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We study the various linear responses of neutron stars to external relativistic tidal fields. We focus on

three different tidal responses, associated to three different tidal coefficients: (i) a gravito-electric-type

coefficient G�‘ ¼ ½length�2‘þ1 measuring the ‘th-order mass multipolar moment GMa1...a‘ induced in a

star by an external ‘th-order gravito-electric tidal field Ga1...a‘ ; (ii) a gravito-magnetic-type coefficient

G�‘ ¼ ½length�2‘þ1 measuring the ‘th spin multipole moment GSa1...a‘ induced in a star by an external

‘th-order gravito-magnetic tidal field Ha1...a‘ ; and (iii) a dimensionless ‘‘shape’’ Love number h‘
measuring the distortion of the shape of the surface of a star by an external ‘th-order gravito-electric

tidal field. All the dimensionless tidal coefficients G�‘=R
2‘þ1, G�‘=R

2‘þ1, and h‘ (where R is the radius

of the star) are found to have a strong sensitivity to the value of the star’s ‘‘compactness’’ c � GM=ðc20RÞ
(where we indicate by c0 the speed of light). In particular, G�‘=R

2‘þ1 � k‘ is found to strongly decrease,

as c increases, down to a zero value as c is formally extended to the ‘‘black hole (BH) limit’’ cBH ¼ 1=2.

The shape Love number h‘ is also found to significantly decrease as c increases, though it does not vanish

in the formal limit c ! cBH, but is rather found to agree with the recently determined shape Love numbers

of black holes. The formal vanishing of �‘ and �‘ as c ! cBH is a consequence of the no-hair properties

of black holes. This vanishing suggests, but in no way proves, that the effective action describing the

gravitational interactions of black holes may not need to be augmented by nonminimal worldline

couplings.
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I. MOTIVATION AND INTRODUCTION

Coalescing binary neutron stars are one of the most
important (and most secure) targets of the currently oper-
ating network of ground-based detectors of gravitational
waves. A key scientific goal of the detection of the
gravitational-wave signal emitted by coalescing binary
neutron stars is to acquire some knowledge on the equation
of state (EOS) of neutron-star matter. Recent break-
throughs in numerical relativity have given an example
of the sensitivity of the gravitational-wave signal to the
EOS of the neutron stars [1–4]. However, this sensitivity is
qualitatively striking only during and after the merger of
the two neutron stars, i.e. for gravitational-wave (GW)
frequencies fGW * 1000 Hz, which are outside the most
sensitive band of interferometric detectors. It is therefore
important to study to what extent the gravitational-wave
signal emitted within the most sensitive band of interfero-
metric detectors (around fGW � 150 Hz) is quantitatively
sensitive to the EOS of neutron stars. In such a regime, the
two neutron stars are relatively far apart, and the problem
can be subdivided into three separate issues, namely:

(i) to study the response of each neutron star to the tidal
field generated by its companion;

(ii) to incorporate the corresponding tidal effects within
a theoretical framework able to describe the
gravitational-wave signal emitted by inspiralling
compact binaries; and

(iii) to assess the measurability of the tidal effects
within the signal seen by interferometric detectors.

A first attack on these three issues has been recently
undertaken by Flanagan and Hinderer [5,6]. [See also [4]
for an attempt at addressing the third issue.] Our aim in this
work, and in subsequent ones, is to improve the treatment
of Refs. [5,6] on several accounts. The present work will
focus on the first issue (i) above, namely, the study of the
tidal response of a neutron star. Our treatment will com-
plete the results of [6] in several directions. First, we shall
study not only the usually considered ‘‘electric-type,’’
‘‘tidal,’’ ‘‘quadrupolar’’ Love number G�2 ¼ 2

3 k2R
5,

but also several of the other tidal coefficients of a
self-gravitating body. This includes not only the higher
multipolar analogues G�‘ / k‘R

2‘þ1 of �2, but their
‘‘magnetic-type’’ analogues G�‘ (first introduced in [7]),
as well as their (electric) ‘‘shape-type’’ kin h‘. Second, we
shall study in detail the strong sensitivity of these tidal
coefficients to the compactness parameter1 c � GM=c20R
of the neutron star. Note, indeed, that the published version
of Ref. [6] was marred by errors which invalidate the
conclusions drawn there that k2 has only a mild depen-
dence on the compactness c [see, e.g., Eq. (27) or Fig. 2
there]. [These errors were later corrected in an erratum,

1To avoid confusion with the compactness, we sometimes
denote the velocity of light as c0.
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which, however, did not correct Eq. (27), nor Fig. 2.] We
shall interpret below the strong sensitivity of �‘ and �‘ to
c, and contrast the vanishing of �‘ and �‘ in the formal
‘‘black hole limit’’ c ! 1=2, to the nonvanishing of the
‘‘shape’’ Love numbers h‘ in the same limit. In order to
approach the black hole limit (which is, however, discon-
nected from the perfect-fluid star models), we shall par-
ticularly focus on the incompressible models which can
reach the maximum compactness of fluid models, namely
cmax ¼ 4=9.

In subsequent works, we shall show how to incorporate
the knowledge acquired here on the various tidal responses
of neutron stars into the effective one body framework.
Indeed, recent investigations [8,9] have shown that the
effective one body formalism is the most accurate theo-
retical way of describing the motion and radiation of
inspiralling compact binaries.

This paper is organized as follows: Section II is an
introduction to the various possible tidal responses of a
neutron star. Section III discusses the relevant equations to
deal with stationary perturbations of neutron stars that are
then used in Secs. IV and V to compute the electric-type
(�‘) and magnetic-type (�‘) tidal coefficients. Section VI
is devoted to the computation of the shape Love numbers
h‘. Sections VII, VIII, and IX provide explicit numerical
results related to �‘, �‘, and h‘, respectively. The con-
cluding section, Sec. X, summarizes our main results.

