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%C describe a new analytic approach to thc problem of black-hole oscillations, which has been in-

vestigated numerically thus far. Our treatment is based on a connection between the quasinormal
modes and the bound states of the inverted black-hole effective potentials. Approximate analytic

formulas for the quasinormal frequencies of Schwarzschild, Rcissner-Nordstrom, and slowly rotat-

ing Kerr black holes are provided. We find that a real quasinormal frequency for an extreme Kerr
black hole has VRI11shing amplitude in thc ordinary (1.c., nonsupcrradiant) regime', thelcforc cxtrcInc
Kerr black holes are not marginally unstable in this case. These results are significant for the ques-

tion of the stability of a black hole as well as for the late-time behavior of radiation from gravita-

tionally coHapsing configurations.

I. INTRODUCTION

The question of the stability of a black hole was first
treated in the pioneering work of Regge and %heeler, '

who investigated the linear perturbations of the exterior
Schwarzschild spacetime. Further work on this problem
led to the study of quasinormal modes (QNM's) and their
role in the response of a black hole to external perturba-
tions. Extensive numerical work over the past decade
has shown that the response of a black hole is generally
dominated at late times by certain damped oscillations,
External perturbations excite the QNM's which in turn
appear as damped vibrations in the Mack-hole response.
These oscillations are intrinsic characteristics of the exte-
rior geometry and can, in principle, help uniquely identify
a black hole. Thus the QNM's represent the imprint of a
black hole on its response to external perturbations. Even
for systems undergoing gravitational collapse, the gravita-
tional radiation spectrum at the late stages of coHapse
may be dominated by the quasinormal oscillations.
Thus, in addition to their importance for the analysis of
the stability of black holes, QNM's may play a significant
role in the continuing search for gravitational radiation
and black holes.

To study the QNM's analytically, a method has been
developed' which establishes a link between the QNM's
and the bound states of the inverted black-hole potentials.
A description of the general properties of the QNM*s on
the basis of this method is presented in Sec. II. Analytical
estimates for the bound states of the inverted
Schwarzschild and Reissner-Nordstrom curvature poten-
tials are used in Secs. III and IV to give approximate
analytical formulas for the quasinormal frequencies and
wave functions. The problem of QNM's for the exterior
Kerr spacetime is discussed in Sec. V. Rotation removes
the degeneracy of the modes of a spherical black hole. A
formula is derived for the splitting of the quasinormal fre-
quencies in the limit of slow rotation. Furthermore, we

show that the quasinormal frequencies of a Kerr black
hole cannot be real, except possibly in the superradiant
case. Thus, the suggestion that an extreme Kerr black
hole is, in some sense, marginally unstable cannot be
maintained. In fact, in Sec. VI we give a detailed analysis
of certain null rays in the Kerr geometry to show that an
extreme Kerr black hole is stable in the eikonal approxi-
mation.

II. GENERAL PROPERTIES OF QNM's

Small-amplitude perturbations of the exterior field of
black-hole spacetimes lead to linear second-order partial
differential equations which may be separated completely
for the Schwarzschild, Reissner-wordstrom, and Kerr
geometries. This means that the wave amplitude for a
general perturbation of integer spin s (s =0, I, or 2, say)
may be expressed as a sum of simple modes (of frequency
co and angular momentum parameters j and m) of the
form

where j)s and —j &I &j. Let us introduce the general-
ized Regge-Wheder coordinate x, and set

P(x)=SF J,(r) .

Then it satisfies a "Schrodinger" equation with a real po-
tential which depends in general on fr'equency

d2
+[to —V(x;co))@=M(x;co) .

dx

I.et us first consider a spherical black hole. In this case
the effective potential U(x) is independent of frequency
and U~o as x —++ ao. The quasinormal modes are de-
fined to be the solutions of the homogeneous form of (3)
with the boundary conditions

p(e+x-i )coxas x«+ ~,
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which correspond to outgoing waves at infinity and ingo-
ing waves at the horizon. It follows from flux conserva-
tion that for a QNM co must be complex, ~=co +iI,
with aP&0. Moreover, if the "average" value of the po-
tential is positive for a QNM, i.e.,

f U(»III'« f
then I ~0. This is simply shown by multiplying the
source-free form of Eq. (3) by P* and integrating the re-
sult from x = —ao to + co. A contradiction is encoun-
tered if Eq. (5) is satisfied and I is negative. For a spheri-
cal black hole condition {5) is always satisfied since U & 0;
hence, the QNM's are confined to the upper half of the
complex frequency plane. It is clear, therefore, that for a
QNM,

