 − i0)2
d2Ωdr1dr2. (54)

As argued in [62], and later independently in [66], one can generalize these constructions to

locally de�ne states associated with lightcones in curved spacetime (M, g) for a conformally

coupled �eld (�− 1
6
R)Φ = 0, in the following manner.

First, we pick a reference point p ∈ M, and we let J+(p) be its causal future. The boundary

J̇+(p) will in general not have the structure of an embedded hypersurface far away from p due

to caustics, but de�ning J̇+(p) ∩ O, with O a convex normal neighborhood of p with smooth

boundary, J̇+(p) ∩O is diffeomorphic to a future lightcone in Minkowski space cut off by

a spacelike plane, cf Figure 7. We can introduce coordinates (r,Ω) on J̇+(p) ∩ O analogous

to the above as follows: choose a smooth assignment S2 ∋ Ω 7→ l(Ω) ∈ TpM such that each

null ray in TpM is intersected exactly once my this mapping. Then (r,Ω) 7→ expp(rl(Ω)) is a

diffeomorphism between a neighborhood of the origin in R+ × S2 and J̇+(p) ∩ O. Then, we

can de�ne17 a local vacuum state by

〈Φ( f1)Φ( f2)〉p = − 1

π

∫ ∞

0

∫ ∞

0

∫

S2

r1r2

(
∆

− 1
2F1

)
(r1,Ω)

(
∆

− 1
2F2

)
(r2,Ω)

(r1 − r2 − i0)2
d2Ωdr1dr2,

(55)

for testfunctions f1, f2 supported in J+(p) ∩ O, where now F1 = E f1|J̇+(p)∩O , and similarly

for F2. The presence of the VanVleck determinant ∆(p, .), which is equal to 1 in Minkowski

spacetime, ensures that the de�nition is independentof the arbitrary choice of coordinates (r,Ω)

[62].

By construction, the 2-point function (55) de�nes a state within J+(p) ∩O because it can be

seen to satisfy the commutator, �eld equation, and positivity requirements [62]. Furthermore, it

can be viewed as a ‘local vacuum state’, in the sense [67] that its construction only depends on

the local geometry within J+(p) ∩ O, but not on arbitrary choices of coordinates. But is it also

Hadamard inside J+(p) ∩ O? The answer is yes [62], but the proof cannot be obtained simply

by checking the de�nition. Instead, one must use the methods of microlocal analysis. Since

17A minor subtlety is to prove that the integrals converge at the tip of the lightcone, p, see [62].
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Figure 7. Sketch of the of the subset J̇+(p) ∩O of the light cone on which one can de�ne
a state by (55).

we will use a similar argument below for RNdS spacetime, we here present the derivation. For

details on distribution theory and functional analysis, we refer to [68].

If ϕ is a smooth function on Rn, then its Fourier transform ϕ̂(k) decays faster than any

inverse power |k|−n as |k| →∞. Ifϕ is distributional, we say that a non-zero k ∈ R
n is a regular

direction at x if there exists a smooth cutoff function χ of compact support such that χ(x) 6= 0

and an open cone Γ containing k such that for all N > 0 there is a constant CN for which

|χ̂ϕ(p)| 6 CN(1+ |p|)−N ∀p ∈ Γ. (56)

The ‘wave-front set’, WFx(ϕ) of ϕ at point x is, loosely speaking, the set of directions k such

that χϕ(x) fails to have a rapidly decreasing Fourier transform. More precisely, it is the com-

plement of the regular directions at x, with k = 0 by de�nition never in WFx(ϕ). It can be seen
that under a diffeomorphism ψ of a neighborhood of x, WFx(ϕ ◦ ψ) = ψ∗WFψ(x)(ϕ). Thus,
on an n-dimensional manifold X , WFx(ϕ) should be viewed as a dilation invariant subset of

T∗
xX\o, where o denotes the zero section. One also sets WF(ϕ) =

⋃
x∈XWFx(ϕ) ⊂ T∗X\o. In

the present context, we take X = N ×N , where N is some globally hyperbolic subset of a

spacetimeM.

By an important result of Radzikowski [55], a state is Hadamard if and only if its 2-point

correlation function GΨ(x1, x2) = 〈Φ(x1)Φ(x2)〉Ψ satis�es

WF′(GΨ) = C+, (57)

where

C± := {(x1, ξ1, x2, ξ2) ∈ T∗(N ×N )\o|(x1, ξ1) ∼ (x2, ξ2), ±ξ1 ⊲ 0} . (58)

Here, the notation means ξ1 ∈ T∗
x1
N etc and (x1, ξ1) ∼ (x2, ξ2) means that x1 and x2 can

be joined by a null geodesic γ such that ξ1, ξ2 (viewed as vectors using the metric g)

are tangent to γ. ξ ⊲ 0 means that that the corresponding vector is future-pointing. If

K(x1, x2) is a distributional kernel, the primed wave front set is de�ned as WF′(K) =
{(x1, ξ1, x2, ξ2)|(x1, ξ1, x2,−ξ2) ∈ WF(K)}. With this characterization one can show:

Theorem 4.2. The local vacuum state (55) is Hadamard in J+(p) ∩O.
20
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Proof. The full proof is given in [62]. Apart from a minor subtlety arising from tip of the

lightcone at p(r = 0), it uses only straightforward techniques from microlocal analysis. The

ingredients are as follows.

• The wave front set of the Schwartz kernel KE of the commutator function satis�es

WF′(KE) = C+ ∪ C−; this is a restatement of the ‘propagation of singularities theorem’

[69].

• Thewave front set of the distribution kernelKA(r1,Ω1, r2,Ω2) = δ(Ω1,Ω2)/(r1 − r2 − i0)2

satis�es WF′(KA) = {(Ω, r, ξΩ, ξr;Ω, r, ξΩ, ξr)|ξr > 0} away from the tip r = 0 by direct

computation. So, microlocally, the corresponding operator A ‘removes the negative

frequencies’.

• The kernel KR of the restriction operator RF = F|J̇+(p)∩O fromC∞-functions onO to C∞-

functions on J̇+(p) ∩ O, parameterized by (r,Ω) via a diffeomorphism ψ : (0, r0)× S2 →
J̇+(p) ∩ O\{p} away from the tip satis�es:

WF′(KR) ⊂ {(r,Ω, ξr, ξΩ; y, η)|y = ψ(r,Ω), (dψ)t(r,Ω)η = (ξr, ξΩ) if r > 0}
(59)

by the restriction theorem (theorem 8.2.4 of [68]).

Looking at the de�nition of the local vacuum state, we see that the 2-point function is a com-

position of the kernels of E,A,R. These results are then combined with a standard result about

the composition of distributional kernels. Let B :D(X1)→D′(X2) and A :D(X2)→D′(X3)

be linear continuous maps. By the Schwartz Kernel theorem these correspond to distribution

kernels KB ∈ D′(X2 ×X1) and KA ∈ D′(X3 ×X2). If K ∈ D′(X1 ×X2), one de�nes

WF(K)X2
:= {(x2, ξ2)|(x1, 0; x2, ξ2) ∈ WF(K)}. (60)

Then one has (theorem 8.2.14 of [68]): if KB has proper support, and

WF′(KA)X2
∩WF′(KB)X2

= ∅ (61)

then the composition A ◦ B is well de�ned and

WF′(KA◦B) ⊂WF′(KA) ◦WF′(KB)

∪ ((X1 × {0})×WF(KB)X3
) ∪ (WF(KA)X1

× (X3 × {0})),
(62)

where

WF′(KA) ◦WF′(KB) := {(x3, ξ3, x1, ξ1)|there exist ξ2 6= 0 and x2 s.t.

× (x2, ξ2, x1, ξ1) ∈ WF′(KB) and (x3, ξ3, x2, ξ2) ∈ WF′(KA)} .
(63)

Combining this information, one then �nds that WF′(Gp) is contained in the set C+. The tip

of the lightcone in effect plays no role for this argument, as backward null geodesics starting

in the interior of J+(p) ∩ O never reach it18. The theorem is proven if we can show that both

18The tip of the lightcone only needs to be examined a little more carefully for the proof that the commutator property

holds, and plays a role similar to i− in the subsequent construction in RNdS.
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sets are in fact equal. To see this, introduceGt
p( f1, f2) = Gp( f2, f1). Then, by the de�nition of

the wave front set,

WF(Gt
p) = WF(Gp)

t := {(x1, ξ1, x2, ξ2)|(x2, ξ2, x1, ξ1) ∈ WF(Gp)},

from which it follows that WF′(Gt
p) ⊂ C−. Therefore, by the commutator property of the

2-point function,

C+ ∪ C−
= WF′(E) = WF′(Gp − Gt

p) ⊂ WF′(Gp) ∪WF′(Gt
p) ⊂ C+ ∪ C−,

and the above inclusions must in fact be equalities. Since C+ ∩ C− = ∅, this means that in fact

WF′(Gp) = C+, which is the statement of the theorem. �

4.2.2. The ‘Unruh’ and a ‘comparison’ state in RNdS. We now de�ne two states by a similar

construction in RNdS which play a role for the subsequent argument.

Unruh state: the �rst is an analogue of the ‘Unruh state’ [70] in Schwarzschild.We �rst de�ne

(see �gure 1)

Hc = H−
c ∪HR

c , H = H− ∪HL, (64)

so Hc ∪H is formally, i.e. apart from the ‘point’ i− at in�nity, a characteristic surface for

the union N of the regions I, II, III, where the Unruh state will be de�ned. Heuristically, the

Unruh state is speci�ed as in (53) by the ‘positive frequency modes (k > 0)’ ψ
U,in/up
kℓm , which

are solutions (�− µ2)ψ
U,in/up
kℓm = 0 de�ned on N in terms of their initial data onHc ∪H:19

ψU,in
kℓm (x) =

{
(2π)−

3
2 (2k)−

1
2 Yℓm(θ,φ)r

−1
c e−ikV onHc,

0 onH,
(65a)

ψU,up
kℓm (x) =

{
0 onHc,

(2π)−
3
2 (2k)−

1
2 Yℓm(θ,φ)r

−1
+ e−ikU onH,

(65b)

where V = Vc is the Kruskal type (af�ne) coordinate adapted to the cosmological horizon, and

where U is the Kruskal type (af�ne) coordinate adapted to the event horizon; see section 2.

In order to see that the Unruh state is well-de�ned, and to understand some of its basic

properties, we formally rewrite the de�nition (53) (with the modes ψ
U,in/up
kℓm ) in a similar

way as in (55), noting that the VanVleck determinant vanishes on a Killing horizon. Let

f1, f2 ∈ C∞
0 (N ), and de�ne for X ∈ {+, c} the restrictions of the corresponding solutions,

FX1 = E− f1|HX
,FX2 = E− f2|HX

. Then the precise de�nition of the Unruh state is:

Definition 4.3. The Unruh state is de�ned by the 2-point function on N ×N given by:

〈Φ( f1)Φ( f2)〉U =− 1

π

∫

R

∫

R

∫

S2

F+
1 (U1,Ω)F

+
2 (U2,Ω)

(U1 − U2 − i0)2
d2ΩdU1dU2

− 1

π

∫

R

∫

R

∫

S2

Fc1(V1,Ω)F
c
2(V2,Ω)

(V1 − V2 − i0)2
d2ΩdV1dV2

(66)

19This is to be understood in the sense of wave packets, cf section 5.2 for how to translate this into asymptotic data

of the corresponding radial functions.
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where null-generators of the event and cosmological horizon are parameterized by U resp. V,

and d2Ω is the induced integration element on the spheres of constant V resp. U.