II. THE VARIOUS TIDAL RESPONSES OF A
NEUTRON STAR

Let us first recall that the motion and radiation of a
system of well separated, strongly self-gravitating (‘‘com-
pact’’), bodies can be theoretically investigated by a
‘‘matching’’ approach which consists in splitting the prob-
lem into two subproblems:

(i) the outer problemwhere one solves field equations in
which the bodies are ‘‘skeletonized’’ by worldlines
endowed with some global characteristics (such as
mass, spin, or higher-multipole moments), and

(ii) the inner problem where one obtains the near-
worldline behavior of the outer solution from a
study of the influence of the other bodies on the
structure of the fields in an inner world tube around
each body.

This matching approach has been used: to obtain the
dynamics of binary black holes at low post-Newtonian
orders [10–12], to prove that the tidal deformation of
compact bodies will start to introduce in the outer problem
a dependence on the internal structure of the constituent
bodies (measured by a ‘‘relativistic generalization of the
second Love number’’ k) only at the fifth post-Newtonian
(5 PN) level [13], and to derive the dynamics of compact
bodies in alternative theories of gravitation [14–16]. Finite-
size corrections to the leading skeletonized dynamics can

be taken into account by adding nonminimal worldline
couplings to the effective action [17,18].
Let us start by considering the ‘‘inner problem’’ for a

neutron star, i.e., the influence of the other bodies in the
considered gravitationally interacting system.2 As ex-
plained, e.g., in Ref. [13], the matching method uses a
multichart approach which combines the information con-
tained in several expansions. One uses both a global weak-

field expansion g��ðxÞ ¼ ��� þ hð1Þ��ðxÞ þ hð2Þ��ðxÞ þ . . .

for the outer problem, and several local expansions of the
type

GA
��ðX�

AÞ ¼ Gð0Þ
��ðX�

AÞ þHð1Þ
��ðX�

AÞ þ . . . (1)

for each inner problem. Here, Gð0Þ
�� denotes the metric

generated by an isolated neutron star, as seen in a local
inner coordinate system X�

A , which is nonlinearly related to
the global (‘‘barycentric’’) coordinate system x� by an
expansion of the form

x� ¼ z
�
A ðX0

AÞ þ e
�
a ðX0

AÞXa
A þ 1

2f
�
abðX0

AÞXa
AX

b
A þ . . . (2)

Here, the suffix A ¼ 1; 2; . . . ; N labels the considered

member of the N-body system, while Hð1Þ
��ðX�

AÞ denotes

the metric perturbation, seen in the local A frame, due to
the combined influence of the various companions B � A

of A. In the leading approximationHð1Þ
�� is a sum of separate

contributions due to each B � A: each contribution then
contains both the far-away field generated by the B world-
line, its deformation as it propagates on the ‘‘background’’

metric Gð0Þ
�� generated by A, and the tidally-induced effect

of the deformation of A by the effect of B.
Before tackling the technical problem of computing

Hð1Þ
��, let us recall the general structure of tidal expansions

in general relativity [7,12,19]. We will use here the nota-
tion and results of the general multichart approach to the
general relativistic dynamics ofN self-gravitating, deform-
able bodies developed by Damour, Soffel, and Xu (DSX)
[7,19–21].
Using the DSX notation (with T � X0

A=c),

GA
00ðXÞ ¼ � expð�2WA=c2Þ; (3)

GA
0aðXÞ ¼ � 4

c3
WA

a ; (4)

EA
a ðXÞ ¼ @aW

A þ 4

c2
@TW

A
a ; (5)

BA
a ðXÞ ¼ �abc@bð�4WA

c Þ; (6)

one defines, in the local frame of each body A, two sets of
‘‘gravito-electric’’ and ‘‘gravito-magnetic’’ relativistic ti-

2In the following, we shall have in mind a binary system made
either of two neutron stars or of a neutron star and a black hole.
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dal moments, GA
L and HA

L, respectively, as
3

GA
LðTÞ � ½@hL�1

�EA
a‘iðT;XÞ�Xa!0; (7)

HA
LðTÞ � ½@hL�1

�BA
a‘iðT;XÞ�Xa!0; (8)

where �EA
a and �BA

a denote the externally-generated parts of
the local gravito-electric and gravito-magnetic fields EA

a

and BA
a . In the presently considered approximation where

GAð0Þ
�� is stationary, and where it is enough to consider the

linearized, multipole expanded, perturbation Hð1Þ
�� in

Eq. (1), the externally-generated parts �EA
a and �BA

a are
well defined and capture the terms in EA

a and BA
a that

asymptotically grow as R‘�1 as R � jXj ! 1. The (seem-
ingly contradictory) formal limit Xa ! 0 indicated in
Eqs. (7) and (8) refers to the matching performed in the
outer problem (where, roughly speaking, the outer limit
Xa
outer ! 0 can still refer to a world tube which is large, in

internal units, compared to the radius of body A).
Besides the externally-generated ‘‘tidal moments’’(7)

and (8), one also defines the internally-generated ‘‘multi-
pole moments’’ of body A, MA

LðTÞ (mass moments) and
SALðTÞ (spin moments) as the symmetric-trace-free tensors
that parametrize the body-generated terms in the metric
coefficients WA, WA

a that asymptotically decrease (in the

A-body zone) as R�ð‘þ1Þ as R � jXj ! 1. The normal-
ization of these quantities is defined by Eqs. (6.9) of [19]
(and agrees with the usual one in post-Newtonian theory).

In the stationary case (which is relevant to our present
‘‘adiabatic’’ approach to tidal effects), this normalization is
such that the ‘‘internally-generated’’ post-Newtonian met-
ric potentials WþAðXÞ, WþA

a ðXÞ read

WþAðXÞ ¼ G
X
‘�0

ð�Þ‘
‘!

@L

�
MA

L

R

�
; (9)

WþA
a ðXÞ ¼ �G

X
‘�1

‘

‘þ 1

ð�Þ‘
‘!