I f I
—m ao as x~+ ao, and so the QNM's cannot

be considered perturbations of a black hole. A more gen-
eral description of QNM's is obtained if we consider the
problem of reflection and transmission of waves by a po-
tential (Fig. 1). It is clear that the reflection amplitude
R(c0)=R*(—co) is always finite for real co, IR {co)

I
&1,

by Aux conservation. By extending the problem to the
complex frequency domain, we find that the QNM*s cor-
respond to the singularities of the reflection amplitude
R (z),

R(z)=R*(—z*),
such that Re(z)&0 and T(z)/R (z) is regular (and
nonzero). These constraints would ensure that the boun-
dary conditions for the QNM's are satisfied. It follows
from Eq. {6) that the quasinormal frequencies are symme-
trically distributed with respect to the 1maginary axis in
the complex plane.

There exists a close connection between the singularities
of the scattering amplitude and the bound states. In fact,
for a potential wel/ it is immediately clear that the singu-
larities of R(co) for co=co +iI', co =0, and I &0, corre-
spond to the bound states of the potential mell. For a po-
tential barrier, however, the connection is not evident. Wc
wish to show that the QNM's of a potential barrier are re-
lated to the bound states of the inuerted potential. Let p
be a set of parameters associated with the potential.
These may belong to the potential already, or they may be
simply introduced as scaling parameters. The

LP -—e i{0(t+x)
in R(ug

parametrized potential is denoted by U(x;p); the wave
fUnctlons and thc quaslnormal &cqucnclcs a1c also func"
tions of the parameters p:p=g(x;p) and ol=co(p). Con-
sider the formal transformations x~ ix— and
p —+p'=Il(p) in such a way that the potential remains in-
variant,

U( i—x;p') = U(x;p) .

Let us define P and Q such that

P(x;p) =P( ix—;p')

Q(p) =co(p') .

Then P satisfies the Schrodinger equation

d P +(—Q'+ U)/=0,
dx

and the boundary conditions for the QNM's are reduced
to

P(x;p) ~ exp(+Qx), as x~+ac .

The Q(p) are in general eompiex; however, it is clear that
for a real Q(p) &0, Eqs. (10) and (11) correspond to the
Schrodinger equation with the potential —U and the
proper boundary conditions for bound states. Once Q(p)
is determined, the QNM's are found by the inverse
transformation

01(p)=Q(II '(p)) and g(x;p)=p(ix;Il '(p)) . (12)

Finally, the parameters p may be set equal to their origi-
nal values; thereby, the QNM's associated with the poten-
tial U(x) are determined. The QNM's which are directly
related, through Eq. (12), to the true bound states of the
inverted potential will be referred to as proper QNM's.
The spectrum of the bound states of Eq. (10) is discrete;
therefore, the proper QNM's form a discrete set in the
complex frequency plane.

These results may be simply extended to potentials that
do not vanish as x~+ tx) ~ such as thc 1nvcrtcd
harmonic-oscillator potential or the Eckart potential. '

Let us now consider a real effective potential which is
explicitly dependent upon the frequency as in the case of a
Kerr black hole. Suppose that V(x;ra)~0 as x~+ co
and V(x;oI)—+VI, (co) as x —& —oo. Thus, for a wave in-
cident from infinity with frequency co the transmitted
wave is of the form exp(i cot +ikx), where k
=to —Vl, (co),

j~&) ~!{I}{t+X)
R({l})

IRI +—ITI =1, (13)

FIG. 1. The scattering and absorption of an incident gravita-
tional wave from spatial infinity by a Schwarzschild black hole.
The angular eigenfunctions are suppressed here. R (co) and
T(m) are the reflection and transmission amplitudes, respective-
ly.