This de�nition is actually still formal as it stands, because the convergence of the integrals

over U and V has not been ensured. Also, one needs to show the commutator, �eld equation,

and positivity properties (S1)–(S3), and one would also like to show that the Unruh state is

Hadamard in the union N of the regions I, II, III where it is de�ned. These properties have

been proven in the case of Schwarzschild spacetime (Λ = Q = 0) by [65]. A similar proof can

be given in the present context, taking into account the features of the dynamical evolution

special to RNdS.

First, the positivity property (S3) is obvious–assuming (66) is well de�ned–because

−(x− i0)−2 is a kernel of positive type (its Fourier transform is non-negative). The �eld

equation (2)) is also obvious, because the commutator function E is a bi-solution. For a Cauchy

surface Σ as in �gure 1, E can be written in the form [71]:

E( f1, f2) =

∫

Σ

nµ(F1∇µF2 − F2∇µF1)dηΣ, (67)

withF1 = Ef1,F2 = Ef2. Since (�− µ2)F1 = (�− µ2)F2 = 0, Gauss’ theorem shows that the

expression is independent of the chosen Cauchy surface for N . Now, if we could formally

deform Σ to the pair of null surfacesHc ∪H, then we would have, formally

E( f1, f2) =

∫

R

∫

S2
(F+

1 ∂UF
+
2 − F+

2 ∂UF
+
1 )d

2
ΩdU +

∫

R

∫

S2
(Fc1∂VF

c
2 − Fc2∂VF

c
1)d

2
ΩdV.

(68)

Although this argument is not rigorous because it ignores a potential contribution from i−, let
us proceed for the moment and assume that the integrals in (66) converge in a suitable sense.

Then using the formula Im(x− i0)−2 = −πδ′(x), on both terms, one formally gets

〈Φ( f1)Φ( f2)〉U − 〈Φ( f2)Φ( f1)〉U = 2i Im 〈Φ( f1)Φ( f2)〉U

= i

∫

R

∫

S2
(F+

1 ∂UF
+
2 − F+

2 ∂UF
+
1 )d

2
ΩdU

+ i

∫

R

∫

S2
(Fc1∂VF

c
2 − Fc2∂VF

c
1)d

2
ΩdV. (69)

Combining with the previous equation, this would show the commutator property (S1).

In order to make this argument rigorous, we should �rst check (68), and for that, we need the

asymptotic behavior of F1,F2 near i
−. This asymptotic behavior has been analyzed by Hintz

and Vasy [1] and is best expressed resolving i− by a blow up procedure sketched in section 2.

The results of [1] express the regularity of the forward solution F = E+f near i+ in terms of

certain ‘variable order’ Sobolev spaces. By time re�ection symmetry, these analogously hold

for F = E−f near i−. The variable orders of (fractional) differentiability express the different

regularity properties of the solution near the various horizons, i.e. the different locations of

r, see appendix A of [1] for the precise de�nitions. The variable forward order functions s(r)

considered by these authors are such that s(r) is constant for r < r− + ǫ and r > r− + 2ǫ, with

s(r)

{
< 1/2+ α/κ− for r < r− + ǫ

> 1/2+max{α/κc,α/κ−} for r > r− + 2ǫ
(70)
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and s′(r) > 0. The parameter α of main interest is the spectral gap, but forward order functions

can in principle be considered for any α ∈ R. Based on a forward order function, a certain

Sobolev space Hs
b,+(R) of functions supported toward the future of the Cauchy surface Σ, is

then de�ned, see appendix B of [1] for details, and �gure 4 for the de�nition of the domainR.

Further, [1] de�ne the spaces Hs,α
b,+(R) = ταHs

b,+(R) of functions with an exponential decay

toward t∗ →∞, i.e. toward i+, see section 2 for the de�nition of t∗ =−log τ . Their main result

can be phrased as follows:

Theorem 4.4. If 20 µ2 > 0 and f ∈ C∞
0 (N ), then F = E+ f ∈ Hs,α

b,+(R) for any forward

order function, and furthermore ‖F‖Hs,α
b,+

(R) . ‖ f ‖Cm(N ) for some m depending on s.

Proof. The proof of this theorem is essentially contained in that of proposition 2.17 of [1].

Here we only somewhat pedantically go through the norm estimates provided by [1]. [1] �rst

modify the wave operator to P = �− µ2 − iQ, where Q is a suitable formally self-adjoint

pseudo-differentialoperator having its support in the region r < r− inside the black hole behind

the Cauchy horizon CHL. The construction of Q is roughly made in such a way that singu-

larities propagating into the interior of the black hole get ‘absorbed’ by Q. Then they show

(theorem 2.13) that with a suitable choice of −ǫ < α̃ < 0 and of Q, the map P is a Fredholm

operator between their weighted ‘forward’ Sobolev spaces H s̃,α̃
b,+(R)→ H s̃−1,α̃

b,+ (R), with s̃ a

forward order function for α̃, and with R a domain of the shape indicated in �gure 4. More

precisely, R should be extended to the left beyond the Cauchy horizon r < r− by effectively

modifying the metric function f(r) such that the singularity at r = 0 gets replaced with the ori-

gin of polar coordinates or another horizon. By the standard theory of Fredholm operators, the

inverseP−1 is de�ned as a bounded operator on a subspace ofH s̃−1,α̃
b,+ (R) of �nite co-dimension.

In fact, it is shown in [1], lemma 2.15 that the projector onto this subspace may be chosen as

R f = f −∑N
i=1 φivi( f ), with φi smooth and supported in r < r− and vi distributions. Thus,

if f ∈ C∞
0 (M), it follows that the forward solution of PF = f has

‖F‖
H
s̃,α̃
b,+

(R)
. ‖ f ‖Cm(M) (71)

for a suf�ciently largem depending on the choice of s̃. Then, by the propagation of singularities

theorem, proposition 2.9 of [1], one has

‖F‖
Hs,α̃
b,+

(R)
. ‖F‖

Hs̃,α̃
b,+

(R)
+ ‖PF‖

Hs̃,α̃
b,+

(R)
. ‖ f ‖Cm(M), (72)

with s 6 s̃+ 1 a forward order function for any weight α > 0 such that α/κ− < 1. By [1],

section 2 and [26], lemma 3.1 and remark 3.4, (essentially a Fourier–Laplace-transform

argument in the variable t∗ = −logτ ), F can be developed in an asymptotic expansion

F(x, t∗) =
∑

j

t
m j
∗ eσ jt∗a j(x)+ F′(x, t∗) (73)

with −α < σ j < −α̃ the resonances of the Fourier–Laplace-transformed operator P̂(σ), mj

their multiplicity, and with a norm bound

‖F′‖Hs,α
b,+

(R) . ‖ f ‖Cm(M). (74)

20The restriction to µ2 > 0 is made here simply to avoid complications arising from constant solutions in the case

µ2
= 0.
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Figure 8. Sketch of the ‘blow-up’ of i− and of a sequence of Cauchy surfaces as
described in the text.

By [1], lemma 2.14,F′ = F in the region r > r− ifα is chosen so that there are no quasi-normal

frequencies for the scattering problem in region I with 0 6 Im(ωnℓm) > α—in fact they argue

that any resonance of P̂(σ) not equal to such a quasi-normal mode21 has aj(x) = 0 for r > r−.
In the case at hand, we have µ2 > 0. It follows that there can be no such quasi-normal

frequencies on the real line (unlike for the massless wave operator considered by [1], who

have to consider separately the constant mode), as one can see by a simple argument involving

the Wronskian of the radial equation, cf (104) below, for real ω. Thus, we may put α to be the

value (3). �

These results will now be used in order to investigate the properties of the Unruh state. As

already mentioned, theorem 4.4 analogously holds for the behavior of the backward solution

F = E−f near i−. We are interested in its behavior in region I. But, as no lower bound is imposed

on the forward order function s(r) in the region r+ 6 r 6 rc, using Sobolev embedding, there

follows a bound

|∂NF(t∗, r,Ω)| . eαt∗‖ f ‖Cm(N ) for r+ 6 r 6 rc, (75)

where ∂N is a derivative in (t∗, r,Ω) of order N > 0 and m depends only on N. By choosing

in (67) a sequence of Cauchy surfaces as depicted in �gure 8 moving downwards toward the

horizontal boundary, it immediately follows by writing (67) out in the coordinates (t∗, r,Ω) that
in the limit only the contributions from the two vertical boundariesH−,H−

c contribute near i−,
but not the interpolating surface depicted in green. Hence, in this limit, (68) holds true.

We may also see immediately that the integrals in (66) converge when f1, f2 are functions in

C∞
0 (N ), making the Unruh state actually well de�ned. For this, we note that eαt∗ ∼ |U|−α/κ+

for U→−∞ on H and eαt∗ ∼ |V|−α/κc for V→−∞ on Hc. In combination with (75), this

easily implies convergence of the integrals (69). We therefore conclude:

Proposition 4.5. The Unruh state is well-de�ned on the algebra A(N ),N = I ∪ II ∪ III

generated by Φ( f ) with f ∈ C∞
0 (N ).

We now verify that the Unruh 2-point function GU(x1, x2) = 〈Φ(x1)Φ(x2)〉U is Hadamard

in the union of regions I, II, III (but not necessarily across CHR!). Let us begin by recalling

basic results from the analysis of partial differential equations. For any distribution ϕ on X
and (pseudo-) differential operator A, it is known that

WF(ϕ) ⊂ WF(Aϕ) ∪ char(A), (76)

21Note that eσt∗a(x) satis�es QNM boundary conditions for σ < 0 due to the de�nition of t∗ in section 2.
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where char(A) = {(x, ξ) ∈ T∗X\o|a(x, ξ) = 0}, and where a(x, ξ) is the principal symbol of A,

see theorem. 8.3.1 of [68]. Furthermore, the propagation of singularities theorem [69] states

that if the differential operator A has real principal symbol a and if Aϕ is smooth then WF(ϕ)
is contained in the intersection of char(A) and the Hamiltonian orbits of the symbol a(x, ξ) on
‘phase space’ T∗X\o. In the case of A = �− µ2, the principal symbol is gµν(x)ξµξν , and the
Hamiltonian orbits in the characteristic set char(�− µ2) are precisely the null geodesics with

initial condition (x, ξ). We denote one such an orbit, called bicharacteristic, as B(x, ξ). Based
on this de�nition, we distinguish three cases:

(1) Neither the bicharacteristic B(x1, ξ1) nor B(x2, ξ2) enters region I: in this case, the claim

follows by exactly the same argument as given in the previous section for lightcones, because

every backward null geodesic emanating from these regions will eventually hitH ∪Hc.

(2) The bicharacteristicsB(x1, ξ1) and B(x2, ξ2) enter region I: by propagation of singularities,
it suf�ces to consider x1, x2 ∈ I. In region I, past-directed null geodesics trapped on the photon

ring (see e.g. [44]), will not come fromH ∪Hc but begin their lives in the ‘point’ i
−. Thus, the

type of argument made in the case of lightcones—where this cannot occur—does not work,

and one needs another argument worked out in detail in the case of Schwarzschild by [65].