�abc@bL�1

�
SAcL�1

R

�

� 1

4
@að�A � 	Þ; (10)

where �A � 	 is a gauge transformation (which would
drop out if we had considered the gravito-magnetic field
BþA
a ).
In the first post-Newtonian approximation considered by

DSX, the separation of the local-frame potential WA
�ðXÞ

into an ‘‘externally-generated’’ part �WA
� and an internally-

generated oneWþA
� , is well defined (thanks to the structure

of Einstein’s equations). In the case we are considering
here of a linearly perturbed, quasistationary, fully relativ-
istic neutron star, the asymptotically growing character (as
R ! 1) of the externally-generated potentials allows one

to uniquely define the tidal moments (7) and (8). On the

other hand, the asymptotic decrease / R�ð‘þ1Þ of the
internally-generated multipolar potentials (9) and (10) in-
troduces an ambiguity in their definition. For an attempt to
uniquely define the gravito-electric quadrupole moment
MA

ab induced on a black hole by an external tidal moment

GA
ab see [22]. Here, instead of relying on such a conven-

tional (harmonic-coordinates related) definition of the in-
duced multipole moments, we shall follow the spirit of
Sec. 5 of [13] in defining MA

L, S
A
L as parametrizing the

(uniquely defined) pieces in the local-frame metricGA
��ðXÞ

which violate the ‘‘effacing principle,’’ in that they directly
depend on the body A being a neutron star, rather than a
black hole. Reference [13] explicitly treated the dominant
even-parity case, and introduced [see Eq. (11) there] a
‘‘dimensionless constant k’’ ( � a2 as defined below) as
a relativistic generalization of the second Love number.
This minimal definition (which will be made fully precise
below) is rather natural, and coincides with the definition
adopted in [5,6].
With this notation in hand, we can define the two ‘‘tidal-

polarizability’’ coefficients �‘ and �‘ introduced in
Eqs. (6.19) of [7]. These coefficients relate the (electric
or magnetic) tidal induced4 multipole moments to the
corresponding external tidal moments, i.e.,

MA
L ¼ �A

‘G
A
L; (11)

SAL ¼ �A
‘H

A
L: (12)

The electric-type (or ‘‘even-parity’’) tidal coefficient �‘

generalizes the (k‘-type) Newtonian ‘‘Love number.’’ For
the leading quadrupolar tide, �2, as defined by Eq. (11),
agrees with the quantity denoted 	 in [5,6]. The magnetic-
type (or ‘‘odd-parity’’) quadrupolar tidal coefficient �2 is
proportional to the quantity � which has been considered
in the investigations of Favata [23] which were, however,
limited to the first post-Newtonian approximation. Here,
we shall consider the case of strongly self-gravitating
bodies (neutron stars), and study the dependence of both
�A

‘ and �A
‘ on the compactness cA � ðGM=c2RÞA of the

considered neutron star. Let us also note that, in terms of
finite-size corrections to the leading point-particle effective
action Spointmass ¼ �P

A

R
MAdsA, the two tidal effects

parametrized by �‘ and �‘ correspond to nonminimal
worldline couplings, respectively, proportional to

�A
‘

Z
dsAðGA

LÞ2 and �A
‘

Z
dsAðHA

LÞ2: (13)

The leading quadrupolar corrections (13) can be repro-
duced (using the link between GA

ab and �u�A �u�A �RA
�a�b, and

3As in DSX, L denotes a multi-index a1a2 . . .a‘ and ha1 . . .a‘i
a symmetric-trace-free projection.

4Here, we consider a nonrotating star which is spherically
symmetric (with vanishing multipole moments) when it is iso-
lated, so that MA

L and SAL represent the multipole moments
induced by the influence of the external tidal fields GA

L and HA
L .
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HA
ab and �b

cd �u
�
A
�RA
�acd, see Sec. 3.D of [12,19]) as the

following nonminimal couplings involving the Weyl ten-
sor:

�2

Z
dsE��E�� and �2

Z
dsB��B��; (14)

where u� ¼ dz�=ds, and we have introduced the tensors
E�� � u�u�C���� and B�� � u�u�C�

����, with

C�
���� � 1

2 ���

�C
��� being the dual of the Weyl tensor.

In D ¼ 3þ 1 dimensions, and in absence of parity-
violating couplings, the two terms (14) are the only pos-
sible isotropic couplings. In higher dimensions, there are
three nonminimal isotropic couplings quadratic in the
Weyl tensor as indicated in Eq. (90) of [18]. Note that we
are using here the freedom of locally redefining the dy-
namical variables to eliminate terms proportional to the
(zeroth-order) equations of motion, such as terms involv-
ing the Ricci tensor; see, e.g., the discussion of finite-size
effects in tensor-scalar gravity in Appendix A of Ref. [17].

Let us finally note that there are other ‘‘tidal coeffi-
cients’’ which might be interesting to discuss. First, though
the linear relations (11) and (12) are the most general ones
that can exist in the (parity-preserving) case of a nonspin-
ning neutron star, the tidal properties of a spinning neutron
star will involve other tidal coefficients, proportional to the
spin, and associated to a mixing between electric and
magnetic effects. Such electric-magnetic mixing terms
would correspond, say in the leading quadrupolar case, to
nonminimal worldline couplings quadratic in C���� and

linear in the spin tensor SA��.

There exist also other tidal coefficients which do not
have a direct dynamical meaning, but which generalize the
‘‘first type’’ of Love numbers introduced in the theory of
Newtonian tides. Indeed, it is physically meaningful to
define, for any ‘, a shape Love number measuring the
proportionality between the external tidal influence and
the deformation of the geometry of the surface of the
considered (neutron) star. More precisely, limiting our-
selves to the electric-type tides, one can define a dimen-
sionless number h‘ by writing, as one does in Newtonian
theory,

gð�RÞ‘ ¼ h‘U
disturb
‘ ðRÞ; (15)

or, equivalently,

�
�R

R

�
‘
¼ h‘

Udisturb
‘ ðRÞ
gR

; (16)

where ð�R=RÞ‘ / P‘ðcos�Þ represents the fractional defor-
mation of the (areal) radius R of the neutron star (measured
in a geometrically invariant way, by relating it to the inner
geometry of the deformed surface), where Udisturb

‘ ðRÞ /
R‘P‘ðcos�Þ represents the usual, external, Newtonian tidal
potential deforming the star, formally evaluated at the
radius of the star (as if one were in flat space), and where

g � GM=R2 represents the usual Newtonian surface grav-
ity of the neutron star. This h‘, shape Love number has
been recently considered in the theory of the gravitational
polarizability of black holes [24] and it will be interesting
to compare and contrast the values of the h‘ for black holes
to the values of h‘ for neutron stars, especially in the limit
where the compactness gets large. See Sec. VI below
which will give the exact definition of the quantity
ð�R=RÞ‘.