so that, IR I
&1 in the ordinary case (k/co&0) and

IR I
&1 in the case of superradiance (k/ol&0). There is

colnplete reflection if k is imaginary. For a Kerr black
llolc k ls sllllply glvcI1 by k =co —ma /(2Mr+ )) wllclc r+
is the "radius'* of the outer horizon, r+ ——M
+(M —a )'~. This follows from the fact that Vq(co)
=2mt0QI, mQI, , where QI, ———a/{2Mr+ ) is the horizon
frequency, " and of the two possibilities k =+(co—m Ql, )
oIlly k =co —m Qg llas thc correct llnlltlllg for 111 fol'
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a~0. The QNM's are defined to be the solutions of the
homogeneous form of Eq. (3) which correspond to outgo-
ing waves at spatial infinity as before, and to (physically)
IngoIng waves at tile horIzon,

f~ exp(ikx) as x —+ —oo,

where Re(k)/Re(co) is positive in the ordinary case and is
negative iii the superradiant case. Tlius the QNM s coiie-
spond, again, to the singularities of the reflection ampli-
tude RJ~(z) such that Re(z)&0 and TJ,(z)!Rj~,(z) is
regular (and nonzero). Since for a real frequency co,

VJ (x;co)= VJ ~(x;—co) in general, RJ. , (z)
=RJ', ( —z*) and a similar relation holds for T/, (z);
therefore, if coJ~, is a quasinormal frequency, then so is
—coJ,. It follows that the modes of a Kerr black hole
arc distributed sgmHletrieallp with fcspcet to tbc 1Illa-

ginary axis in the complex co plane (as before) since rota-
tion removes the (2j + 1)-fold degeneracy of the
Schwarzschild modes. However, for a rotating black hole
the possibility of occurrence of a real quasinormal fre-
quency cannot be excluded: It is clear Porn flux conserua-
tion IEq. (I3)J that a QXM with real co cannot occur in the
ordinary case, but it is in principle possible in the superra
diant case' (cf. Sec. VI).

The problem of determination of the proper QNM's
may be transformed into a bound-state problem for a ro-
tating black hole as well. The transformation of the pa-
rarneters must be so chosen that the transformed potential
8'

8'(x;Q;p) = V( ix;to(p');p—'),
is a real potential barrier. Once the bound states of —W
(i.e., Q) 0) are determined, the proper QNM's can be ob-
tained from the inverse transformation, just as in Eq. (12).
This method wiH be used in See. V to determine the
QNM's of a slowly rotating Kerr black hole in the eikonal
approximation.

Finally, it is important to illustrate how a QNM, which
is not a proper perturbation of a black hole, can neverthe-
less be useful in characterizing the late-time behavior of
its Icsponsc to external cxeitations. Consider thc pertur-
bation of a black hole by incident matter or radiation.
The response of the black hole as x ~+ oo may be writ-
ten as

where f(zs) is the residue of F(z) at a singular point zs.
The damped oscillations characteristic of the QNM s (i.e.,
singularities of R) are contained in Eq. (20) with an am-
plitude determined by the relevant strength of the external
perturbation and the intrinsic amplitude of the mode (i.e.,
the residue of R). Moreover, the response is generally
dominated by terms with the least damping, and such
terms could be due to the singularities of A(z). For in-
stance, an incident wave packet with wavelengths much
larger than the mass of a Schwarzschild black hole is sim-

ply reflected with little change in shape, whereas the
quasinormal modes dominate the response if the main
wavelengths are comparable to (or smaller than) the size
of the black hole.

The number of QNM's of a black hole for a given mul-
tipole order j is not known. at present. The above argu-
ment is intended to show that although a QNM is not ex-
pected to be a proper perturbation of a black hole so far as
its spatial behavior is concerned (P can diverge for
x ~+~), nevertheless when the time dependence is prop-
erly taken into account the QNM appears as a propaga-
ting damped oscillation at late times as in Eq. (20).

The method of Sec. II may be applied directly to the
problem of determination of the QNM's of a
Schwarzschild black hole. The effective potential is given

14

j(j+1) 2oM
r

(21)

Equation (17) is obtained from the general solution of Eq.
(3) with the boundary conditions that the waves are outgo-
ing at infinity and ingoing at the horizon.

