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The quasi-normal modes of a black hole represent solutions of the relevant 
perturbation equations which satisfy the boundary conditions appropriate 
for purely outgoing (gravitational) waves a t infinity and purely ingoing 
waves a t the horizon. For the Schwarzschild black hole the problem re
duces to one of finding such solutions for a one-dimensional wave equation 
(Zerilli’s equation) for a potential which is positive everywhere and is of 
short-range. The notion of quasi-normal modes of such one-dimensional 
potential barriers is examined with two illustrative examples; and 
numerical solutions for Zerilli’s potential are obtained by integrating 
the associated Riccati equation.

1. I n t r o d u c t i o n

I t  is known th a t the evolution of an arbitrary perturbation of the metric coeffi
cients of the Schwarzschild black hole can be fully described in terms of the re
flexion (R) and the transmission {T) coefficients of the one-dimensional barrier 
represented by Zerilli’s potential (Zerilli 1970; see also Chandrasekhar 1975). 
Nevertheless, the notion of quasi-normal modes of a black hole has been introduced 
in the literature in analogy with the normal modes of oscillation of a star. In  the 
context of a black hole these quasi-normal modes are defined as proper solutions 
of the perturbation equations belonging to certain complex characteristic frequen
cies which satisfy the boundary conditions appropriate for purely ingoing waves 
a t the horizon and purely outgoing waves a t infinity.

I t  does not appear tha t the quasi-normal modes of a black hole serve the same 
purposes as the normal modes of oscillation of a star. Consider, for example, the 
spherically symmetric perturbations of an initially static configuration either in 
the Newtonian (Eddington 1918, 1919) or in the relativistic (Chandrasekhar 1964) 
framework. In  either framework, the determination of the characteristic frequencies 
leads to a two-point boundary-value problem of the classical Sturmian type for a 
self-adjoint second order differential equation. Consequently, the associated proper 
solutions (i.e. the normal modes) form a complete set in the sense that any arbitrary 
spherically symmetric perturbation of the star (compatible with the boundary 
conditions of the problem) can be expressed as a linear superposition of the normal 
modes. And, therefore, the evolution of any such perturbation can be followed in 
terms of the normal modes and the characteristic frequencies to which they belong. 
Also, it follows that if any of the modes should belong to a (purely) imaginary
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characteristic frequency -  this is the only possibility for the spherically symmetric 
systems under consideration -  then the system can be considered as necessarily 
unstable. I t  is not a t all clear that the enumeration of the quasi-normal modes of 
a black hole serves the same purposes as the normal modes of radial oscillation of 
a star. Thus, in the particular case of the Schwarzschild black hole, the evolution 
of an arbitrary perturbation of its metric coefficients can be followed, as we have 
already stated, in terms of the reflexion and the transmission coefficients of Zerilli’s 
potential for various frequencies; and a knowledge of its quasi-normal modes is 
of no relevance for tha t purpose.

In  spite of the adverse comments we have made concerning the usefulness of 
the notion of quasi-normal modes, their determination in the case of the Schwarz
schild black hole has some interest, a t least to the extent tha t it may illuminate 
their relevance (or, otherwise) for our understanding of the physics of black holes. 
This paper, then, is devoted to an examination of the general problem of the quasi
normal modes of one-dimensional potential barriers and of Zerilli’s potential in 
particular.

2.  T h e  g e n e r a l  t h e o r y  

Consider the simple one-dimensional wave equation,

^  + [o-2-V{x)]iJr = 0 (-0 0  < x +oo), (1)

where V(x) is positive everywhere and is of ‘short range’ in the sense tha t

r+«>
V{x)&x is finite. (2)

J  —00

I t  is evident tha t if we have a plane-wave of unit amplitude incident on the 
barrier from the right, f  then a part of it will be reflected and a part of it will be 
transmitted; i.e. there will be an admixture of the incident wave with a reflected 
wave A e_1<rx of amplitude A (say) a t + oo and there will also be a transm itted wave 
B e+1<TX of amplitude B (say) a t — oo. The reflexion and the transmission coefficients 
are then given by