III. STATIONARY PERTURBATIONS OF A
NEUTRON STAR

The unperturbed structure of an isolated (nonrotating)
neutron star is described by a metric of the form

GAð0Þ
�� dX�dX� ¼ �e�ðrÞdt2 þ e	ðrÞdr2 þ r2d�2: (17)

Here, and in the following, for notational simplicity we
shall denote the local (spherical) coordinates of the A-body
frame simply as ðt; r; �; ’Þ (with d�2 � d�2 þ sin2�d’2),
instead of the upper case letters ðT; R;�;�Þ that would
more closely follow the DSX notation recalled above.
Introducing as usual the radial dependent mass parameter
mðrÞ by5

e	ðrÞ �
�
1� 2mðrÞ

r

��1
; (18)

and assuming a perfect-fluid energy-momentum tensor

T�� ¼ ðeþ pÞu�u� þ pg��; (19)

the spherically symmetric metric coefficients �ðrÞ, mðrÞ,
and the pressure pðrÞ satisfy the Tolman-Oppenheimer-
Volkoff (TOV) equations of stellar equilibrium

dm

dr
¼ 4r2e; (20)

dp

dr
¼ �ðeþ pÞmþ 4r3p

r2 � 2mr
; (21)

d�

dr
¼ 2ðmþ 4r3pÞ

r2 � 2mr
: (22)

These equations are integrated from the center outward
once that a barotropic EOS relating p to e is provided. We
shall consider several types of barotropic EOS, namely,
two different types of ‘‘polytropic EOS’’ (an e polytrope,
with p ¼ �e�, and a� polytrope,’’ with p ¼ k�� and e ¼
�þ p=ð�� 1Þ, where � ¼ nmb is the baryonic rest-mass
density), and two different tabulated (‘‘realistic’’) EOS (the
FPS one [25] and the SLy [26] one). In view of the current
large uncertainty in the correct description of dense nuclear
matter, we are not claiming that our selection of realistic
EOS is physically preferred (see, e.g., Ref. [27] and refer-

5Henceforth, we shall often set G ¼ c ¼ 1.
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ences therein for a thorough comparison among models
from various EOS). We have chosen them because they
have been used in recent numerical relativity simulations
of binary neutron-star coalescence [28,29]. As for the
polytropic EOS, they have also been often used in numeri-
cal relativity simulations (especially the �-polytrope one),
and their dependence on the adiabatic index6 is a conve-
nient way of varying the ‘‘stiffness’’ of the EOS (the limit
� ! 1 representing the stiffest possible EOS, namely,
incompressible matter with e ¼ const and an infinite speed
of sound).

Because of the spherical symmetry of the background,
the metric perturbation

GA
��ðXÞ ¼ GAð0Þ

�� ðXÞ þH��ðXÞ; (23)

here considered at the linearized level, can be analyzed in
(tensor) spherical harmonics. The metric is expanded in
even-parity and odd-parity tensor harmonics as

H�� ¼ HðeÞ
�� þHðoÞ

��: (24)

In the Regge-Wheeler gauge, and following standard defi-
nitions for the expansion coefficients and the sign conven-
tions of [30,31], one has

HðeÞ
��dX

�dX� ¼ �½e�H‘m
0 dt2 þ 2H‘m

1 dtdrþH‘m
2 e	dr2

þ r2K‘md�2�Y‘m; (25)

while the nonvanishing components of HðoÞ
�� are HðoÞ

tA ¼
h0�A

BrBY‘m and HðoÞ
rA ¼ h1�A

BrBY‘m where ðA; BÞ ¼
ð�;’Þ and where �A

B is the mixed form of the volume
form on the sphere S2r .

Our aim is then to solve the coupled system of the
perturbed Einstein’s equations, together with the perturbed
hydrodynamical equations r��T��½e; p� ¼ 0, so as to

describe a star deformed by an external tidal field. We shall
only consider stationary perturbations (‘‘adiabatic tides’’).

A. Even-parity, stationary barotropic perturbations

Even-parity, stationary perturbations of a barotropic star
simplify in that (i) the metric perturbations reduce to two
functions H ¼ H0 ¼ H2, and K (with H1 ¼ 0); (ii) the
fluid perturbations are described by the logarithmic en-
thalpy function h, such that �h ¼ �p=ðeþ pÞ; and
(iii) the latter logarithmic enthalpy function is simply
related (in absence of entropy perturbation) to the metric
function H by

�h ¼ �1
2H: (26)

It was then showed by Lindblom, Mendell, and Ipser [31]
how to convert the system of first-order radial differential

equations relating H0, K0, H, and K to a single second-
order radial differential equation for the metric variable H
(such that H00 ¼ �e�HY‘m) of the form

H00 þ C1H
0 þ C0H ¼ 0: (27)

[As usual, we shall generally drop the multipolar index ‘
on the various metric perturbations. The presence of a
factor Y‘mð�; ’Þ, or P‘ðcos�Þ, in (or to be added to) the
considered metric perturbation is also often left implicit.]
Taking the stationary limit (! ! 0) of the results given in
Appendix A of [31] (together with the barotropic relation
~�U ¼ 0) one gets

C1 ¼ 2

r
þ 1

2
ð�0 � 	0Þ ¼ 2

r
þ e	

�
2m

r2
þ 4rðp� eÞ

�
;

(28)