To determine the behavior of the response at late time
u ~ 0, let us assume that F(z) =A (z)R (z) is a holomorph-
ic function in the upper half-plane, except perhaps at a
finite number of points not on the real axis and let F~O
as

~

z
~

~ ao in the upper half-plane, then'

%„=2mig. f(z )e (20)

4'zc= 3 6) R N 8 QP,

where u = t —x is the retarded null coordinate. For an in-
cident wave packet A(ar) is the amplitude of radiation
mode of frequency co, and for incident matter

A (a))= X(x';co)M(x';a))dx',
26)

where X is a solution of the homogeneous Eq. (3) with the
boundary coIld1tlons

and o =1,0, —3, for the scalar, electromagnetic, and grav-
itational perturbations, respectively. The sealing parame-
ter A, & 0, which is unity for black-hole perturbations, has
been introduced such that under the transformations
x-+ ix, p =(—M, A, )~( iM, —A, ), —the potential (21)
remains invariant. I.et Q(M, A. ) denote the bound states of
the inverted potential, the pr'oper quasinormal frequencies
of a Schwarzschild black hole are then given by

T, (~) vX~ e, for x~—eo
R (co)

The analytical determination of Q(M, A, ) has not proved
possible thus far; therefore, this function must be estimat-
ed by using simpler potentials that approximate (21) close-



ly, especially near its maximum. For instance, the ground
state plus the first few excited states may be well approxi-
mated by the bound states of' —UPT(x),

U»(x) =U, r cosh'a(x —x, ),
since U(x) drops exponentially to zero for x~—oo (but
falls off as x for x~+00). The quantities Uo and
o, ~0 are given by the height and curvature of the poten-
tial at its maximum (x =xo ). Thus,

2 I d U
Uo ——U(xu) and a =—

dx' x,

The transition from the potential barrier UPT to the in-
verted potential is achieved by the transform ations
x~ ix—, ( Uo, a)~(UO, ia). The bound states of —UPT
are given by (cf. Appendix A)

is related to how precisely Q(M, A, ) approximates the
bound states of the inverted potential. If the inverted
harmonic-oscillator potential is used to estimate Q(M, A, ),
both m and I increase with n. The Poschl-Teller poten-
tial provides a better estimate; moreover, a generalization
of this potential may be used' to explain the decrease of
~0 with n T.he agreement between our results (Table I)
with numerical work ' is better than a few percent for
the fundamental (i.e., least-damped) QNM's. The same
holds for the damping factor for all the modes.

In the eikonal approximation j ~&1, the dominant term
in the potential (21) is proportional to j(j+1) so that the
quasinormal frequencies are given —irrespective of the
spin of the perturbing field —by (cf. Appendix 8)

~0'=+yo(j+ —')

1/2

Q„(Uo, a) =a (n +——,)+ —+ 0

~2
(26)

for n =0, 1,2, . . .,N —1, where Q~ ~0. The proper
QNM*s may be obtained from Q„(U&, ia); t—he corre-
sponding frequencies are given by

I „=yo(n+ —,
' ),

where

y, =(3~3M)-'

and n =0, 1,2, . . . (n ~~j).

(29)

(30)

coo=+(Uo —a2/4)'~2 and I „=a(n + —, ) . (27)

Table I presents the values of quasinormal frequencies
calculated using Eqs. (25)—(27). It is important to stress
that only the proper modes are given in Table I, i.e., those
for which a corresponding bound state exists. For the
electromagnetic perturbations we find that I is indepen-
dent of j; in fact, a simple calculation shows that
a '=3@3M in this case. Moreover, aP is independent of
n, whereas numerical work' has indicated that for gravi-
tational perturbations ~ decreases slightly with n. This

IV. QNM's OF A REISSNER-NORDSTROM
BLACK HOLE

The perturbation equations for the exterior Reissner-
Nordstlom geometry have been derived by a number of
authors. ' Let g~ and g2 represent the amplitudes of elec-
tromagnetic and gravitational perturbations, respectively.
The black hole is charged; therefore, purely electromag-
netic perturbations induce gravitational perturbations and
vice versa. The perturbation equations decouple, however,
for P+, where

TABLE I. Quasinormal frequencies of the scalar, electromagnetic, and gravitational perturbations of
a Schwarzschild black hole. co is expressed in units of (2M)

Gravitational modes

0
0
1

0
1

2
0
1

2
3
0
1

2
3

0
1

2
3
4

0.230+ 0.230i
0.597 + 0.201i
0.597 + 0.604i
0.975 + 0.196i
0.975 + 0.587i
0.975 + 0.979i
1.356+ 0.194i
1.356+ 0.583i
1.356 + 0.971i
).356 + 1.359i
1.739 + 0.194i
1.739 + 0.581 i
1.739 + 0.968 i
1.739+ 1.355i
1.739 + 1.742i
2. 123 + 0.193i
2.123 + 0.580i
2.123 + 0.966i
2.723 + 1.352E
2.123 + 1.738i