The argument is based on the fact that the Unruh state is static, i.e. invariant under translations

in the coordinate t. A simpli�ed version of the argument which also works in the present case

runs as follows.

First, for an arbitrary but �xed open region O whose closure is contained in region I (i.e.

not touching the horizonsH ∪Hc), we introduce the maps, X ∈ {c,+},

KX : C∞
0 (O)→ L2(Rω × S2Ω), KX f (ω,Ω) = rX

(
ωe2πrXω

sinh(2πrXω)

) 1
2
∫

R

FX(s,Ω)eiωsds

(77)

where F+(u,Ω) = E f |H−(u,Ω) and Fc(v,Ω) = E f |H−
c
(v,Ω). Next, we let Kf :=K+f⊕ Kcf ∈

L2 ⊕ L2, and then we can the write the Unruh 2-point function as [49]

〈Φ( f1)Φ( f2)〉U = 〈K f1,K f2〉
L2 ⊕ L2

, (78)

which follows from (66) by Fourier transformation and the relations U = −e−κ+u,
V = −e−κcv . The decay and regularity results, theorem 4.4, together with the Sobolev

embedding theorem and the relation between t∗ and u resp. v on H− resp. H−
c imply that

|∂Ns FX(s,Ω)| 6 CNe
−α|s|, where the constant CN is controlled by some Cm norm of f by

(75). As a consequence, K = K+ ⊕ Kc is shown to be a distribution in O with values in

the Hilbert space L2 ⊕ L2: since |∂Ns FX(s,Ω)| . ‖ f ‖Cm(O)e
−α|s| for all f ∈ C∞

0 (O), we �nd

‖K f ‖
L2 ⊕ L2

. ‖ f ‖Cm(O), which is the continuity required from a distribution.

Next, invarianceofE under translations of t in the coordinates (t, r∗,Ω) and the exponentially
decreasing prefactor of order O(e2πrXω) in (77) for ω→−∞ imply that the distribution K has

a holomorphic extension to the strip {t+ is|s ∈ (0, 2πr+)} in the t-coordinate. Moreover it is

the boundary value of this holomorphic extension, in the sense of distributions, as s→ 0+, for

all test-functions from C∞
0 (O). By a very slight modi�cation of the proof of theorem 3.1.14 of

[68] we then get, for some m, the inequality

‖K(t+ is, r,Ω)‖
L2 ⊕ L2

. s−m for (t, r,Ω) ∈ O and s ∈ (0, πr+). (79)
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In view of theorem 8.4.8 of [68], we then further get

WF(K)|O ⊂ {(x, ξ) ∈ T∗O\o|〈ξ, ∂t〉 > 0}. (80)

Combining (78) and the rules for the wave front set under the composition of distributions, we

�nally get

WF′(GU)|O×O ⊂ {(x1, ξ1, x2, ξ2) ∈ T∗(O ×O)\o|〈ξi, ∂t〉 > 0}. (81)

Next, using the relationship between t and u, v, it follows immediately from (77), (78) that the

2-point functionGU is invariant under translation of t in both arguments. In in�nitesimal form,

(∂t1 + ∂t2)GU = 0. From (76), it follows that in fact

WF′(GU)|O×O ⊂ {(x1, ξ1, x2, ξ2) ∈ T∗(O ×O)\o|〈ξ1, ∂t〉 = 〈ξ2, ∂t〉 > 0}.
(82)

If we assume that O is the entire (open) region I, viewed as a globally hyperbolic spacetime

in its own right with Cauchy-surfaceΣO, then it follows from the propagation of singularities

theorem that

WF′(GU)|O×O ⊂ {B(x1, ξ1)× B(x2, ξ2)\o|xi ∈ ΣO, g(ξi, ξi) = 0}. (83)

We now distinguish the cases (a) B(x1, ξ1) = B(x2, ξ2) and (b) B(x1, ξ1) 6= B(x2, ξ2). In case
(a), we obtain, from (82) and (83), that (x1, ξ1, x2, ξ2) /∈ WF′(GU), unless ξ1 ∼ ξ2 and ξ1 ⊲ 0.

In case (b), we may, without loss of generality, assume that x1, x2 ∈ ΣO are spacelike sepa-

rated. We may then choose real-valued cutoff functions χ1,χ2 supported in a coordinate chart

near x1, x2 such that χi(xi) 6= 0, with supp(χ1) remaining spacelike to supp(χ2). Since GU is a

distribution of positive type, it follows in view of the Cauchy–Schwarz inequality that

|GU(χ1e−k1 ,χ2ek2 )| 6 |GU(χ1e−k1 ,χ1ek1 )|
1
2 |GU(χ2e−k2 ,χ2ek2)|

1
2 , (84)

where ek(x) := e−ikx. Now let

V±
i = {(x, ξ) ∈ T∗O\o|x ∈ suppχi, g(ξ, ξ) = 0, 〈ξ, ∂t〉 ≷ 0}. (85)

It follows from the wave front conditions (82), (83) applied to the right side of (84) that the

left side of (84) is decaying rapidly in (k1, k2) (i.e. is bounded by 6 CN(1+ |k1|+ |k2|)−N for

any N) in any conic neighborhood not intersecting V+
1 × V+

2 . However, since the arguments

are spacelike, the commutator property of 2-point functions also gives

GU(χ1e−k1 ,χ2ek2 ) = GU(χ2ek2 ,χ1e−k1). (86)

Applying the same reasoning toGU(χ2ek2 ,χ1e−k1), it follows that the left side of (84) is decay-
ing as fast in (k1, k2) in any conic neighborhood not intersecting V−

1 × V−
2 . For suppχ1/2 small

enough, V+
1 × V+

2 ∩ V−
1 × V−

2 = ∅, so that (x1, ξ1, x2, ξ2) /∈ WF′(GU) in case (b). Combining

this information, we have

WF′(GU)|O×O ⊂{(x1, ξ1, x2, ξ2) ∈ T∗(O ×O)\o|x1, x2 connectedby null geodesicγ,
ξ1 = c1g( . , γ̇1), ξ2 = c2g( . , γ̇2), 〈ξ1, ∂t〉 = 〈ξ2, ∂t〉 > 0} .

(87)
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Figure 9. Sketch of the spacetime in which the comparison state is Hadamard. The
dashed line indicates the origin of coordinates. The region beyond the dotted line is
region where f(r) is modi�ed.

The set on the right hand side is easily seen to be equal to C+, thus we learn WF′(GU)|O×O ⊂
C+, and we actually get equality by the commutator argument used at the end of the proof of

theorem 4.2.

(3)One bicharacteristic, sayB(x1, ξ1),will enter I, butB(x2, ξ2) not:we can argue as in subcase
(b) above, i.e. using that the right hand side of the inequality (84) is decaying rapidly in (k1, k2),

due to (1), (2).

Comparison state: for the sake of the discussion in the next section, it is also convenient

to have another state that is stationary and that is manifestly Hadamard in a two-sided open

neighborhood of the Cauchy horizon CHR, see �gure 1. This state is not of particular physical

interest and introduced purely in order to make our arguments with greater ease. In order to

de�ne it, we modify the metric function f (r) beyond the Cauchy horizon for r < r− − δ with a
small δ > 0 in such a way that it smoothly interpolates between f (r) and the constant function

1 in a neighborhood of r = 0. We call the new function f ∗(r). Evidently, it de�nes the RNdS
metric in regions I, II, III and an open neighborhood of CHR, but replaces the singularity in

region IV with a smooth origin of polar coordinates r = 0, see region IV′ in �gure 9.
In this—made-up unphysical—spacetime, we now de�ne a vacuum state called 〈.〉C

for regions II, IV′ by the ‘positive frequency modes (k > 0)’ ψC,out
kℓm , which are solutions

(�− µ2)ψC,out
kℓm = 0 de�ned on the union of II, IV′ in terms of their �nal data on

CH = CH+ ∪ CHL:

ψC,out
kℓm (x) = (2π)−

3
2 (2k)−

1
2 Yℓm(θ,φ)r

−1
c e−ikV on CH, (88)

where V = V− is the Kruskal type (af�ne) coordinate adapted to this Cauchy horizon, see

�gure 9. Again, it can be shown by exactly the same methods as in the lightcone case that

these modes de�ne via (53) a Hadamard 2-point function 〈Φ(x1)Φ(x2)〉C in regions II, IV′,
which we call the ‘comparison state’.

We have shown:

Theorem 4.6. The Unruh state has a 2-point function of Hadamard form in the union of

region I, II, III. The comparison state is Hadamard in the union of region II and an open

(two-sided) neighborhood of the Cauchy horizon CHR.
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5. Behavior of the quantum stress tensor at the Cauchy horizon in 4

dimensions

In this section, we will prove our main result, (5), concerning the behavior of the stress-energy

tensor near the Cauchy horizon, CHR, of four-dimensional RNdS spacetime for an arbitrary

state Ψ that is Hadamard in the union of regions I, II, and III. We will proceed by writing

〈Tµν〉Ψ as

〈Tµν〉Ψ = (〈Tµν〉Ψ − 〈Tµν〉U︸ ︷︷ ︸
=tµν as in prop. 5.1

) + (〈Tµν〉U − 〈Tµν〉C︸ ︷︷ ︸
calculated in sec. 5.4

) + 〈Tµν〉C︸ ︷︷ ︸
smooth at CHR

.

(89)

In subsection 5.1, we will show that the �rst term behaves like the stress-energy tensor of a

classical �eld. Thus, it has behavior not more singular than (4). The last term is smooth by

construction of the state 〈.〉C. Most of our effort will be spent in calculating the middle term,

which will be done via a mode expansion that will be carried out in subsections 5.2–5.4.

In the two-dimensional case, we found that the limiting behavior of 〈Tvv〉U − 〈Tvv〉C on CHR

was given by (45). Since 〈Tµν〉C is smooth on CHR, this implies that 〈Tvv〉U → (κ2c − κ2−)/48π
on CHR. Thus 〈Tvv〉U goes to a �nite limit on CHR, which is nonvanishing unless κc = κ−. As
discussed in section 3, for κc 6= κ−, this implies that 〈TV−V−〉U blows up on CHR as 1/V2

−, a
worse singularity than classical behavior. In 4 dimensions, the logical possibilities are that (i)

〈Tvv〉U does not approach a limit at CHR, (ii) 〈Tvv〉U approaches a nonzero limit at CHR, or

(iii) 〈Tvv〉U → 0 on CHR. In case (ii), we again would have that 〈TV−V−〉U blows up on CHR

as 1/V2
−. In case (i) the behavior of 〈TV−V−〉U would be more singular than a 1/V2

− blow up.

Only in case (iii) would the quantum stress-energy possibly behave in a manner similar to the

classical case.

In subsection 5.2, we will obtain a mode sum expression for 〈Tvv〉U − 〈Tvv〉C in terms of

scattering coef�cients (see (127)). The scattering coef�cients are calculated in subsection 5.3

for the conformally coupled case, µ2 = 1
6
R = 2

3
Λ. The mode sum is then evaluated numeri-

cally in subsection 5.4. We �nd that the mode sum converges to a nonzero value, i.e., case (ii)

occurs and the behavior of the stress-energy tensor is given by (5) with C 6= 0. Although our

evaluation of C is done only in the conformally coupled case µ2 = 2
3
Λ and at particular black

hole parameters, we would expect C to vary analytically with µ and the black hole parameters,

in which case we would have C 6= 0 generically.