C0 ¼ e	
�
� ‘ð‘þ 1Þ

r2
þ 4ðeþ pÞ de

dp
þ 4ðeþ pÞ

�

þ �00 þ ð�0Þ2 þ 1

2r
ð2� r�0Þð3�0 þ 	0Þ

¼ e	
�
� ‘ð‘þ 1Þ

r2
þ 4ðeþ pÞ de

dp
þ 4ð5eþ 9pÞ

�

� ð�0Þ2; (29)

where we have used the background (TOV) equations to
rewrite C1 and C0. As a check, we have also derived from
scratch Eq. (27) by starting from the ‘‘gauge-invariant’’
formalism of Ref. [32]. Equation (27) generalizes to an
arbitrary value of the multipolar order ‘ Eq. (15) of
Ref. [6], which concerned the leading quadrupolar even-
parity tide.
For completeness, let us note that the other metric

variable, K, can be expressed as a linear combination of
H and H0, namely

K ¼ �1H
0 þ �2H; (30)

where the explicit expressions of the coefficients�1 and�2

can also be deduced by taking the stationary limit of the
results given in Appendix A of [31].

B. Odd-parity, stationary perturbations

It was shown by Thorne and Campolattaro [33] that odd-
parity perturbations of a nonrotating perfect-fluid star con-
sists only of metric fluctuations, and do not affect the star’s
energy density and pressure. One might naively think that
this means that an odd-parity tidal field will induce no
(gauge-invariant) spin multipole moment in a (nonrotating)
star. This conclusion is, however, incorrect because the
‘‘gravitational potential well’’ generated by the stress-
energy tensor of the star does affect the ‘‘radial propaga-
tion’’ of the external odd-parity tidal fields and necessarily
adds an asymptotically decreasing ‘‘induced’’ tidal re-
sponse to the ‘‘incoming’’ tidal field. To describe this

6As is well known, the dependence on the ‘‘polytropic con-
stant’’ � can be absorbed in the definition of suitable ‘‘polytropic
units.’’
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phenomenon, it is convenient to describe the odd-parity
perturbation by means of the (static limit of the) ‘‘master
equation’’ derived by Cunningham, Price, and Moncrief
[34] (see also Ref. [35]). In the stationary limit, and in
terms of the ordinary radial variable r (rather than the
‘‘tortoise’’ coordinate r�) this equation reads

c 00 þ e	

r2
½2mþ 4r3ðp� eÞ�c 0

� e	
�
‘ð‘þ 1Þ

r2
� 6m

r3
þ 4ðe� pÞ

�
c ¼ 0: (31)

In terms of the variables ðh0; h1Þ entering the odd-parity
perturbations, the odd-parity master function c can be

taken to be either eð��	Þ=2h1=r, or the combination r@th1 �
r3@rðh0=r2Þ [see, e.g., [36] for more details]. As h1 van-
ishes in the stationary limit, we can define c as being

c ¼ r3@r

�
h0
r2

�
¼ rh00 � 2h0: (32)

IV. COMPUTATION OF THE ELECTRIC-TYPE
TIDAL COEFFICIENT �‘

The electric-type tidal response coefficient �‘, defined
by Eq. (11) above, can be obtained by going through three
steps: (i) numerically solving the even-parity master equa-
tion (27) within the neutron star; (ii) analytically solving
the same master equation (27) in the exterior of the star;
and (iii) matching the interior and exterior solutions across
the star surface, taking into account the definition (11)
to normalize the ratio between the ‘‘growing’’ and ‘‘de-
creasing’’ parts of HðrÞ, namely Hgrowing � r‘ versus

Hdecreasing ��‘r
�ð‘þ1Þ.

A. The internal problem

The internal value of the metric function HðrÞ is ob-
tained by numerically integrating Eq. (27), together with
the TOV equations (20)–(22), from the center (or, rather
some very small cutoff radius r0 ¼ 10�6) outwards, start-
ing with some central values of m, p, �, H, and H0. For H,
one takes as starting values at the cutoff radius Hðr0Þ ¼ r‘0
andH0ðr0Þ ¼ ‘r‘�1

0 . The latter boundary conditions follow

from the analysis of Eq. (27) around the regular-singular
point r ¼ 0, which shows that HðrÞ ’ �hr‘ (where �h is an
arbitrary constant) is the most general regular solution
around r ¼ 0. As Eq. (27) is homogeneous in H, the
scaling constant �h is irrelevant and will drop out when
we shall match the logarithmic derivative

yintðrÞ � rH0

H
; (33)

across the star surface. This is why it is enough to use �h ¼
1 as the initial boundary conditions for H.

The main output of this internal integration procedure is
to compute (for each value of ‘) the value of the internal

logarithmic derivative (33) at the star’s surface, say r ¼ R

y‘ � yint‘ ðRÞ: (34)

B. The external problem

As noticed long ago by Regge and Wheeler [37] and
Zerilli [38], the exterior form of the stationary, even-parity
master equation (27) [e ¼ p ¼ 0,mðrÞ ¼ M] can be recast
as an associated Legendre equation (with ‘ ¼ ‘ and m ¼
2). More precisely, in terms of the independent variable
x � r=M� 1, the exterior form of (27) reads

ðx2 � 1ÞH00 þ 2xH0 �
�
‘ð‘þ 1Þ þ 4

x2 � 1

�
H ¼ 0; (35)

where the prime stands now for d=dx. Its general solution
can be written as

H ¼ aPP̂‘2ðxÞ þ aQQ̂‘2ðxÞ; (36)

where the hat indicates that the associated Legendre
functions of first, P‘2, and second,7 Q‘2, kind have been

normalized so that Q̂‘2 ’ 1=x‘þ1 ’ ðM=rÞ‘þ1 and P̂‘2 ’
x‘ ’ ðr=MÞ‘ when x ! 1 or r ! 1; aQ and aP are inte-

gration constants to be determined by matching to the
internal solution. Defining a‘ � aQ=aP, the exterior loga-
rithmic derivative yext � rH0=H reads

yext‘ ðxÞ ¼ ð1þ xÞ P̂
0
‘2ðxÞ þ a‘Q̂

0
‘2ðxÞ

P̂‘2ðxÞ þ a‘Q̂‘2ðxÞ
: (37)