R = \A \*  and = |jB|2; (3)

and it must always be true tha t
R + T =  1, (4)

so long as or is real. On the other hand, a quasi-normal mode belonging to a complex 
frequency or is so defined th a t there is no wave incident on the barrier from the 
right and we only have a reflected wave a t + oo and a transm itted wave at — oo.

f  The convention that e+i,Tx represents an ingoing wave is the opposite of the one which 
is normally adopted in the quantum theory; it is a consequence of the assumption, normal 
in this theory, that the time-dependence of the normal modes is elcrt.
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The problem of determining the reflexion and the transmission coefficients of a 
rectangular barrier is a standard exercise in elementary quantum mechanics; and 
from the solution of this problem given in textbooks (cf. Flugge & Marschall 
1952, P* 40) one can readily obtain the equations which determine the quasi-normal 
modes. But for general potential barriers for which explicit solutions cannot be 
found (as is the case with Zerilli’s potential) it is convenient to reformulate the 
problem explicitly as a standard characteristic-value problem by transforming 
equation (1) to the form of a Riccati equation by the substitution,

and obtaining

ijr = exp ^i J  (J) j  , 

id<f>/dx+ cr2 — 0 2— V(x) = 0.

(5)

( 6)

A quasi-normal mode corresponds to a solution of equation (6) which satisfies the 
boundary conditions

(j)-> — a  as x-> +00 and as x-> — oo, (7)

with the real part of a  assumed to be positive. Solutions having these properties 
(generally) exist when cr assumes one of a discrete set of complex values; but the 
set need not be an enumerable infinity: it can be sometimes, but often it is not.

An identity, which follows from integrating equation (6) over the entire range 
of x and making use of the boundary conditions (7), is

p  +  co p + c o
— 2i<x + (cr2 — <fi2)d x =  I V{x)dx. (8)

J  — oo J  — oo

By virtue of the boundary conditions (7) and the assumed short-range character of 
V(x), both the integrals which appear in equation (8) are finite.

In  practice it is useful to separate the real and the imaginary parts of equation
(6) by writing ^ ^  an(j ^  — (^i ^  9). (9)

We then obtain the pair of equations,

d<fijdx = —2cr1(r2 + 2<fi1<fi2 (10) 
and d<fi2ldx =  — cr| — — F, (11)

together with the boundary conditions

— oq as x-> +oo and 0i-> + o q  as oo, (12)
and (f)2 —> — er2 as x-> +oo and </>2->+cr2 as — oo. (13)

I t  can sometimes happen tha t cr is purely imaginary so tha t oq = 0. Since, in 
this case, 0 must vanish a t + oo, it follows from equation (10) tha t cj)1 = 0; and we 
are left with asking whether there exist non-trivial solutions of the equation,

d<j>2ldx =  + (14)

which satisfy the boundary conditions (13).
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The problem of the quasi-normal modes as formulated in terms of the phase <f) 

appears explicitly as a problem in characteristic values though of a somewhat 
unconventional kind.

3. Tw o I L L U S T R A T I V E  E X A M P L E S

Since the notion of quasi-normal modes of a one-dimensional potential barrier is 
not considered in the standard literature on quantum mechanics, it may be useful 
to consider them in the context of two elementary situations which admit of 
explicit solutions.

(a) A rectangular barrier 
Let the potential barrier be defined by

V(x) = U >0 for 0 < x
= 0 for 0 and x > a. (15)

Further, letting /c2 =Z7 —cr2, (16)

we can write the required solution of equation (6) in the form

(j) =  + <r ^  0)
= — i/c tanh (0 ^  < •
= — cr (x ^  a),

where c is a constant. The continuity of a t = 0 and x = a, gives

(17)

and

cr = — i/c tanh kc 

cr = + i/c tanh (/ca + (18)

The characteristic equation for cr will follow from the elimination of kc from the 
foregoing equations. In carrying out the elimination, it will be convenient to write

cr = Qsin cl and k — —Qcos a  where = (19)

and we shall adopt the convention Q ̂ 0. (20)

With the foregoing definitions, the elimination of kc from the pair of equations 
(18) gives cosh Ka + i cot 2a sinh Ka = 0. ( 21)

In  considering equation (21), we shall measure cr in the unit a~x and let

a  = a 1 + ia2 and /c = /q + i/c2.