0.509 + 0.193i
0.509 + 0.577i
0.923 + 0.193i
0.923 + 0.577 i
0.923 + 0.962i
1.319 + 0.193i
1.319+ 0.577i
1.319+ 0.962i

1.711 + 0.193i
1.711 + 0.577i
1.711 + 0.962i
1.711 + 1.347i

2.099 + 0.193i
2.099 + 0.577i
2.099 + 0.962i
2.099 + 1.347i
2.099 + 1.732i

0.757 + 0.181i
0.757 + 0.543i

1.205 + 0.187i
1.205 + 0.560i
1.705 + 0.934i

1.623 + 0.189i
1.623 + 0.567i
1.623 + 0.946i
1.623 + 1.324i

2.028 + 0.190i
2.028 + 0.571i
2.028 + 0.951i
2.028 + 1.332i
2.078 + 1.712i
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=q 41+2QV~—1)(J +2)trj2 (31) 1.5

0 =2Q(J —1)V +2)41 q+—42 ~

Here Q is the black-hole charge, and

q+ ——3M+[9M +4Q (j —l)(j+2)]'~ (33) 1.0—
The effective potentials associated with the decoupled
equations for g+ can be put in the form

2M Q j (j +1) qv 4QU+x= 1 —-- —+ 2 3 4
p r

(34)

The QNM s, which are intrinsic to the Reissner-
Nordstrom geometry, are connected with the wave func-
tions tij+, i.e., with the coupled electromagnetic and gravi-
tational perturbations. Here the radial coordinate r is re-
lated to x via

1

(35) 0.5 1.0

such that for x~—ao, r ~r+ ——M + (M2 —Q2)'~2,
which is the radius of the outer horizon. The potentials
U+(x) have much the same mathematical behavior as in
the Schwarzschild case, i.e., they are positive everywhere
and go to zero exponentially for x —+ —ae and fall off as
x for x —++~, with a single maximum in between.
Therefore, the QNM's associated with l(+ may be deter-
mined using the same method as in the Schwarzschild
case: we scale the potentials by a parameter A, & 0 as be-
fore, and consider the parameter transformation
(M, Q, A, )~( iM, —iQ, —A, ).—Once the bound states
Q+(M, Q, A, ) have been determined, the quasinormal fre-
quencies follow from

FIG. 2. The real part of the quasinormal frequency of a
Reissner-Nordstrom black hole corresponding to the g+ com-

bination of electromagnetic and gravitational perturbations for
several values of j & 1. Note that in our approximate analysis

m+ does not depend on n.

1.5

ad+1+i I + 0+(iM,i Q——, —1), (36)

and the mode wave functions can be obtained in a similar
way (see Appendix A). Figures 2—4 present the results of
our calculations of quasinormal frequencies using formu-
las (25)—(27). Our results may be compared with the ex-
tensive numerical calculations of Gunter the agreement
is better than a few percent. Since for j=1 only spin-one
perturbations have any physical significance, only l(t+ is
relevant for the QNM problem in this case as it reduces to
a purely electromagnetic perturbation. ' It is clear from
Fig. 4 that I + vary only slightly with Q.

In the eikonal approximation j»1, the quasinormal
frequencies become independent of the spin of the per-
turbing field and are given by

M Qro =+ — (j+—') (37)
P 0 Po

0.5—

0.5 1.0

' 1/2

4
0

I /2

2—3 (n+ —,
' ),

P'O

for n =0, 1,2„. . . (n «j). Here ro,

FIG. 3. The real part of the quasinormal frequency of a
Reissner-Nordstrom black hole corresponding to the tt com-
bination of gravitational and electromagnetic perturbations for
several values of j&2. Note that in our approximate analysis
a' does not depend on n.
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r

2M j(j+1) amQM
p 2

p
3

0.09

We are interested in the bound states Q & 0 of —8'(x;Q);
therefore, we use the analytic approximation formulas
(24)—(26). Once Q(M, Qp72, A, ) 1s determined, the quaslnol-
mal frequencies are obtained from aP+ i I =Q(iM,
—am, —1). The maximum of W occurs at

ro ——3M 1+ j(j+1) (42)

0.08
0 0.5 1.0

the height of the potential at maximum is

8'o ——A,yo [j (j + 1 ) —4am Q],
and the curvature parameter a is given by

(43)

PIG. 4. The imaginary parts of the quasinormal frequencies
corresponding to the t(+ combinations of electromagnetic and
gravitational perturbations of a Reissner-Nordstrom black hole
for n =0 and j =5.