C. Matching at the star’s surface and computation of
the ‘‘electric’’ tidal Love number

As Eq. (27) is second order in the radial derivative of H,
one expects that H and H0 will be continuous at the star’s
surface. Actually, the issue of regularity at the star surface
is somewhat subtle because some of the thermodynamic
variables (such as pressure) do not admit regular Taylor
expansions in r� R as r ! R. For instance, while the
logarithmic enthalpy hðpÞ ¼ Rp

0 dp=ðeþ pÞ vanishes

smoothly [hðrÞ / r� R] across the surface, one finds that

(for any polytrope) pðrÞ / ðr� RÞ�=ð��1Þ and that the term
involving the inverse of the squared sound velocity c2s ¼
dp=de in Eq. (27) is singular (when � > 2), namely

ðeþ pÞ de
dp

/ ðr� RÞðð2��Þ=ð��1ÞÞ: (38)

Despite this mildly singular behavior of the coefficient C0

of (27) and despite the fact that the exact location of the
tidally-deformed star surface is slightly displaced from the
background value r ¼ R, one checks that it is correct

7Note that contrary to the usual mathematical definition of
Q‘mðxÞ, which is tuned to the real interval �1< x<þ1, we
need to work with Q‘mðxÞ in the interval x > 1. This means
replacing logð1þx

1�xÞ with logðxþ1
x�1Þ.
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(when � <1) to impose the continuity ofH andH0 at r ¼
R. [Note that we consider here the case of a finite adiabatic
index �. The incompressible limit � ! 1 leads to a master
equation which is singular at the surface, and which must
be considered with care. See below our discussion of the
incompressible limit.] This continuity then imposes the
continuity of the logarithmic derivative rH0=H. This leads
to the condition yextðRÞ ¼ yintðRÞ ¼ y‘, which determines
the value of the ratio a‘ ¼ aQ=aP in terms of the compact-

ness c � M=R of the star

a‘ ¼ � P̂0
‘2ðxÞ � cy‘P̂‘2ðxÞ

Q̂0
‘2ðxÞ � cy‘Q̂‘2ðxÞ

��������x¼1=c�1
: (39)

On the other hand, the ratio a‘ � aQ=aP can be related to

the tidal coefficient �‘ by comparing (modulo an overall
factor �2),

� ð�H00e
��Þgrowing ¼ HgrowingðrÞ ¼ aPP̂‘2ðxÞY‘m

’ aP

�
r

M

�
‘
Y‘m; (40)

� ð�H00e
��Þdecreasing ¼ HdecreasingðrÞ ¼ aQQ̂‘2ðxÞY‘m

’ aQ

�
r

M

��ð‘þ1Þ
Y‘m; (41)

respectively to

�W ¼ 1

‘!
X̂LGA

L ¼ 1

‘!
r‘n̂LGA

L; (42)

Wþ ¼ G
ð�Þ‘
‘!

@L

�
MA

L

r

�
; (43)

[see, e.g., Eq. (4.15a) of Ref. [7]] where na � Xa=r is a
radial unit vector. Using the fact that

@Lr
�1 ¼ ð�Þ‘ð2‘� 1Þ!!n̂Lr�ð‘þ1Þ; (44)

and ML ¼ �‘GL, and remembering that GLn̂
L /

Y‘mð�; ’Þ, we see that

ð2‘� 1Þ!!G�‘ ¼
aQ
aP

�
GM

c20

�
2‘þ1 ¼ a‘

�
GM

c20

�
2‘þ1

: (45)

Note that G�‘ has the dimensions of ½length�2‘þ1. There
are then two natural ways of expressing G�‘ in terms of a
dimensionless quantity. Either by scaling it by the (2‘þ
1)th power of GM=c20, which leads to

ð2‘� 1Þ!! G�‘

ðGM=c20Þ2‘þ1
¼ a‘; (46)

or by scaling it by the (2‘þ 1)th power of the star radius R,
which gives

ð2‘� 1Þ!! G�‘

R2‘þ1
� 2k‘ ¼ a‘c

2‘þ1: (47)

Alternatively, we can write

G�‘ ¼ a‘
ð2‘� 1Þ!!

�
GM

c20

�
2‘þ1 ¼ 2k‘

ð2‘� 1Þ!!R
2‘þ1: (48)

The scaling of G�‘ by means of R2‘þ1 is the traditional
‘‘Newtonian’’ way of proceeding, and leads to the intro-
duction of the dimensionless ‘‘second tidal Love number’’
k‘ [conventionally normalized as in Eq. (47) above].
One can finally write k‘ as

k‘ ¼ 1

2
c2‘þ1a‘

¼ � 1

2
c2‘þ1 P̂

0
‘2ðxÞ � cy‘P̂‘2ðxÞ

Q̂0
‘2ðxÞ � cy‘Q̂‘2ðxÞ

��������x¼1=c�1
: (49)