5.1. Reduction to the Unruh state

In this subsection,we show that 〈Tµν〉Ψ − 〈Tµν〉U has the same behavior near CHR as the stress-

energy tensor of a classical �eld. Let 〈.〉Ψ be an arbitrary state that is Hadamard near the Cauchy

surface Σ as drawn in �gure 1. By the propagation of singularities [58], it remains Hadamard

throughout regions I, II, III, but it is not de�ned (at least not uniquely) in region IV, just as if we

were to specify initial data for the classical wave equation on Σ. Since the state is Hadamard

in I, II, III, the expectation value 〈Tµν〉Ψ is �nite and smooth in I, II, III, but may diverge22 as

we move toward the Cauchy horizon, CHR. We would like to see how it diverges, if at all. The

�rst step is to relate the behavior of 〈Tµν〉Ψ to behavior of the corresponding quantity 〈Tµν〉U
for the Unruh state, which we have a better way of calculating.

22The coordinate indices of course should refer to a coordinate system regular there such as (U,V, θ,ϕ), since we are
not interested in arti�cial singularities created by a bad choice of coordinates.
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Since we are interested in the local behavior, we pick a point p on the Cauchy horizon CHR

contained in a coordinate chart, (xµ) = (V, yi), where V = V− is the Kruskal-type coordinate

and yi, i = 1, 2, 3 are local coordinates parameterizing CHR. So, V = 0 locally de�nes CHR,

and the intersection of this chart with region II locally corresponds to V < 0. Let U be a small

open neighborhoodcontained in this coordinate chart. Then the following proposition basically

follows from theorem 4.4.

Proposition 5.1. Let Ψ,Ψ′ be Hadamard states near the Cauchy surface Σ as drawn in

�gure 1, and assume β > 1/2, see (2). Then:

• each component of tµν := 〈Tµν〉Ψ − 〈Tµν〉Ψ′ , is smooth in y, and viewed as a function of

V < 0, is locally in Lp(R−), where 1/p = 2− 2β + 2ǫ for arbitrarily small ǫ > 0 (thus

p > 1), with norm uniformly bounded in y within U .
• viewed as a function of V, tµν has s = β − 1/2− ǫ derivatives locally in Lp(R−) for 1/p =
3/2− β + ǫ and arbitrarily small ǫ.

Remarks: (1) For a classical �eld with smooth initial data on Σ, the stress tensor is a func-

tion known to have the same regularity as tµν , so the result is that the difference between the

quantum stress tensors in two states that are initially Hadamard behaves basically like the clas-

sical stress tensor near the Cauchy horizon. (2) The restriction to β > 1/2 is of technical nature.

For β 6 1/2, already a classical solution φ would generically fail to be of Sobolev class H1

near CHR, thus making it impossible to extend the solution through CHR already at the classi-

cal level, see [13] for a discussion of such matters. Thus, β > 1/2 is the interesting case for the

discussion of sCC.

Proof. Let N = I ∪ II ∪ III. Since N is globally hyperbolic and since both states are

Hadamard near Σ, it follows by propagation of singularities that the difference between

the corresponding two point functions W(x1, x2) = 〈Φ(x1)Φ(x2)〉Ψ − 〈Φ(x1)Φ(x2)〉Ψ′ is in

C∞(N ×N ). It has been shown in [72], lemma 3.7 that given a causal normal neighborhood

Ñ of Σ (see [49] for the de�nition), and any open subsetO with compact closure contained in

Ñ , there exists a smooth function B with support in O ×O such that

W( f1, f2) =

∫

O×O
(E f1)(x1)(E f2)(x2)B(x1, x2)dη(x1)dη(x2), (90)

for any testfunctions f1, f2 with support in the domain of dependence D(O). By making O
suf�ciently large, we may assume that the neighborhoodU of interest near the Cauchy horizon

is contained in D(O). Furthermore, by the algebraic relations (A3), (A4) and the positivity

property (S3) of states, we have B(x1, x2) = B(x1, x2) = B(x2, x1).

Let m be a �xed natural number. Using the result [72], appendix B, and the symmetry

properties of B, one can see that there exist Cm
0 functions {bj} on O such that

B(x1, x2) =
∑

j

c jb j(x1)b j(x2),
∑

j

‖b j‖2Cm(O) <∞, c j ∈ {±1}. (91)

Now let ψj = E+bj, with E
+ the retarded fundamental solution. Then (�− µ2)ψj = bj, and

furthermore,

W(x1, x2) =
∑

j

c jψ j(x1)ψ j(x2) for x1, x2 ∈ U . (92)

To estimate ψj, we can apply the results of [1] already mentioned in theorem 4.4. First, we

de�ne new local coordinates (z, yi) in the following way. First we locally parameterize the
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orbit S2p of p ∈ CHR by angles Ω. Then we transport these coordinates away from CHR along

∂/∂V and let z be the parameter along this curve. Finally, we transport the coordinates (z,Ω)

along the Killing vector �eld ∂/∂t, and then (yi) = (t,Ω).

If we apply an arbitrary product
∏N

j=1 X
(a j) of the vector �elds X(a), a = 1, 2, 3, 4 generat-

ing the symmetry group R× SO(3) of RNdS to the de�ning equation (�− µ2)ψj = bj (with

retarded initial conditions) and commute these through �− µ2, the function
∏N

a=1 X
(a)ψ j is

seen to satisfy an equation of the same form and initial conditions with a new source. By

theorem 4.4 and the construction of (z, yi), this gives

‖∂Ny ψ j‖2H1/2+β−ǫ(U ) . ‖b j‖2Cm(O) (93)

for an implicit constant independent of j and a suf�ciently large m depending on N. We can

also use our expression for the difference of the expected stress tensor in two Hadamard states,

see (51). This shows in combination with (92) that

tµν(x) =
∑

j

c j{∂µψ j(x)∂νψ j(x)−
1

2
gµν(∂γψ j(x)∂

γψ j(x)+ µ2ψ j(x)ψ j(x))}.

(94)

A standard argument based on the Fourier transform in y, Cauchy’s inequality and Parseval’s

theorem shows that for ϕ supported in the coordinate patch covered by (z, yi),

|ϕ(z, y)| =
∫

d3ξϕ̃(z, ξ)eiyξ

6

(∫
d3ξ(1+ ξ2)−N/2

)1/2(∫
d3ξ(1+ ξ2)N/2|ϕ̃(z, ξ)|2

)1/2

.
∥∥∥(−∂2y + 1)N/2ϕ(z,−)

∥∥∥
L2(R3

y )
,

(95)

taking N > 3. In combination with the Sobolev embedding theorem, p as in the statement of

the proposition,

‖ϕ(−, y)‖L2p(R−) . ‖(−∂2z + 1)(β−1/2−ǫ)/2ϕ(−, y)‖L2(R−) . ‖(−∂2y + 1)N/2ϕ‖Hβ−1/2−ǫ(U ),

(96)

uniformly in ywithin U . We now takeϕ = ∂µψj or ϕ = ψj and combine this with (93), thereby

obtaining

‖∂µψ j(−, y)‖L2p(R−) . ‖b j‖Cm(O). (97)

Therefore, using the Cauchy–Schwarz inequality,

‖tµν(−, y)‖Lp(R−) .
∑

j

(
4∑

γ=1

‖∂γψ j(−, y)‖L2p(R−) + ‖ψ j(−, y)‖L2p(R−)

)2

.
∑

j

‖b j‖2Cm(O) <∞. (98)

31



Class. Quantum Grav. 37 (2020) 115009 S Hollands et al

By considering ϕ = ∂µ∂
M
y ψ j, we can similarly obtain a corresponding bound for

‖∂My tµν(−, y)‖Lp(R−). Transforming from the coordinates (z, yi) to (V, yi) gives the �rst state-

ment.

To prove the second result, we use that (95) also implies

‖Ds/2
z ϕ(−, y)‖L2p(R−) . ‖(−∂2y + 1)N/2ϕ‖Hs(U ) (99)

for (−∂2z + 1)s/2 = Ds
z, s and p as indicated in the second statement, and ϕ of compact support

in U . With ϕ = ∂µψj, we get

‖Ds/2
z ∂µψ j(−, y)‖L2p(R−) . ‖∂Ny ψ j‖2Hs+1(U ), (100)

for s < β − 1/2. We have classical commutator estimates of the type [73], theorem A.8,

‖Ds( f1 f2)− Ds f1 f2 − f1D
s f2‖Lp(Rn) . ‖Ds′ f1‖Lp′ (Rn)‖Ds′′ f1‖Lp′′ (Rn) (101)

for 0 < s = s′ + s′′, s′, s′′ > 0, 0 < 1/p = 1/p′ + 1/p′′ < 1. These basically allow us to dis-

tribute the fractional derivatives Ds
z on a product ∂µψ̄ j∂νψ j such as in tµν up to an error term

which is controlled in a lower Sobolev norm using ‖∂Ny ψ j‖2Hs+1(U ) . ‖b j‖Cm(O). The second

statement then follows taking s′ = s′′ = s/2, p′ = p′′ = 2p. This concludes the proof of the

proposition. �

The proposition says that for the purposes of calculating 〈Tµν〉Ψ near the Cauchy horizon

in a state Ψ which starts out as a Hadamard state near the initial time surface Σ, we may work

with the Unruh state 〈Tµν〉U because, as we have shown in thm. 4.6, it is also a Hadamard

state on the initial time surface Σ. In doing this, we must accept an error tµν which has the

regularity described in proposition 5.1 at the Cauchy horizon, and which, as we have hinted,

is the behavior of the classical stress tensor. This is acceptable since, as we will show, the

behavior of 〈Tµν〉U is more singular than this at the Cauchy horizon CHR.

We turn, now to the calculation of the middle term in (89), namely 〈Tµν〉U − 〈Tµν〉C. By
stationarity of the Unruh and the comparison state, it suf�ces to perform the computation in

a neighborhood of CHL. The calculation is outlined in subsection 5.2, with the details of the

mode calculations relegated to subsection 5.3.

5.2. Outline of mode calculation for Unruh state

The mode calculation is a straightforward effective one-dimensional scattering construction.

It proceeds in two steps:

• We solve a scattering problem in region I, with asymptotic conditions determined by our

choice of initial state on the surfacesH−,H−
c .

• We subsequently solve a scattering problem in region II, with asymptotic conditions deter-

mined by our choice of initial state on HL and by the data from the previous step on

HR.

Because similar constructions have been described in the literature previously for the case

of RN [37], we will be brief and focus on the novel aspects. Actually, the calculation is not

more dif�cult for the operators (∂NVΦ)
2, which are equal to TVV for N = 1, using the obvious

generalization of (51) to the operators (∂NVΦ)
2.