2r, =3M+(9M' —8g')'",
is the radius of the unstable null circular orbit in the exte-
rior Reissner-Nordstrom geometry.

where yo is given by Eq. (30). Inserting these expressions
in Eq. (26) and solving the resulting second-order equation
for Q„, we find (for n «j)

Q„=[&yo j(j+1)j'~ —2iamyo —yo(n+ —,') . (45)

The proper quasinormal frequencies are then given by'

The general problem of the QNM's of a Kerr black hole
is complicated by the fact that the effective potential in
this case depends in an intricate manner on the frequency
of radiation co and the angular momentum of the black
hole J=aM. It is possible, however, to treat the problem
using our method since one can turn the QNM problem
into a bound-state problem by an appropriate choice of
the parameters. In this connection we simply note that
Teukolsky's effective potential, which is in general com-
plex, may be transformed into a real inverted potential in-
volving the bound-state eigenvalue A. Rather than treat-
ing the general case, we shall restrict our attention to a
simple case in which (i) a «M, so that only linear terms
in a /'M are considered, and (ii) the eikonal approximation
is valid, i.e., j& ~m ~

&&1 (or j&&1 and m =0). Under
these conditions, and using the fact that for a
Schwarzschild black hole co is proportional to j for j»1,
the effective potential given by Teukolsky reduces to the
simple form

~,' =+go(J+-,')+2am@,'

I „=yo{n+ z ), n =0, 1,2, . . . (n «j) . (47)

coJ =( ', mp)'~ v j for —j&&1 . {48)

The (2j+1)-fold degeneracy of these modes may be re-
moved by a slow rotation of frequency co„

(49)~i~ =~i +
For a black hole, coj varies linearly with j in contrast to
Eq. (48), and co, is given by

The quasinormal wave functions can be obtained in an
analogous manner (see Appendix A).

These results may be compared and contrasted with the
frequencies of oscillation of a rotating fluid mass. The
Kelvin modes of oscillation of a spherical fluid mass of
uniform density p is given by

2M j(j+1) 4 amroM
Vx;co =A, 1— +4 (40) J

Ng =2
(3M)

(50)

where the scaling parameter A, ~O has also been intro-
duced. This is a real potential independent of the spin of
the perturbing field and the radial coordinates x and r are
related as in the Schwarzschild case. The parameter set
here is p = (M, am, ro, A, ), which is transformed into
p'=( —iM, —am, Q, —A, ) so that

which is of the same order of magnitude as the dragging
frequency of the inertial frames ' at r =3M. For a slowly
rotating black hole, the damping of the oscillations is not
affected by rotation and is independent of the angular
momentum parameters of the perturbation for j~~1.
This remaining degeneracy is, however, removed by the
addition of electric charge.
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VI. STABILITY OF THE EXTREME
KERR BLACK HOLE

The quasinormal frequencies of a rotating black hole
were studied numerically by Detweiler, who found
resonant oscillations for rapidly rotating black holes with
decay factor I approaching zero in the extreme Kerr limit
(a =M). This led to the suggestion that extreme Kerr
black holes are, in some sense, marginally unstable since
excitations could lead to the emission of radiation without
damping. We show, however, that the response of the
black hole at late times contains no such resonant oscilla-
tions. That is, the contribution of such modes to the
black-hole response goes to zero as I —+0. Hence, in any
realistic situation the late-time behavior of the black-hole
response is expected to be generally dominated by QNM's
which are significantly damped.

To begin with, we recall from our general discussion of
Sec. II that for a rotating black hole a QNM with real fre-
quency cannot exist in the ordinary (i.e., nonsuperradiant)
case. Thus, the above suggestion cannot be maintained
since all QNM's determined numerically fall in the ordi-
nary regime Th.e rest of this section is devoted to a phys-
ical explanation of this result. Consider the reflection am-
plitude extended to the complex domain. This function is
bounded on the real axis in the ordinary regime; therefore,
if a QNM approaches this part of the real axis, the corre-
sponding residue must approach zero: The amp/itude of
the excitation of this QNM goes to zero as I ~0 according
to Eq. (20). To illustrate this point by a specific example,
consider the reflection amplitude for an inverted
harmonic-oscillator potential,

U(x) = Uo —,' a(x —xo)—
with Uo ~ 0 and x ~ 0; then

R(z)= e ~ I ( —,'+i5),
277

stable circular orbit in the equatorial plane. The orbital
equations can be written as

(t, r,8,qr) =(g, ro, m/2. ,ro+q),

where rt is the affine parameter along the ray,

ro ——3M ~ 2a(M/ro)'

and

a)~ ——[a+(ro /M)'~ ]
The upper sign in Eqs. (56) and (57) refers to an orbit
corotating with the black hole and the lower sign refers to
a counterrotating orbit. Note that when a =0, rp=3M
and 6)+ =+go.