The dimensionless Love number k‘ has the advantage of
having a weaker sensitivity on the compactness c �
GM=ðc20RÞ (especially as the compactness formally tends

to zero, i.e., in the Newtonian limit). Note, however, that
the dimensionless quantity which will most directly enter
the gravitational-wave phase of inspiralling binary neutron

stars (NS) is G�‘=ðGM=c20Þ2‘þ1 � a‘ � c�ð2‘þ1Þk‘.
The evaluation of the result (49) for k‘ yields the follow-

ing explicit expressions for 2 � ‘ � 4 (with, for simplic-
ity, y � y‘):

k2 ¼ 8

5
ð1� 2cÞ2c5½2cðy� 1Þ � yþ 2�

�
2cð4ðyþ 1Þc4 þ ð6y� 4Þc3 þ ð26� 22yÞc2 þ 3ð5y� 8Þc� 3yþ 6Þ

� 3ð1� 2cÞ2ð2cðy� 1Þ � yþ 2Þ log
�

1

1� 2c

���1
; (50)

k3 ¼ 8

7
ð1� 2cÞ2c7½2ðy� 1Þc2 � 3ðy� 2Þcþ y� 3�

�
2c½4ðyþ 1Þc5 þ 2ð9y� 2Þc4 � 20ð7y� 9Þc3 þ 5ð37y� 72Þc2

� 45ð2y� 5Þcþ 15ðy� 3Þ� � 15ð1� 2cÞ2ð2ðy� 1Þc2 � 3ðy� 2Þcþ y� 3Þ log
�

1

1� 2c

���1
; (51)
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k4 ¼ 32

147
ð1� 2cÞ2c9½12ðy� 1Þc3 � 34ðy� 2Þc2 þ 28ðy� 3Þc� 7ðy� 4Þ�

�
2c½8ðyþ 1Þc6 þ ð68y� 8Þc5

þ ð1284� 996yÞc4 þ 40ð55y� 116Þc3 þ ð5360� 1910yÞc2 þ 105ð7y� 24Þc� 105ðy� 4Þ�
� 15ð1� 2cÞ2½12ðy� 1Þc3 � 34ðy� 2Þc2 þ 28ðy� 3Þc� 7ðy� 4Þ� log

�
1

1� 2c

���1
: (52)

Equation (50) above agrees with the corrected version of
Eq. (23) of [6]. Note that independently of the values of y
(as long as it does not introduce a pole singularity, which
will be the case), the results (50)–(52) [and, more gener-
ally, the result (49)] contain an overall factor ð1� 2cÞ2
which formally tends (quadratically) to zero when the
compactness c ¼ GM=R ‘‘tends’’ toward the compactness
of a black hole (BH), namely cBH ¼ GM=ð2GMÞ ¼ 1=2.
[The singular logarithm log½1=ð1� 2cÞ� in the denomina-
tor is also easily checked to be always multiplied by ð1�
2cÞ2 and thereby not to affect the / ð1� 2cÞ2 formal
vanishing of k‘ as c ! 1=2.] This property can be easily
understood as a consequence of the ‘‘no-hair’’ properties of
black holes. Indeed, among the two solutions of the exte-
rior tidal perturbation equation (27), the no-hair property
means that the solution which is ‘‘rooted’’ within the
horizon, i.e., the ‘‘asymptotically decreasing’’ solution
Q‘2ðxÞ is singular at the horizon, i.e., when x ¼ R=M�
1 ! 1. More precisely, this singular behavior is

Q‘2ðxÞ � ðx2 � 1Þ2=2 d
2Q‘ðxÞ
dx2

� ðx2 � 1Þ d
2

dx2

�
log

�
xþ 1

x� 1

�
P‘ðxÞ

�

� ðx2 � 1Þðx� 1Þ�2 � ðx� 1Þ�1; (53)

so that the most singular term in the denominator of a‘ or
k‘ is Q̂0

‘2ðxÞ � ðx� 1Þ�2 � ðR� 2MÞ�2 � ð1� 2cÞ�2

which is at the origin of the presence of a factor ð1�
2cÞ2 in a‘ and k‘. One might naively think that this
behavior proves that the ‘‘correct’’ value of the k‘ tidal
Love numbers of a black hole is simply kBH‘ ¼ 0. However,
we do not think that this conclusion is warranted. Indeed,
as we explained above, the definition used here (and in
[5,6,13]) of the Love numbers of a (neutron) star consists in
selecting, within the gravitational field of a tidally distorted
star, the terms which violate the effacing principle (in the
sense of Ref. [13]), i.e., the internal-structure-dependent
terms which differentiate the tidal response of a (compact)
star, from that of a black hole. From this point of view, the
vanishing of k‘ as c ! cBH is mainly a consistency check
on this formal definition. The question of computing the
correct value of k‘ for a black hole is a technically much
harder issue which involves investigating in detail the
many divergent diagrams that enter the computation of
interacting point masses at the 5-loop (or 5 PN) level.

Indeed, the issue at stake is the following. When describ-
ing the motion of two black holes (as seen in the ‘‘outer

problem’’) by a skeletonized action of the form S ¼
Spointmass þ Snonminimal, the presence of nonminimal world-

line couplings Snonminimal of the type (13) and (14) can only
be detected if one treats (when using perturbative expan-
sions in powers ofG) the general relativistic nonlinear self-
interactions entailed by Spointmass ¼ �P

A

R
MAdsA at the

order of approximation corresponding to Snonminimal. For a
black hole (of ‘‘radius’’ RA ¼ 2GMA=c

2
0), the leading non-

minimal coupling parameter scales as �A
2 � kA2R

5
A=G�

kA2G
4M5

A, so that (using E
A
�� � RA

���� / GMB) the leading

nonminimal interaction�A
2

R
dsAEA

��E
��
A is proportional to

kA2G
6M5

AM
2
B. The presence of an overall factor G6 [which

is the same factor G6 that appeared in Eq. (19) in Sec. 5 of
[13]] signals that such an effect is G5 smaller than the
leading (Newtonian) interaction ( / GMAMB) between
two point masses, so that it corresponds to the 5 PN level.
In the diagrammatic language of (post-Minkowskian or
post-Newtonian) perturbation theory (as used, e.g., in
[39]), this corresponds to the 5-loop level. Let us recall
that the computation of the interaction of two black holes at
the 3-loop level was a technically complex enterprise that
necessitated the careful consideration of many divergent
diagrams, and the use of the efficient method of dimen-
sional regularization [40,41]. At the 3-loop level, the result
of the computation was (essentially) finite, though the use
of harmonic coordinates in one of the computations [41]
introduced some gauge-dependent infinities. As argued
long ago [13], and confirmed by an effective action ap-
proach [18], one expects to see real, gauge-independent
infinities arising at 5-loop (5 PN), i.e., at the level where
the effacing principle breaks down, and where, as ex-
plained above, a parameter (� k2) linked to the internal
structure of the considered compact body starts to enter the
dynamics. Until a careful analysis of the 5 PN nonlinear
self-interactions is performed, one cannot conclude from
the above result (kNS2 ! 0 as c ! cBH) that the effective

action describing the dynamics of interacting black holes is
described by the pure point-mass action �P