Since ∂v/∂V = −(κ−V)−1 with V = V− the outgoing Kruskal-type coordinate regular in

a neighborhood of CHR, we can work instead with the variable v, so we are interested in
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〈(∂Nv Φ)2〉U − 〈(∂Nv Φ)2〉C. As in [37], for computational purposes only (not changing the state!),

it is useful to consider the ‘Boulware’ modes23, de�ned by the wave equation and asymptotic

data24

ψin,I
ωℓm =

{
(2π)−

3
2 (2|ω|)− 1

2 Yℓm(θ,φ)r
−1
c Θ(−V)e−iωv on Hc,

0 on H,
(102a)

ψup,I
ωℓm =

{
0 on Hc

(2π)−
3
2 (2|ω|)− 1

2 Yℓm(θ,φ)r
−1
+ Θ(−U)e−iωu on H,

(102b)

ψup,II
ωℓm =

{
0 on Hc

(2π)−
3
2 (2|ω|)− 1

2 Yℓm(θ,φ)r
−1
+ Θ(U)e−iωu on H,

(102c)

ψout,II
ωℓm =

{
(2π)−

3
2 (2|ω|)− 1

2 Yℓm(θ,φ)r
−1
− Θ(−V)e−iωv on CHL

0 on CH+,
(102d)

with Θ the step function, and where we used the notation (64). Furthermore, V = Vc/− in the

�rst/last equation. For later convenience, we de�ned these modes also for ω < 0. We omitted

the modes ψin,III and ψout,IV, which are not relevant for the calculations that we are going to

perform. In the next section 5.3, we shall �nd the exact solutions to the above characteristic

initial value problems in mode form, i.e. in the general form

ψωℓm(t, r, θ,φ) = (2π)−
3
2 (2|ω|)− 1

2 Yℓm(θ,φ)r
−1Rωℓ(r)e

−iωt, (103)

where the radial function R has to solve

−∂r∗∂r∗Rωℓ + (Vℓ − ω2)Rωℓ = 0, (104)

with a smooth effective potential

Vℓ = f

(
ℓ(ℓ+ 1)

r2
+

f ′

r
+ µ2

)
. (105)

The particular solutions corresponding to various asymptotic conditions are denoted by super-

scripts, such as in ψin,I
ωℓm, with corresponding radial function R

in,I
ωℓ , etc. For example, Rin,I

ωℓ should

satisfy the asymptotic condition

Rin,I
ωℓ (r) =

{
e−iωr∗ + R

in,I
ωℓ e

iωr∗ r∗ →∞,

T
in,I
ωℓ e

−iωr∗ r∗ →−∞.
(106)

Since the effective potential is smooth and, when expressed in terms of r∗, decays, with all its
derivatives, faster than any power, we must have [74], proposition 5.2.9,

23These are analogous to (41) in 2 dimensions.
24This has to be understood in the sense of wave packets, cf (106) for how to translate this into asymptotic conditions

for a scattering problem.
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R
in,I
ωℓ =

{
O(ω−∞) ω→∞,

1+ O(ℓ−∞) ℓ→∞,
|T in,I

ωℓ |2 =
{
1+ O(ω−∞) ω→∞,

O(ℓ−∞) ℓ→∞.

(107)

where O(ω−∞) indicates a decay faster than any power. This provides asymptotic data onHR

andHL (the latter vanish), which can be transported to CHL by again solving (104), now with

the asymptotic condition

Rin,II
ωℓ (r) = T

in,I
ωℓ

{
e−iωr∗ r∗ →−∞,

T
in,II
ωℓ e−iωr∗ + R

in,II
ωℓ eiωr∗ r∗ →∞.

(108)

Note that the new coef�cients ful�ll the relation

|T in,II
ωℓ |2 − |Rin,II

ωℓ |2 = 1, (109)

which in particular means that they need not be bounded. Nevertheless, we again have

R
in,II
ωℓ = O(ω−∞), |T in,II

ωℓ |2 = 1+ O(ω−∞). (110)

We thus obtain, for the restriction of the ‘Boulware’ in-mode to CHL,

ψin,I
ωℓm|CHL = T

in,II
ωℓ T

in,I
ωℓ ψ

out,II
ωℓm . (111)

For the up-modesψup,I
ωℓm, we proceed similarly, i.e., we �rst scatter them toHR by solving again

(104), now with the asymptotic condition

R
up,I

ωℓ (r) =

{
eiωr∗ + R

up,I

ωℓ e
−iωr∗ r∗ →−∞,

T
up,I
ωℓ eiωr∗ r∗ →∞.

(112)

One then scatters to CHL as for the in-modes and obtains

ψup,I

ωℓm|CHL = T
in,II
ωℓ R

up,I

ωℓ ψ
out,II
ωℓm , (113)

For the up-modes ψup,II

ωℓm , only a single scattering is necessary. The radial function R
up,II

ωℓ is

de�ned by the asymptotic condition

R
up,II
ωℓ (r) =

{
eiωr∗ r∗ →−∞,

T
up,II

ωℓ eiωr∗ + R
up,II

ωℓ e−iωr∗ r∗ →∞.
(114)

This gives

ψup,II
ωℓm |CHL = R

up,II
ωℓ ψ

out,II
ωℓm . (115)

Comparing (114) with (108) yields

R
up,II

ωℓ = R
in,II
ωℓ , T

up,II

ωℓ = T
in,II
ωℓ . (116)

The symmetrized two-point function, i.e., theHadamard function, of theUnruh state de�ned

by the modes (65) can be expressed in terms of the Boulware modes (102) as, see [75] for a

similar calculation (but note the change of sign of u in the interior region w.r.t. that reference),
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〈{Φ(x1),Φ(x2)}〉U =
∑

ℓm

∫ ∞

0

dω

[
coth

πω

κc

{
ψin,I
ωℓm(x1),ψ

in,I
ωℓm(x2)

}

+ 2csch
πω

κ+
Re

{
ψup,I
ωℓm(x1),ψ

up,II
ωℓm (x2)+ coth

πω

κ+

({
ψup,I
ωℓm(x1),ψ

up,I
ωℓm(x2)

}}

+

{
ψup,II
−ωℓm(x1),ψ

up,II
−ωℓm(x2)

})]
, (117)

where we omitted the contribution from ψin,III
ωℓm , which is absent in I ∪ II, and used the notation

{A(x1),B(x2)} =
1

2
(A(x1)B(x2)+ A(x2)B(x1)) . (118)

We now turn to the comparison state. The speci�cation of this state in terms of modes on a

null hypersurface has the property that, after selecting an angular momentum component,

Φℓm(U,V) = r

∫
Yℓm(Ω)Φ(U,V ,Ω)d

2
Ω, (119)

and taking at least one derivative w.r.t. V = V−, one can evaluate the two-point function on the
null hypersurface, i.e.,

lim
U→∞

〈∂nVΦ∗
ℓ1m1

(U,V1)∂
n
V2
Φℓ2m2

(U,V2)〉C = δℓ1ℓ2δm1m2

1

16π3

∫ ∞

0

dk k2n−1e−ik(V1−V2−i0).

(120)

When both points are on CHL, one may reexpress this as, see [75] for example,

lim
U→∞

〈∂nvΦ∗
ℓ1m1

(U, v1)∂
n
vΦℓ2m2

(U, v2)〉C = δℓ1ℓ2δm1m2

1

16π3

∫ ∞

0

dω ω2n−1 coth
πω

κ−
e−iω(v1−v2−i0).

(121)

With (111), (113), (115) and (117), we thus obtain for the difference of the expectation value

in the Unruh and the comparison state, in a coinciding point limit,

lim
U→∞,v1→v2

[
〈∂nvΦ∗

ℓ1m1
(U, v1)∂

n
vΦℓ2m2

(U, v2)〉U − 〈∂nvΦ∗
ℓ1m1

(U, v1)∂
n
vΦℓ2m2

(U, v2)〉C
]

= δℓ1ℓ2δm1m2

1

16π3

∫ ∞

0

dω ω2n−1nℓ1(ω), (122)

where

nℓ(ω) = |T in,I
ωℓ |2|T in,II

ωℓ |2 coth
πω

κc
+

(
|Rup,I

ωℓ |2|T in,II
ωℓ |2 + |Rup,II

ωℓ |2
)
coth

πω

κ+

+ 2csch
πω

κ+
Re(R

up,I
ωℓ T

in,II
ωℓ R

up,II
ωℓ )− coth

πω

κ−
. (123)

From the asymptotic behavior of the transmission and re�ection coef�cients, it follows that

(123) falls off faster than any power in ω for |ω| →∞, so that the integral (122) is UV �nite

for all n > 1. However, one may worry that there is an IR divergence for n = 1, due to the

fact that generically T
in,II
ωℓ and hence, by (109), also T

in,II
ωℓ have a simple pole at ω = 0, [76],
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proposition 6.2, so that the second and the third term on the r.h.s. are individually IR diver-

gent for n = 1 (in the �rst term, |T in,I
ωℓ |2 vanishes rapidly as ω→ 0).25 However, the potential

IR divergences due to these terms cancel: we �rst notice that R
up,I
ωℓ = −1+ iCℓω + O(ω2) as

ω→ 0, where Cℓ ∈ R, see [37]. The statement then follows from (116) and the fact, derivable

from inspection of the proof of [76], proposition 6.2, that, in case of a divergent T in,II
ωℓ ,

T
in,II
ωℓ =

iC′
ℓ

ω
+ O(ω0), R

in,II
ωℓ = − iC′

ℓ

ω
+ O(ω0), (124)

where C′
ℓ ∈ R.26 It is then straightforward to see that the potential IR divergences in (122)

cancel.

We also note that due to |T in,I
ωℓ |2 = |T up,I

ωℓ |2, it suf�ces to determineR
up,I

ωℓ ,T
up,II

ωℓ , andR
up,II

ωℓ

in order to evaluate (123).

If the integral on the r.h.s. of (122) gives a non-zero value for any n, then the Unruh state

is singular at CHR: by stationarity and continuity, the values on CHR and CHL coincide.

Converting the resulting tensor to adapted coordinates V = V− instead of v, one obtains

〈∂nVΦ∗
ℓm∂

n
VΦℓm〉U − 〈∂nVΦ∗

ℓm∂
n
VΦℓm〉C ∼ cnℓ|V|−2n, (125)

where cnℓ is κ
2n
− times the value of the integral on the right hand side of (122). That the integral

vanishes for all ℓ and all n > 1 seems quite improbable, and this expectation is con�rmed in

section 5.4. Because the comparison state C is Hadamard in an open neighborhood on CHR by

theorem 4.6, any singular behavior must be due to the Unruh state U and not the comparison

state C. Therefore, in view of property (H1) of subsection 4.1, we conclude:

Conclusion 1: unless the quantity on the right side of (122) vanishes for all ℓ and all n > 1,

the Unruh state cannot be a Hadamard state in a two sided open neighborhood of CHR (of

course it is Hadamard away from CHR by theorem 4.6).