Suppose that at t =0 we perturb the orbit slightly; the
null rays diverge away from the unstable orbit, some
falling into the black hole and some escaping to infinity,
thereby simulating the boundary conditions corresponding
to the QNM problem. This perturbation of the black hole
corresponds to a superposition of eigenmodes of high fre-
quency AM »1, so that j»1 (eikonal approximation).
We expect the QNM's to dominate the characteristics of
the outgoing radiation; therefore, information about the
QNM's in the high-frequency limit may be obtained from
studying the characteristics of the diverging null rays.

I.et
~

e
~

&~1 represent the strength of the orbital per-
turbation. %'e compare the perturbed orbit in the equa-
torial plane with the original unperturbed orbit to linear
order in e for t &0; therefore, the perturbed orbit may be
expressed as

r =ro[1+ef(t)+ . ],

p=to+[t+eg(t)+ ]

with the affine parameter g given by

where 5 is given by q= t +eh (t)+ . (60)

z —Uo
2

5=—
(2~)'" (53)

~
r„) =[(2m)' (n+ —,

' )n!]

The reflection amplitude has poles at 5„=i(n + —,
'

) for
n =0, 1,2, . . ., corresponding to z„=co„+it„, with resi-
dues f'~,

and

f(t) =sinhyt,

g(t) =0,
(61)

The functions f, g, and h are to be determined from the
requirements that the perturbed orbit is a null geodesic of
the Kerr field together with the boundary conditions that
f(0)=g (0)=h (0)=0. The results are

Therefore, r„ is proportional to I „,as expected.
We shall now present a different approach based on an

explicit perturbation of the Kerr black hole which is stud-
ied in the eikonal approximation using null rays in the
Kerr geometry. This problem was partially analyzed by
Goebel; however, our treatment and interpretation are
different from his. The advantage of this method is that
the QNM's investigated numerically by Detweiler are ex-
plicitly exhibited and it is shown that in the extreme Kerr
limit these modes have vanishing amplitude.

Consider null rays orbiting a Kerr black hole in the un-

h(t)=2 I~+I
(coshyt —1),

P'o

whele p Q 0 ls given by

=363+ I — +2M a
ro ro

(64)

The null rays consist of a superposition of eigenmodes of
the form (1) with m =+j and with frequency
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(65)

which corresponds to the rea/ part of the frequency of the
QNM's that dominate the late-time behavior of the outgo-
ing radiation. It is interesting to note that to first order in
a/M, Eq. (65) agrees with Eq. (46) for m =+j.

The outgoing (e&0) and ingoing (e&0) null rays de-
plete the energy of the field concentrated at the null circu-
lar orbit at t =0. I.et p be the density of geodesic rays k&

per unit proper volume. The conservation law for the
number of null geodesic rays implies

(pk").„=0,

' =1+exp[ —2a{x—
x 0)] (A2)

therefore sufficient to determine explicitly the QNM's of
the Poschl-Teller potential (24). The solution of the wave
equation with the boundary condition that for x —+ —tc,
Iit —+exp(itttx) can be written as

T

g= [g(1—g)]'"y F 1+P+i —, P—+i —;1+i

%which may bc % rittcIl as

1 dp 1 I) [2dr
p d'g r t}r dyi

It is possible to show using Eqs. (58)—(64) that to lowest
order in e,

For x —++ oo, /~1, g is given by

1'~—e ' "+—e'"",
T T

(A3}

p( t) =po/coshyt,

where p is the constant density of rays along the unstable
circular orbit. For t ~ 0, Eq. (68) can be expressed as

{e yt e
—3yt+e —5yt—

where the reflection and transmission amplitudes are

R (to) = I ( iso/—a)1 (1+p+ ill�/a) I ( p+i —to/a)
I (ill/II )I (1+p)1 ( —p)

{A5)

which indicates that the decay factors for the outgoing
waves, corresponding to the imaginary parts of the quasi-
normal frequencies, are given by

I (1+p+ito/II)l ( p+ito/a)—
I'(1+iso/a)I (ice/a)

(A6)

I =y(n+ —,'), n =0, 1,2, . . . ,

since p(t) indicates the density of rays along the outgoing
(or ingoing) null orbit. For a slowly rotating black hole,
y —yo is second order in a/M and Eq. (70) is consistent
with Eq. (47) and the Schwarzschild limit.