Equation (21) then leads to the pair of equations,

sin 4ax _  sin 2 
cosh 4a2 — cos 4 cosh 2,kx — cos 2

sinh 4a2______sinh 2
cosh 4a2 — cos 4ax cosh 2 — cos 2a:2 *

(22)

(23)

(24)
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From these equations it follows tha t

kx = — 2a 2 and k2 = 2ocx — rnz,

445

(25)

where n is an integer positive, negative, or zero. On the other hand (cf. equation
( 18))

kx = — Qcos a i cosh a 2 an(l sin a i sinh ̂ 2. (26)

By combining equations (25) and (26), we obtain the ‘characteristic equation’

tan ocxtanh a 2 = (27)

I f  (a1? a 2) is a pair of values which satisfies equation (27), then the corresponding 
values of Q, crx, and cr2 follow from the equations

Q = 2[(oq — Iw^/sinoq)] cosecha2, (28)

crx = Q sin ocx cosh a 2 = 2a2 tan  ax (29)

and cr2 = $  cos sinh a 2 =  2a 2ta n h a 2. (30)

The convention with respect to the outgoing and the ingoing waves requires tha t

<rx ^  0. (31)

From the requirements (20) and (31), it follows from equations (28)-(30) tha t

if a 2 > 0 then n  ̂ 0 and 0 ^  ^  | 7r (32)

or if a 2 < 0 then n >0 and ^  ^  \ tz. (33)

We shall adopt the former conditions (32).
We observe tha t cr2 > 0; and this is consistent with the fact tha t these waves 

are damped, though the proper solutions themselves diverge exponentially both 
for x-> +oo and x-> — oo. These divergences are admissible in the present context.

For the case n = 0, corresponding to the lowest mode, the relevant equations are

ta n a 1 _  co tha2. O
ax cc2 sin <Xj

crx = 2a 2 tan ccx and <x2 = 2a 2ta n h a 2.

(34)

From these equations it follows tha t Q ^  Qmln, where ln occurs for oq-^-0 and 
a2 is the root of the equation

a 2ta n h a 2 = 1. (35)

Denoting the root of this equation by a f  ( ~ 1.1997), we find that 

Q = 2 cosechaf (=  1.3255), crx =  0, and = 2. (36)

For Q< Qm[n, the characteristic values of cr are purely imaginary; and the appro
priate solution, found in accordance with equation (14), is given by

Q =  2a2 sech a2 and <r2 = 2a2 tanh a2. (37)
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Accordingly, along this branch of the solution, = 0 both when a 2-> 0 and when 
a 2->co; and Q attains its maximum for precisely the same value of a* (as the solu
tion of equation (35)) when <r2 has again the value 2.

The higher modes are obtained for n = —1, —2, —3, etc., in accordance with 
equations (28)-(30). I t  can be readily shown th a t along these higher modes

0, a 2->oo while ctxa,2^-\\n\if, (38)
and simultaneously

Q^-4ot2e~a*, oq-*- \n\iz, and cr2-»2a2. (39)

The behaviour of the characteristic values belonging to the various modes is 
illustrated in figure 1.

F igure 1. The complex frequencies (oq + icr̂ ) belonging to the quasi-normal modes of a 
rectangular barrier. The frequencies are measured in units of the width of the barrier 
(a); and Q2 (=  ct2U) is a measure of the height of the barrier. The curves are labelled by 
the values of -w  to which they belong.

(6) Price’s model potential for the Schwarzschild black hole
Since we do not expect to solve Zerilli’s equation in terms of known functions, 

Price (1972 a, b) has considered the following potential as having the same general 
behaviour as Zerilli’s potential and for which analytic solutions can be found:

V(x) = [1(1+ l )]/#2 for ^
= 0 for x < m. (40)

In  the actual physical problem the variable x is identified with r* (see §4 below).
The problem of the quasi-normal modes for Price’s potential has been solved by 

Press (1973); but since his solution has not been published, we may briefly outline 
the solution.