While for the angular momentum components Φℓm the limits U→∞ and v1 → v2 on the

left hand side of (122) can be controlled and shown to converge to the right hand side, this is

not straightforward forΦ, required for the evaluation of the difference of expectation values of

local Wick powers such as the stress tensor Tvv on CHL. Noting that we can write

∂vΦ(x1)∂vΦ(x2) =
1

r1r2

∑

ℓ1,ℓ2

∑

m1,m2

Y∗
ℓ1m1

(Ω1)Yℓ2m2
(Ω2)∂vΦ

∗
ℓ1m2

(U1,V1)∂vΦℓ2m2
(U2,V2),

(126)

and assuming that we may interchange the limits U→∞ and v1 → v2 with the summations,

we obtain

〈Tvv〉U − 〈Tvv〉C =
1

16π3r2−

∑

ℓ

2ℓ+ 1

4π

∫ ∞

0

dω ωnℓ(ω), (127)

with nℓ(ω) as in (123). As discussed above, the integral on the right hand side converges for all
ℓ. However, the convergence of the sum over ℓ is not obvious. Numerical evidence, see below,

indicates that it does converge, which we take as an indication that the above interchange of

25The nature of this pole can also be seen explicitly from the expressions given for the scattering coef�cients in

section 5.3.
26This follows from the fact that the coef�cients A, B in (6.5) of [76] are real.
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limits is justi�ed. In view of the regularity of C on CHR, the relationship between v and V−,
and proposition 5.1, we then also conclude:

Conclusion 2: if the sum on right side of (127) converges to a nonzero value, then for any

initially a Hadamard state Ψ in a neighborhood of the Cauchy surface Σ as in �gure 1 and for

any RNdS spacetime with β > 1/2 (see (2)), then the expected stress tensor behaves in region
II near CHR as

〈TVV〉Ψ ∼ C|V|−2
+ tVV . (128)

Here C is given by κ2− times the right side of (127) and only depends on the parameters of

the black hole but not on Ψ. tVV, which depends on Ψ, has the regularity proposition 5.1, i.e.

tVV ∈ Lp as a function of V locally near CHR with 1/p = 2− 2β + 2ǫ and with β − 1/2− ǫ
fractional derivatives w.r.t. V in L1/(3/2−β+ǫ), where ǫ > 0 is arbitrarily small.

Based on the results of the next section 5.3, we shall numerically evaluate the right sides

of (123) and (127) in the case of the conformally coupled scalar �eld and �nd them to be

nonvanishing. In particular, this provides evidence that (128) holds with C 6= 0 for generic

values of the black hole parameters.

Remark: these results should be compared with the expression (45) in the two-dimensional

case. In particular, in (123) one explicitly sees the effect of backscattering in 4 dimensions, as

the up modes also contribute. Analogous expressions for the evaluation of Tvv in the Unruh

state on RN (without the subtraction of the contribution of the comparison state) can be found

in [36].

5.3. Computation of the scattering coefficients

We next describe how to determine the scattering coef�cients R
up,I, T in,II, R

in,II needed for

the evaluation of (123). When expressed in terms of r, the radial equation (104) has regular

singular points at r = r−, r+, rc, ro,∞ (recall (10) for the de�nition of ro). The transformation

x =
(r− − ro)(r − r+)

(r− − r+)(r − ro)
, (129)

maps r−, r+, rc, ro,∞ to

x− = 1, x+ = 0, xc =
(r− − ro)(rc − r+)

(r− − r+)(rc − ro)
, xo = ∞, x∞ =

r− − ro

r− − r+

(130)

which are the singular points of the radial equation written in terms of x. In the conformally

coupled case, µ2 = 1
6
R = 2

3
Λ, it is possible to factor out the singularity at x∞ by a suitable

transformation [77] of the radial equation27. On account of this simpli�cation, we restrict

consideration to the conformally coupled case from this point on.

We de�ne

b+ = +i
ω

2κ+
, b− = −i ω

2κ−
, bc = −i ω

2κc
, bo = +i

ω

2κo
, (131)

27One can in principle also treat the case of different values of µ by a variant of the method below using results by

[78].
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and make the ansatz

(r−1R)(r(x)) = (±x)σ+b+(1− x)σ−b−
(
x− xc

1− xc

)σcbc x− x∞
1− x∞

H(x), (132)

where σX = ±1 and the sign in the �rst factor is chosen below depending on whether one

considers solutions in I or II. It is then found [77] thatH(x) satis�es Heun’s equation [79] with

the singular points x−, x+, xc,∞. The parameters of this equation can be written in terms of

these and x∞.

It is known that solutions to Heun’s equation which are analytic in a domain of the complex

plane containing two of the four singular points can be constructed as series of various special

functions, see [78, 80, 81] for the origins of this method. For us, it will be useful to follow a vari-

ant of this method where the special functions are hypergeometric functions, see [82], chapter

15. Of particular interest for us are the domains containing {x+, x−} respectively {xc, x∞}.
In the �rst case one can de�ne solutions ful�lling ‘in’ or ‘up’ boundary conditions at r+ and

compute the scattering coef�cients T
up,II, Rup,II. In the second case, one can de�ne solutions

ful�lling speci�ed boundary conditions at rc. As the domains overlap, one can compute the

scattering coef�cients R
up,I.

The solution to the radial equation (104) with ‘up’ boundary condition at r+ in region II can

be written, up to normalization, as

r−1R
up,II
ωℓ,ν (r) = xb+ (1− x)b−

(
x− xc

1− xc

)bc x− x∞
1− x∞

×
∞∑

n=−∞
aνnF(−n− ν + b+ + b−, n+ ν + b+ + b− + 1; 1+ 2b+; x), (133)

with F = 2F1 the Gauss hypergeometric function. The so-called characteristic exponent ν is, a
priori, an undetermined parameter unrelated to the parameters appearing in the radial—resp.

Heun equation. The ansatz can be shown [77] to yield a formal solution for any ν, provided
the coef�cients aνn solve the three term recursion relation

ανna
ν
n+1 + βνna

ν
n + γνna

ν
n−1 = 0 (134)

with initial condition

aν0 = 1 (135)

and coef�cients

ανn = − (n+ ν − b+ − b− + 1)(n+ ν − bc + bo + 1)(n+ ν − bc − bo + 1)(n+ ν − b+ + b− + 1)

2(n+ ν + 1)(2n+ 2ν + 3)
,

(136a)

βνn =
(b+ + b−)(b+ − b−)(bc − bo)(bc + bo)

2(n+ ν)(n+ ν + 1)
+

(

1

2
− xc

)

(n+ ν)(n+ ν + 1)

+
1

2

(

(2bc + 1)(b+ − b−)− (2b− + 1)(b+ + b−)+ (b+ + b− + bc + 1)2 − b2o
)

+ xc
(

(b+ + b−)
2
+ b+ + b−

)

+ v, (136b)
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γνn = − (n+ ν + b+ + b−)(n+ ν + bc − bo)(n+ ν + bc + bo)(n+ ν + b+ − b−)

2(n+ ν)(2n+ 2ν − 1)
, (136c)

where

v = 2ω2 r
3
+(r+r− − 2r−rc + r+rc)(r

2
o − r+r− − r+rc − r−rc)2

(r+ − r−)3(r+ − rc)2(r+ − ro)(rc − ro)
− 2

r2o
(r+ − r−)(rc − ro)

− x∞ − (1+ xc)b+ − xcb− − bc − 2b+(xcb− + bc)− ℓ(ℓ+ 1)
r2o − r+r− − r+rc − r−rc

(r+ − r−)(rc − ro)
.

(137)

However, for generic values of the characteristic exponent ν, the solution is only formal in

the sense that the series in (133) fails to converge. To get a convergent (bilateral) series, ν has

to be determined such that the recursion relation (134) has a solution which is ‘minimal’ in

the sense of [83], both for the ascending n→+∞ and for the descending n→−∞ series. By

the general theory of three-term relations, a solution which is minimal in both directions can

be determined as follows. Using one of the algorithms for �nding the minimal solution to a

three-term recursion relation described in [83], one determines

ρνn =
aνn
aνn−1

, λνn =
aνn
aνn+1

, (138)

the former by recursion starting at n = +∞, the latter by recursion starting at n = −∞ (for

numerical investigations, at some integer of large modulus). The critical exponent ν is then

determined by solving the transcendental equation

ρνnλ
ν
n−1 = 1. (139)

Choosing this minimal solution, it follows by theorem 2.2 of [83] and the well-known asymp-

totics of F = 2F1 that the series for (133) converges in some ellipse in the complex plane with

focal points {x+, x−} [77].
It is obvious from the series (133) that the critical exponent is only determined up to an

integer. Furthermore, one can show [77] that if ν is a solution to (139), then so is−ν − 1, with

the corresponding coef�cients related by

a−ν−1
−n = aνn . (140)

Although the solution of the transcendental equation (139) does not seem possible in closed

form, one can in practice get solutions as power series expansions in suitably small parameters.

For example, one can obtain the following (not necessarily convergent) asymptotic expansion

for large rc (near RN) and small ω,

ν ∼ ℓ


1+

′∑

m,n>0

νn,m

(ω
ℓ

)n( 1

rc

)m


 , (141)

where the prime indicates that (m, n) = (0, 0) is excluded. The coef�cients depend on ℓ and
r−, r+, remain bounded for ℓ→∞, and can be found by direct substitution into the de�ning
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equation for ν. The lowest order in n+ m coef�cients turn out to be

ν2,0 =
ℓ(11r2− + 14r−r+ + 11r2+)− ℓ2(ℓ+ 1)(15r2− + 18r−r+ + 15r2+)

2(2ℓ + 1)(4ℓ(ℓ + 1)− 3)
, (142a)

ν0,2 =
(15ℓ4 + 30ℓ3 + 9ℓ2 − 6ℓ− 4)(r2− + r2+)+ (18ℓ4 + 36ℓ3 + 10ℓ2 − 8ℓ− 4)r−r+

2ℓ(2ℓ + 1)(4ℓ(ℓ + 1)− 3)
, (142b)

ν0,3 =
−(15ℓ4 + 30ℓ3 + 9ℓ2 − 6ℓ− 4)(r2− + r2+)

2 − (33ℓ4 + 66ℓ3 + 19ℓ2 − 14ℓ− 8)r−r+(r− + r+)

2ℓ(8ℓ3 + 12ℓ2 − 2ℓ− 3)
.

(142c)

To determine the normalization of the solution (133), we note that, by F(a, b; c; 0) = 1, it

behaves as

r−1R
up,II

ωℓ,ν (x) ∼ eiω(r∗+D
′)
( −xc
1− xc

)bc −x∞
1− x∞

∞∑

n=−∞
aνn (143)

near r+, with a constant D′, related to the integration constant D in (12). To determine the

asymptotic behavior at the Cauchy horizon, we use [82], 15.3.6,

F(a, b; c; x) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F(a, b; a+ b− c+ 1; 1− x)

+ (1− x)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F(c− a, c− b; c− a− b+ 1; 1− x).

(144)

It follows that near r−, the solution (133) behaves as

r−1R
up,II
ωℓ,ν ∼ eiω(r∗+D

′′)
∞∑

n=−∞
aνn

Γ(1+ 2b+)Γ(−2b−)

Γ(b+ − b− + n+ ν + 1)Γ(b+ − b− − n− ν)

+ e−iω(r∗+D′′)
∞∑

n=−∞
aνn

Γ(1+ 2b+)Γ(2b−)

Γ(b+ + b− − n− ν)Γ(b+ + b− + n+ ν + 1)
,

(145)

with another integration constant D′′. From this, one can read off

T
up,II
ωℓ = e−iω(D′−D′′) r−

r+

(
1− xc

−xc

)bc 1− x∞
−x∞

Γ(1+ 2b+)Γ(−2b−)

×
∑∞

n=−∞ aνn[Γ(b+ − b− + n+ ν + 1)Γ(b+ − b− − n− ν)]−1

∑∞
n=−∞ aνn

,

(146a)

R
up,II

ωℓ = e−iω(D′+D′′) r−
r+

(
1− xc

−xc

)bc 1− x∞
−x∞

Γ(1+ 2b+)Γ(2b−)

×
∑∞

n=−∞ aνn[Γ(b+ + b− − n− ν)Γ(b+ + b− + n+ ν + 1)]−1

∑∞
n=−∞ aνn

.