Consider the outgoing null rays that rotate in the same
sense as the black hole ( m =j). In this case I decreases
monotonically with a/M and in the extreme Kerr limit
a —+M, ro~r+ ——M and I —+0. But this also indicates
that there is no outgoing (or ingoing) radiation (i.e.,f~0), so that the energy is trapped (i.e., p —+pa) in the ex-
trcIIlc Kerr null circular OIbit colnc1dcnt %'ith thc horizon.
We conclude that QNM's with real frequency in the ordi-
nary regime have vanishing amplitude for the extreme
Kerr black hole, which is therefore stable in the eikonal
approximation.
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APPENDIX A

The purpose of this appendix is to present the QNM
eigenfunctions of a black hole on the basis of the analytic
appI'oximation scheme presented in Secs. III—V. It is

The QNM's of the Poschl-Teller potential correspond to
simple poles common to 8 and T, i.e., either 1+p+ito/rt
or P+ito—/a must be equal to —n (n =0,1,2, . . .), so
that

co=ia(n +—)+ia 1
2

' 1/2
0

a2

n =0, 1,2, . . . . (A7)

APPENDIX 8

this appendix the quasinormal frequencies of a
Schwarzschild black hole are given explicitly by using the
QNM's of the Poschl-Teller potential (cf. Sec. III and Ap-
pendix A}.

The effective potential (21) has a single maximum at xo
determined by

2yo ——3(1—g)+ (9+14/+9/')'~',

If 4 Uo (CI, thcl'c ls 110 QNM slllcc Ilo propagattng solll-
tion exists. For 4Uo~a, which is in fact the case for
black-hole perturbations, the quasinormal frequencies are
located on lines parallel to the imaginary axis in the upper
half-plane. The corresponding wave functions are given
in Eq. (Al), where the hypergeometric function now
reduces to a polynomial of degree n

The general "bound" states of the inverted Poschl-
Tcllcl potclltlal alc glvcIl by transfoHllatlons (8) and (9),
i.e., ttt=P( i iax) —and A=to(ia), whereas the true bound
states correspond to 0)0 [cf. Eq (26)]. .
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where xo and r =Myo are related as in Eq. {22)and

0
j(j+1)

In the general case, i.e., scalar waves vnth j&1 and
gravitational waves (j)2), ~g~ & —,

'
and yo can be ex-

pressed as a power series in g:

The maximum of the potentia1, Uo, and the curvature pa-
rameter ct are given by [cf. Eq. {25)]

yo =3(1—
9 g+ —,', g + . . ),

so that

{87)

j(j+1) {1—0)yo+40
Uo ——

M y
4 (83)

and

Uo=7'oJV+1){1+10+I'70'+

1 yo —2 3{1—g)yo+16$
' 1/2

M yo~ (1—g)yo+4g

The real and imaginary parts of the quasinorma1 frequen-
cies are then obtained from Eq. (27). Let us now consider
two special cases. First, for j=0, which is relevant only
foI sca1ar pertUI'bat1ons,

2MoI =Ma=( —, )
~

The inverted potential has only a single bound state',
therefore, there is only one proper QNM in this case with
1ts fI'equency having equal real and 1IDaglnary parts.
Next, for electromagnetic perturbations (with any j) 1)
we find

&=&o{1+~ 0—I'1 0'+

n fonows that

o . I 1 1 o(2tr —3)
~, =)'o j V+1)+ , ~ .—+ ——.. +. . .

54 j j+1

9 j V +1) 27 j'(j +1)'

X(n+ —,
' ),

toj=yoj(+j——,)'~ and 1„=yo(n+ —,'),
where yo is defined by Eq. (30).

(86)
where o = 1 for scalar perturbations and Ir =—3 for gravi-
tational perturbations.
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