Modes of the Schwarzschild black hole 447
For Price’s potential (with the convention regarding outgoing and ingoing 

which we have adopted)
i/r(x) = ei,TX for x ^  m

waves

(41)

with Re (<t) ^  0. For x ^ m ,the general solution of the wave equation is clearly a 
linear combination of x^Jl+̂ (crx) and xtJ^̂ and from the known series ex
pansions for J±d+tf{Z) (cf. Watson 1922, pp. 53 and 54, equations (1) and (4)) we 
conclude tha t

. . . . , * ( — (x ^  m), (42)

where A is a constant. The continuity of the logarithmic derivative of i/r (i.e. of the 
phase function 0 ) a t x = mleads to the following algebraic equation:

0. ( - i ) s (Z +  «)! (crm)-s ^  ( - i ) ss(Z +  s)! (<rm)-s
1a-o 2 Ss\(l-s)\

(43)

From the character and the order of this equation we infer tha t if l is odd there are 
exactly |(Z + 1) complex roots for <r with both its real and imaginary parts positive; 
while if l is even there is one purely imaginary root and \ l  complex roots with both 
its real and imaginary parts positive. All these roots correspond to damped waves 
though they exponentially diverge both for + 00 and for x-> —00.

Press’s numerical solutions of equation (43) are listed along with those of Zerilli’s 
equation in table 1 (see §4 below).

We observe tha t in contrast to the case of the rectangular barrier, there are only 
a finite number of quasi-normal modes for each l.

4. T he q u a si-normal modes of the Schw arzschild
BL ACK  HOLE

We now turn to the determination of the quasi-normal modes of Zerilli’s equation

where

<PZjdr% + (<r2 ~VZ) Z = 0,

Vz(r)
2 n \n  + 1) r3 + 6n2mr2 -f 18 + 1 8m3

rz(nr +  3m)2

r# = r + 2m lg and n 1(1— 1) 2).

(44)

(45)

(46)

Zerilli’s potential is clearly of short range; indeed, we have (cf. Chandrasekhar 
r975, equation (38))

r + 00
2m T^dr* = 2n + % =  (l- l)(Z + 2) + | .  (47)

J  — 00

As r* -> + co, equation (44) allows two independent solutions with the asymptotic 
behaviours

Z± ->e±iar*. (48)
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As we are assuming a time dependence of the form ei<rt, Z_ represents an outgoing 
wave and Z+ represents an ingoing wave. A quasi-normal mode is one which belongs 
to a complex cr with Re (<x) ^  0, such tha t it represents a purely outgoing wave a t 
+ oo and a purely ingoing wave at — oo.

A straightforward procedure for finding a quasi-normal mode would appear to 
be the following. For some chosen complex cr, start from a large positive value of 
r%, where | F(rslc)| |cr|2, with Z = Z_ = e-i<rr* and integrate backwards to some 
intermediate value of r%; and similarly, start from a large negative value of r*, 
where again | F(r*)| |cr|2, with Z = Z+ =  e+icrr* and integrate forwards to the
same intermediate value of r*. The condition tha t the chosen value of cr belongs 
to a quasi-normal mode is, clearly, tha t the Wronskian of the two solutions, a t the 
common point to which we have integrated them, vanishes. The vanishing of the 
Wronskian provides, then, with a criterion for searching in the positive half of the 
complex cr-plane for the characteristic values belonging to the quasi-normal 
modes. But this procedure, simple as it appears, is beset with grave numerical 
instabilities. They arise from the finite numerical accuracy of all methods of 
numerical integrations. Thus, for a large positive r*, the solution for Z, with the 
asymptotic behaviour e-ior*, will very soon be contaminated by an admixture with 
the solution e+ior* (which is exponentially small for large r* when the imaginary 
part of cr is positive); and by the time we have integrated backwards to some finite 
r*, the admixture with the unwanted solution will become appreciable and the 
solution, we shall be integrating, will no longer be of the kind th a t we have stipu
lated. The same thing will happen with the solution integrated forwards from a 
large negative r*: the solution started with the asymptotic behaviour e+ioT* will 
be contaminated with the solution e_ioT* (r*-> — oo); and, again, the solution will 
not be of the kind that we have stipulated by the time we have integrated it to some 
finite r*.