(146b)
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From the factors Γ(±2b−), one easily veri�es the asymptotic behavior (124). Note that in both

expressions the fraction of the sums converges to

− 1

π
sin πν

∑∞
n=−∞ (−1)naνn∑∞

n=−∞ aνn
(147)

in the limit asω→ 0, so that the divergence atω→ 0 cannot be enhanced but possibly canceled

if ν → Z forω→ 0, which, as can be seen from (141), happens in the RN limit, consistent with

results by [76].

In order to determine the coef�cient Rup,I, we �rst de�ne the up mode R
up,I
ωℓ,ν in region I by

replacing in (133) the �rst factor by (−x)b+ . Then, by [82], 15.3.8, and (140), one can write

R
up,I

ωℓ,ν(x) = R+,I
ωℓ,ν(z)+ R+,I

ωℓ,−ν−1(z), (148)

where

r−1R+,I
ωℓ,ν(z) = (z− 1)b+zb−

(
1− z

zc

)bc
(
1− z

z∞

)
Γ(1+ 2b+)

×
∞∑

n=−∞
aνn

Γ(2n+ 2ν + 1)

Γ(n+ ν + b+ + b− + 1)Γ(n+ ν + b+ − b− + 1)
zn+ν−b+−b−

× F(b+ + b− − n− ν, b+ − b− − n− ν;−2n− 2ν; 1/z). (149)

Here z = 1− x, and analogously for zc, z∞. By (144), the behavior near the event horizon is

given by

r−1R+,I
ωℓ,ν ∼ eiω(r∗+D′′′)

( −xc
1− xc

)bc −x∞
1− x∞

sin[π(ν + b+ + b−)] sin[π(ν + b+ − b−)]

sin 2πb+ sin 2πν

×
∞∑

n=−∞
aνn + e−iω(r∗+D′′′)

( −xc
1− xc

)bc −x∞
1− x∞

Γ(1+ 2b+)Γ(2b+)Γ(1+ 2ν)Γ(−2ν)

×
∞∑

n=−∞
aνn
[
Γ(1+ n+ ν + b+ + b−)Γ(1+ n+ ν + b+ − b−)

×Γ(−n− ν + b+ + b−)Γ(−n− ν + b+ − b−)
]−1

, (150)

with some integration constant D′′′, where we also used

Γ(z)Γ(1− z) = π csc πz. (151)

An analogous solution in region I which is regular at the cosmological horizon rc is given by

r−1Rc,Iωℓ,ν(z) = (z− 1)b+zb−
(
1− z

zc

)bc
(
1− z

z∞

)
1

Γ(b+ + b− − bc − bo + 1)

×
∞∑

n=−∞
aνn

Γ(n+ ν − bc + bo + 1)Γ(n+ ν − bc − bo + 1)

Γ(2n+ 2ν + 2)

(
z

zc

)n+ν−b+−b−

× F(n+ ν + b+ − b− + 1, n+ ν + b+ + b− + 1; 2n+ 2ν + 2; z/zc). (152)
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It follows from the coef�cients in our three-term relation, by theorem 2.2 of [83] and the

well-known asymptotics of F = 2F1 that the series for (133) converges in some ellipse in the

complex zc/z plane with focal points {0, 1}, containing in particular {xc, x∞} in the complex

x plane. By comparison of coef�cients one then �nds that [77]

R+,I
ωℓ,ν = Kν

ωℓR
c,I
ωℓ,ν (153)

with

Kνωℓ = z
p+ν−b+−b−
c

× Γ(1+ 2b+)Γ(b+ + b− − bc − bo + 1)

Γ(p+ ν − b+ − b− + 1)Γ(p+ ν − b+ + b− + 1)Γ(p+ ν + bc − bo + 1)Γ(p+ ν + bc + bo + 1)

×
∞
∑

n=p

(−1)n−paνn
Γ(n+ ν − b+ − b− + 1)Γ(n+ ν − b+ + b− + 1)Γ(p+ n+ 2ν + 1)

Γ(n+ ν + b+ + b− + 1)Γ(n+ ν + b+ − b− + 1)(n − p)!

×
(

p
∑

n=−∞
aνn

Γ(n+ ν − bc + bo + 1)Γ(n+ ν − bc − bo + 1)

Γ(n+ ν + bc − bo + 1)Γ(n+ ν + bc + bo + 1)Γ(p+ n+ 2ν + 2)(p− n)!

)−1

. (154)

Here p is an arbitrary integer, on which the result does not depend (keeping this parameter pro-

vides a check for the subsequent formulas). The solutions Rc,Iωℓ,ν and R
c,I
ωℓ,−ν−1 are linearly inde-

pendent. Using (140), (144), and the identity (151), one can show that the linear combination

Rout,I
ωℓ,ν = sin[π(bc + bo − ν)] sin[π(bc − bo − ν)]Rc,Iωℓ,ν

− sin[π(bc + bo + ν)] sin[π(bc − bo + ν)]Rc,Iωℓ,−ν−1 (155)

is given by

r−1Rout,I
ωℓ,ν(z) = (z− 1)b+zb−

(
1− z

zc

)bc
(
1− z

z∞

)
1

Γ(b+ + b− − bc − bo + 1)

π sin 2πν

Γ(1+ 2bc)

×
∞∑

n=−∞
aνn

(
z

zc

)n+ν−b+−b−

× F
(
n+ ν + bc − bo + 1, n+ ν + bc + bo + 1; 1+ 2bc; 1− z/zc

)
. (156)

Its asymptotic form near r = rc is given by Rout,I
ωℓ,ν ∼ Dωe

iωr∗ with some irrelevant factor Dω .

Thus, it represents an outgoing solution near the cosmological horizon. Using (153), we may

reexpress Rout,I
ωℓ,ν as

Rout,I
ωℓ,ν = sin[π(bc + bo − ν)] sin[π(bc − bo − ν)]

(
Kν
ωℓ

)−1
R+,I
ωℓ,ν − {ν ↔ −ν − 1}.

(157)

From (150), we can thus read off
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R
up,I

ωℓ =− e−2iωD′
π sin(2πb+)Γ(1+ 2b+)Γ(2b−)

×
[
sin[π(bc + bo − ν)] sin[π(bc − bo − ν)]

(
Kν
ωℓ

)−1
+ {ν ↔ −ν − 1}

]

×
∞∑

n=−∞
aνn
[
Γ(1+ n+ ν + b+ + b−)Γ(1+ n+ ν + b+ − b−)Γ(b+ + b− − n− ν)

×Γ(b+ − b− − n− ν)
]−1

[sin[π(bc + bo − ν)] sin[π(bc − bo − ν)]

× sin[π(b+ + b− + ν)] sin[π(b+ − b− + ν)]
(
Kν
ωℓ

)−1

+ {ν ↔ ν − 1}
]−1

[ ∞∑

n=−∞
aνn

]−1

. (158)

Regarding the integration constants D′, D′′, one easily checks that these cancel in the next-to-
last term in (123), which is the only term sensitive to phases.

5.4. Numerical results

From the discussion in the previous sections, two open questions remain: (1) Is the ‘density

of states’ nℓ(ω) as given in (123) non-vanishing
28, with generically non-vanishing integrals of

the form (122)? (2) Does the sum (127) over angular momenta converge and give a generically

non-vanishing result, corresponding to a nonzeroC in (128), resp. (5)? Without performing an

exhaustive parameter scan, we provide numerical evidence that the answer to both questions

is af�rmative for the case of a conformally coupled scalar �eld.

As the near extremal case seems to be the most interesting one, due to large violations

of sCC in the classical case, we pick an example from that regime. Figure 10 shows ωn0(ω)
for the parameters rc = 100, r+ = 2, r− = 1.95, corresponding to κc = 0.0094, κ+ = 0.0062,
κ− = 0.0066. Shown in the �gure are results obtained with the method based on Heun func-

tions described in section 5.3, combined with results obtained by direct numerical integration

of the radial equation, which is the method employed in [36] for the RN case. The consider-

ation of the results obtained by direct integration of the radial equation not only provides a

consistency check for the results obtained with the Heun function method, but is at present

also necessary as the search for a solution of (139), i.e. for the critical exponent ν, becomes

dif�cult for large frequencies ω for which the asymptotic expansion (141) does not provide a

useful estimate for the starting point of a numerical search algorithm29. On the other hand,

the Heun method seems to have advantages for ω→ 0 where some scattering coef�cients

diverge.

At any rate, clearly ωn0(ω) is not only non-vanishing, but also has a non-vanishing inte-

gral, answering the �rst of the above questions. As for the second question, one �nds that

ωn1(ω) is already of order 10
−15, i.e. suppressed by eight orders of magnitude. The contribu-

tions of higher angular momenta are already drowned in numerical noise. The same behavior,

i.e. non-vanishing integrandsωnℓ(ω) with non-vanishing integrals and a rapid decrease in angu-
lar momentumwere also found for the other parameters rX at which we numerically evaluated

ωnℓ(ω) (both in the near-extremal and the ‘normal’ regime κ− > κc). We thus conclude that

the coef�cient C in (5) is indeed generically non-vanishing.

28As discussed in the next section, the analog of nℓ(ω) in the case of the BTZ black hole vanishes identically.
29However, we do not doubt that with more effort the range of applicability of the Heun function method can be

extended to greater frequencies.
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Figure 10. Numerical results for ωn0(ω) for the parameters rc = 100, r+ = 2,
r− = 1.95. In red the results from the Heun function method, in blue results obtained by
direct numerical integration of the radial equation.

6. Comparison with the BTZ black hole

In [41] Dias et al have studied the stress tensor of a scalar �eld obeying (�− µ2)Φ = 0 in the

three-dimensional BTZ black hole spacetime [84, 85]. In local coordinates it has the metric

g = − f dt2 + f −1dr2 + r2(dφ− Ωdt)2, (159)

with

f =
(r2 − r2+)(r

2 − r2−)

r2
, Ω =

r+r−
r2

, (160)

and Penrose diagram as in �gure 11. (For simplicity, we have set the AdS radius L = 1; we

refer to [41] for details on how to construct the diagram.) Even though the BTZ black hole

is a solution with a negative cosmological constant, these authors showed that the regularity

of the classical stress tensor Tµν is governed by a parameter β similar to (2). However, in

contrast with RNdS, they showed that α is not the spectral gap (3) of all quasi-normal modes

in region I, but only of the ‘counter-rotating’ ones. As a consequence, it can be seen [41] that

β→∞ in the BTZ case as the spacetime approaches extremality r− → r+. Hence, classically,

the stress tensor becomes as regular as we wish across the Cauchy horizon, implying an even

stronger violation of sCC than in the case of RNdS at the classical level. The authors [41]

have also considered the expected quantum stress tensor in the Hartle–Hawking state and have

presented arguments that it similarly becomes arbitrarily regular at the Cauchy horizon when

we approach extremality, in marked contrast to our results in RNdS.