The numerical instabiities we have described in the foregoing paragraph have 
prevented, so far, the determination of the quasi-normal modes of the Schwarz- 
schild black hole (see, however, Detweiler 1975). But it appears tha t the integration 
of the first-order Riccati equation (6) is not beset with numerical instabilities, a t 
least, to the same extent. The reason for the relative stability of integrating the 
Riccati equation for the phase function <p (as compared with the direct integration of 
the wave equation) appears to be tha t we can start the integrations, backwards from 
a positive r * and forwards from a negative r*, without regard to the requirement 
| F(r*)| <  cr2, so long as we can ensure th a t we have convergent series expansions 
a t both ends which are adequate enough to determine with sufficient accuracy 
to values of r* where it differs substantially from its limiting values a t ± 00.

For the particular case of Zerilli’s equation the required series expansions are of 
the forms, 00

Z  = e-ioT* 2  OLtf-i (r*-> + 00) (49)
0



where the coefficients oij and fa can be determined with the aid of the recurrence 
relations

2icrn2(j + 1) ocj+1 + [n2j ( j  + 1) — 2 n \n  + 1) + 12icrmjn] otj
+ m[6nj(j — 1) — 2 1) — 6 + 1 8i — 1)]
+ m2[9(j -  1) ( j  -2) -  1 2 -  1 a y_2
-  18m3[ ( j -  l ) ( j - 3 )  + l ] a ,_3 = 0, (51)

and

2icrn2(j — 1) f a _ x +j[w2( j  — 1 + 8icrm) + 12i + 1) — /j)]
+ m(j + 1) [n2(2j + 2 + 8i am) + 6 n(n 1 )0  + 8i + 6io-m(2w+ 1) (2w + 3)

— (B/m(j +1))] fa+1
+ m20  + 2) \Qn{n + 1) (2J + 4 + 8icrm) + 3(2?i + 1) (2 + 3) 0  +1 + 8i

+ 4iam(2n + 3)2 — ( + 2))] fa+2
+ m3(j + 3) [3(2 n + 1) (2 n + 3) (2 j  + 6 + 8i + 2(2 + 3)2 0  + 2 + 8icrm)

— (D/w30  + 3))]
+ 4m40  + 4) (2 n + 3)2 0  + 4 + 4io-m) fa+i =  0, (52)

where A = 2ri1(n + l), B =  6w2(2w + 3)m,
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C =  6w(4w2 + Sn + 3) m2 and D — (16w3 + 40w2 + 36w+ 18)m3. (53)

With Z determined a t both ends by the expansions (49) and (50), the phase function 
(j) follows from the equation

4>
f d Z  
Zdr*

(54)

The search for the characteristic values of cr belonging to the quasi-normal modes 
proceeds, then, as follows. We choose a complex value of cr in the positive-half 
plane (Re (cr) > 0) and determine the expansion coefficients a ;- and fa in accordance 
with equations (51)-(53) and evaluate (J) for values of r* (both positive and negative) 
for which the series expansions (49) and (50) suffice to determine it accurately 
enough.f We then continue by numerical integration, backwards from +oo and 
forwards from — oo, to a common intermediate value of r* (generally 3 where Vz  
is approximately a t its maximum). At this common point we find the difference

M(cr) = $ M r* )-0 +(r*). (55)

The condition tha t the chosen value of or belongs to a quasi-normal mode is tha t 
M(cr) vanishes (in view of the Riccati equation being of the first order).

I t  was found that the foregoing procedure enables the determination of the 
quasi-normal modes so long as

|Im(or)| ^  |Re (cr)|. (56)

f  It is necessary to retain as many terms in the expansions as are necessary to determine 
<f> until it is substantially different from its limiting values at ± co.
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When this condition is violated, the numerical integration appears to suffer from 
instabilities. The underlying cause is probably the same as in the direct integration 
of the wave equation though it is obscured (and made less unstable!) by the non
linearity of the Riccati equation.

In our search for the characteristic values of cr (for ? ^  4) in the positive half 
of the complex cr-plane, we limited ourselves to only those regions in which we 
were satisfied th a t the numerical procedure adopted was free from instabilities.

In  figure 2 we illustrate the quasi-normal modes determined, in the fashion 
described, for l =  2, 3, and 4; and in table 1 we list the characteristic values of cr 
to which they belong. In  table 1, we also list the characteristic values for Price’s 
potential (as determined by Press). I t  will be observed tha t the two sets of values 
differ very markedly. This difference is perhaps not very surprising in view of the 
identity (8) and the fact tha t the integral,

2m f  - dr» = 21(1+1), (57)
J m

for Price’s potential differs from the corresponding integral for Zerilli’s potential 
(cf. equation (47)) by a factor exceeding 2.
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Table 1. The complex frequencies belonging to the quasi-normal modes
of Zerilli’s and Price’s potentials: cr

l Zerilli’s potential
2 0.74734 + 0.17792i

0.69687+ 0.54938i
3 1.19889 +  0.18541i

1.16402 + 0.56231i
0.85257 + 0.74546i

4 1.61835 + 0.18832i
1.59313 + 0.56877i
1.12019 + 0.84658i

S EXPRESSED IN THE UNIT (2 
2mcr

A ____________________________________________ _

Price’s potential
2.5087 + 1.6871i 

2.6258i
4.1604 + 2.2210i 
1.3802 + 3.7790i

5.8840 + 2.6647i 
2.9090 + 4.6967i 

5.2771i

5. The odd-p a r it y  modes

In  determining the quasi-normal modes of the Schwarzschild black hole in §4, 
we restricted ourselves to the even-parity modes described by the Zerilli equation. 
But it is known th a t the odd-parity perturbations are described by the Regge- 
Wheeler equation (Regge & Wheeler 1957; see also Chandrasekhar 1975, appendix):

where

d2X /d r| + (cr2 — V0)X  =  0,

2m\ ( n + l ) r — 3 
r I r3r.==2(1

(58)

(59)

I t  is, however, not necessary to consider this equation separately, since, as we shall 
now show, it must yield the same complex frequencies (and, indeed, the same
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reflexion and transmission coefficients) as Zerilli’s equation. (It may also be noticed 
here tha t the integral of V0 over the range of r* has the same value (47), as for Vz .) 

In  the equation (Chandrasekhar 1975, equation (A 10)),

[W . + l ) - * * r ] X  = 3 £ ± g - ) (60)

substitute for Y  and A_ F  (in terms of Z in accordance with equations (51) and 
(52) of the same paper. On simplifying the resulting equation, we are left with

[*“ < » + - - 2mi<ri x  = [*»<»+ 1)+% <r+32T))] z - 2mar,- <61)
Therefore, a solution of Zerilli’s equation with the asymptotic behaviour,

Z ->e+i<rr* + A  e-ioT* (r% -> + 00)
-> J5e+i<rr* (r*-> —00), (62)

will yield a solution of equation (58) with the behaviour

X  ■ C4to. 1 f» (»+i)+2m i<r , ,r . +0O*
A + | r e ( r e+l ) - 2miff l * + ® '

-> B e+i<Tr* (r*-> —00). (63)
The equality of the reflexion and transmission coefficients, th a t are determined by 
the two equations, is now manifest.f I t  is also clear th a t the complex frequencies 
belonging to the quasi-normal modes of the two parities must be the same; and the 
modes themselves must be related by equation (61).

We are grateful to Professor W. H. Press for allowing us to quote his unpublished 
results on the quasi-normal modes for Price’s potential.

The research reported in this paper has in part been supported by the National 
Science Foundation under grant MPS 74-17456 and the Louis Block Fund, The 
University of Chicago.
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