As [41] have pointed out, these results are in effect due to a cancellation that appears to be

special to the BTZ case. Nevertheless, since the behavior of the quantum stress-energy tensor

near CHR for the BTZ black hole found by [41] is very different from the behavior we have

found in the RNdS case, it is instructive to understand how this difference arises from the

perspective of the type of mode calculation given in the previous section. Therefore, we will
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Figure 11. Sketch of the relevant part of the BTZ spacetime. Here the double line
indicates the asymptotic timelike boundary.

now analyze the BTZ case by the methods of the previous section. The upshot of the analysis

that we will now give is that the constant C appearing in (5) is zero in the BTZ case, consistent

with the �ndings of [41].

Following [41], we introduce the variable

z =
r2 − r2−
r2+ − r2−

, (161)

and write generic mode solutions as

ψωm(t, z,φ) = e−iωteimφRωm(z). (162)

Solutions are given in terms of hypergeometric functions involving the parameters

a =
1

2

(
∆− i

ω − mΩ−
κ−

− i
ω − mΩ+

κ+

)
, (163a)

b =
1

2

(
2−∆− i

ω − mΩ−
κ−

− i
ω − mΩ+

κ+

)
, (163b)

c = 1− i
ω − mΩ−

κ−
. (163c)

Here ∆ = 1+
√
1+ µ2, and the surface gravities κ± and the angular velocities Ω± of event

and Cauchy horizon, which can be expressed in terms of the horizon radii r± as

κ± =
r2+ − r2−
r±

, Ω± =
r∓
r±

=
κ±
κ∓
. (164)

The solutions with special behavior near the Cauchy horizon r− are given by

Rout,−
ωm (z) = z−

1
2
(1−c)(1− z)

1
2
(a+b−c)F(a, b; c; z), (165a)
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Rin,−
ωm (z) = z+

1
2 (1−c)(1− z)

1
2 (a+b−c)F(a− c+ 1, b− c+ 1; 2− c; z). (165b)

The solutions with special behavior near the event horizon r+ are given by

Rout,+
ωm (z) = z−

1
2
(1−c)|1− z|− 1

2
(a+b−c)F(c− b, c− a;−a− b+ c+ 1; 1− z),

(166a)

Rin,+
ωm (z) = z−

1
2 (1−c)|1− z|+ 1

2 (a+b−c)F(a, b; a+ b− c+ 1; 1− z). (166b)

Finally, the solution with the fast decay at in�nity is given by

R0,∞
ωm (z) = z−

1
2 (2a−c+1)(z− 1)

1
2 (a+b−c)F(a, a− c+ 1; a− b+ 1; 1/z). (167)

From the linear transformation formulas for hypergeometric functions, it follows that

Rout,+
ωm = AωmR

out,−
ωm +BωmR

in,−
ωm , (168a)

Rin,+
ωm = ÃωmR

in,−
ωm + B̃ωmR

out,−
ωm , (168b)

T̃ωmR
0,∞
ωm = Rout,+

ωm + R̃ωmR
in,+
ωm , (168c)

where

Aωm =
Γ(1− c)Γ(1− a− b+ c)

Γ(1− a)Γ(1− b)
, Bωm =

Γ(c− 1)Γ(1− a− b+ c)

Γ(c− a)Γ(c− b)
,

(169a)

Ãωm =
Γ(c− 1)Γ(a+ b− c+ 1)

Γ(a)Γ(b)
, B̃ωm =

Γ(1− c)Γ(a+ b− c+ 1)

Γ(a− c+ 1)Γ(b− c+ 1)
,

(169b)

T̃ωm =
Γ(a)Γ(a− c+ 1)

Γ(a− b+ 1)Γ(a+ b− c)
, R̃ωm =

Γ(a)Γ(a− c+ 1)Γ(c− a− b)

Γ(1− b)Γ(c− b)Γ(a+ b− c)
.

(169c)

We also recall the de�nition

r∗ =
1

2κ+
log

∣∣∣∣∣
r − r+

r + r+

(
r + r−
r − r−

)Ω+

∣∣∣∣∣ (170)

of the tortoise coordinate and introduce the corotating angles

φ± = φ− Ω±t. (171)

As before, we use boundary data to de�ne the relevant states. To de�ne the comparison state

we use the modes with boundary data

ψout
ωm =




(2π)−1(2|ω|)− 1

2 r
− 1

2
− eimφ−e−iωv on CHL,

0 on CHR.
(172)
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One easily checks that

ψin,−
ωm = (2π)(2|ω − mΩ−|)

1
2 r

1
2
−

(
4r−
κ−

)i
ω−mΩ−
2κ−

(
r+ − r−
r+ + r−

)i
ω−mΩ−
2κ+

ψout
ω−mΩ− ,m.

(173)

To de�ne the Hartle–Hawking (HH) state state (an analog of our Unruh state), we use the

modes with boundary data

ψup,I
ωm =




(2π)−1(2|ω|)− 1

2 r
− 1

2
+ eimφ+e−iωu on H−,

O(z−∆/2) at ∞,
(174a)

ψup,II
ωm =




(2π)−1(2|ω|)− 1

2 r
− 1

2
+ eimφ+e−iωu on HL,

0 on HR.
(174b)

In I and II, respectively, these are related to the mode solutions introduced above by

ψout,+
ωm + R̃ωmψ

in,+
ωm = (2π)(2|ω − mΩ+|)

1
2 r

1
2

+

(
4r+

κ+

)+i
ω−mΩ+

2κ+

(
r+ − r−
r+ + r−

)+i
ω−mΩ+

2κ−
ψup,I
ω−mΩ+,m,

(175a)

ψout,+
ωm = (2π)(2|ω − mΩ+|)

1
2 r

1
2

+

(
4r+

κ+

)+i
ω−mΩ+

2κ+

(
r+ − r−
r+ + r−

)+i
ω−mΩ+

2κ−
ψup,II
ω−mΩ+,m.

(175b)

Similar to [75], and analogously to (117), the symmetrized two-point function in the Har-

tle–Hawking state can be expressed as

〈{Φ(x1),Φ(x2)}〉HH =

∞∑

m=−∞

∫ ∞

−∞
dω

[
sgnω

sinh πω
κ+

Re
{
ψup,I
ω,m(x1),ψ

up,II
ω,m (x2)

}

+
sgnω

1− e
− 2πω
κ+

({
ψup,I
ω,m(x1),ψ

up,I
ω,m(x2)

}
+

{
ψup,II
−ω,m(x1),ψ

up,II
−ω,m(x2)

})]

(176)

Restricting to region II, using the above relations and neglecting the ψout,− modes, which are

irrelevant for the restriction to CHL that we want to perform in the end, one obtains

〈{Φ(x1),Φ(x2)}〉HH =
r−
r+

∞∑

m=−∞

∫ ∞

−∞
dω

|ω|
|ω − mΩ+ + mΩ−|

×


 sgn(ω − mΩ+ + mΩ−)

1− e
− 2π(ω−mΩ++mΩ−)

κ+

|Ãω+mΩ−,m|2
{
ψout
ω,m(x1),ψ

out
ω,m(x2)

}
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+
sgn(ω − mΩ+ + mΩ−)

1− e
− 2π(ω−mΩ++mΩ−)

κ+

|Bω+mΩ−,m|2
{
ψout
−ω,m(x1),ψ

out
−ω,m(x2)

}

+
sgn(ω − mΩ+ + mΩ−)

sinh
π(ω−mΩ++mΩ−)

κ+

×Re
{
R̃ω+mΩ−,mÃω+mΩ−,mψ

out
ω,m(x1),Bω+mΩ−,mψ

out
ω,m(x2)

}

 .

(177)

For the difference of the Hartle–Hawking and the comparison state, differentiated n times w.r.t.

v and restricted to CHL, one thus obtains formally, after symmetrization under the simultaneous

transformation ω→−ω, m→−m,

[
〈∂nvΦ(x1)∂vΦ(x2)〉HH − 〈∂nvΦ(x1)∂nvΦ(x2)〉C

]
x1→x2→CHL =

1

8π2r2−

∞∑

m=−∞

∫ ∞

0

dω ω2n−1nm(ω),

(178)

where

nm(ω) =
r−
r+

ω

ω − mΩ+ + mΩ−

[
coth

π(ω − mΩ+ + mΩ−)

κ+

(
|Ãω+mΩ−,m|2 + |Bω+mΩ− ,m|2

)

+ 2csch
π(ω − mΩ+ + mΩ−)

κ+
Re
(
R̃ω+mΩ−,mÃω+mΩ− ,mBω+mΩ−,m

)]
− coth

πω

κ−
.

(179)

Equation (179) is the analog of (122). In the present case, however, one can use standard

identities for products ofΓ functions and trigonometric identities to show that nm(ω) identically
vanishes! This means in particular that 〈Tvv〉HH − 〈Tvv〉C ∝∑m

∫
dω ωnm(ω) vanishes at CHL,

and since both states are stationary, i.e. invariant under the �ow of ∂ t, the same must be true at

CHR. Hence, the constantC appearing in (5) is zero in the BTZ case,whereaswe have presented

evidence that C 6= 0 generically in the case of RNdS. Thus, our �ndings are mathematically

consistent with those of [41]. We believe that the vanishing of nm(ω) is a very special property
of the BTZ black hole spacetime.

7. Conclusions

In this work, we have analyzed the expected stress tensor of a real, linear Klein–Gordon quan-

tum �eld near the Cauchy horizon inside the RNdS black hole. We have presented arguments

that, due entirely to quantum effects, the VV-component of the stress tensor diverges as V−2

near the Cauchy horizon (de�ned by V = 0) with a coef�cient that does not depend on the

initial state, provided only that the state is regular (Hadamard) near an initial Cauchy surface

extending beyond the cosmological horizon. Numerical evidence indicates that this coef�cient

is not zero at least for the black hole parameter values which we have considered. Since the

coef�cient would at any rate be expected to be basically an analytic function of the black hole

parameters, it should be zero only on a set of measure zero of �nely tuned parameters.
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Although we have studied in this paper the case of RNdS spacetime, our methods should

apply with relatively minor modi�cations to the the Kerr–Newman–dS black holes, and we

strongly expect the same conclusions. More generally, we expect the behavior (5) to hold

generically in eternal black hole spacetime whose Cauchy horizon is a bifurcate Killing

horizon.

Our analysis does not preclude the existence of spacetimes for which C = 0 and for which

the behavior of the quantum stress-energy is less singular than (5). Examples of such space-

times are the two-dimensional RNdS spacetime with κc = κ− and the three-dimensional BTZ

black hole spacetime analyzed by [41]. Nevertheless, we shall argue elsewhere that even for

such spacetimes in which the quantum stress-energy is not (badly) singular as one approaches

the Cauchy horizon, a Hadamard state can not be extended beyond the Cauchy horizon, which

typically manifests itself in the divergence of some local Wick power at the horizon. Thus, it

appears that quantum �eld effects enforce strong cosmic censorship—or, at least, move it to a

regime where full quantum gravity will be needed to determine to what extent it holds.
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