A

R
mAdsA

without the need of additional nonminimal couplings of
the type of Eq. (14).
We have phrased here the problem within standard

(post-Minkowskian or post-Newtonian) perturbation the-
ory, because this is the clearest framework within which
the issue of higher order nonlinear gravitational interac-
tions of point masses is technically well defined (when
using, say, dimensional regularization to define the pertur-
bative interaction of point masses in general relativity
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[40,41]). Note that, in the extreme mass ratio limit (MA �
MB), where one might use black hole perturbation theory,
the interaction associated to the leading nonminimal cou-
pling parameter �A

2 of MA is proportional to M5
A (see

above). This is well beyond the currently studied ‘‘gravi-
tational self-force’’ effects, which are proportional to M2

A,
and correspond to a ‘‘1-loop’’ effect within a black hole
background.

V. COMPUTATION OF THE MAGNETIC-TYPE
TIDAL COEFFICIENT �‘

The magnetic-type tidal response coefficient �‘, defined
by Eq. (12) above, can be obtained by following three
steps, which are similar to those followed for the
electric-type coefficient �‘.

A. The internal problem

The internal value of the odd-parity master function c is
obtained by numerically integrating Eq. (31), together with
the TOV equations. The boundary conditions are now
obtained from the behavior c / r‘þ1 of the general regular
solution at the origin. Again, the main output of the internal
integration procedure is to compute (for each value of ‘)
the value of the internal logarithmic derivative of c , at the
star surface, say

yodd‘ � yint‘ ðRÞ �
�
rc 0

int

c int

�
r¼R

: (54)

B. The external problem

As noticed long ago by Regge and Wheeler [37], the
stationary odd-parity perturbations can be analytically
solved in the exterior region. Similar to the even-parity
case, there exist two types of exterior solutions: a growing
type solution, say c Pðr̂Þ, with r̂ � r=M, and a decreasing
type one, say c Qðr̂Þ. We normalize them so that c Pðr̂Þ ’
r̂‘þ1, and c Qðr̂Þ ’ r̂�‘ as r̂ ! 1. The general analytical

forms of c P and c Q, for any ‘, can be obtained from

Ref. [37]. In the case of the leading quadrupolar odd-parity
perturbation, ‘ ¼ 2, the growing analytical exterior solu-
tion of (31) is the very simple polynomial

c ‘¼2
P ðr̂Þ ¼ r̂3; (55)

while the decreasing one can be expressed in terms of an
hypergeometric function Fða; b; c; zÞ as

c ‘¼2
Q ðr̂Þ ¼ � 1

4
r̂3@r̂

�
r̂�4F

�
1; 4; 6;

2

r̂

��
: (56)

The normalization of c Qðr̂Þ is such that c Qðr̂Þ ’ r̂�2 as

r ! 1. Note also that, for the special values a ¼ 1, b ¼ 4,
c ¼ 6, the hypergeometric function is actually expressible
in terms of elementary functions. The result has the form

c ‘¼2
Q ðr̂Þ ¼ A3r̂

3 log

�
r̂� 2

r̂

�
þ A2r̂

2 þ A1r̂þ A0

þ A�1r̂
�1: (57)

Going back to an arbitrary ‘, the general exterior solution
of Eq. (31) can be written, analogously to the even parity
Eq. (36), as

c ext ¼ bPc Pðr̂Þ þ bQc Qðr̂Þ: (58)

This result allows one to compute the logarithmic deriva-
tive yodd ¼ rc 0=c of c in the exterior domain, namely

yextoddðr̂Þ ¼ r̂
c 0

Pðr̂Þ þ b‘c
0
Qðr̂Þ

c Pðr̂Þ þ b‘c Qðr̂Þ ; (59)

where b‘ � bQ=bP.

C. Matching at the star surface and computation of the
‘‘magnetic’’ tidal Love number

We again impose the continuity of c , c 0, and therefore
yodd ¼ rc 0=c , at the star’s surface. Similar to the even-
parity case, this determines the value of the ratio b‘ ¼
bQ=bP in terms of the compactness of the star:

b‘ ¼ � c 0
Pðr̂Þ � cyoddc Pðr̂Þ

c 0
Qðr̂Þ � cyoddc Qðr̂Þ

��������r̂¼1=c
: (60)

Again, we see at work the effect of the no-hair property in
that the term c 0

Qðr̂Þ in the denominator of (60) will become

[from (57)] singular as ðr̂� 2Þ�1 when r̂ ! 2. This implies
that b‘ will vanish proportionally to the first power of 1�
2c in the formal limit where the star’s compactness c !
cBH ¼ 1=2.
The dimensionless quantity b‘, Eq. (60), is the odd-

parity analog of the even-parity quantity a‘, Eq. (39). In
the even-parity case, a‘ was, essentially, the tidal response
coefficient G�‘ scaled by ðGM=c20Þ2‘þ1. In the present

odd-parity case, the tidal response coefficient G�‘ has
again the dimension ½length�2‘þ1, and b‘ (for a general ‘)

is essentially b‘ �G�‘ðGM=c20Þ�ð2‘þ1Þ. Before working

out the exact numerical coefficient in this proportionality,
we can note that the odd-parity analog of k‘ (i.e., essen-
tially k‘ �G�‘=R

2‘þ1 � c2‘þ1a‘) will be obtained by
scaling G�‘ by the (2‘þ 1)th power of the star radius R,
and will therefore involve the new dimensionless combi-
nation

j‘ � c2‘þ1b‘ ¼ �c2‘þ1 c
0
Pðr̂Þ � cyoddc Pðr̂Þ

c 0
Qðr̂Þ � cyoddc Qðr̂Þ

��������r̂¼1=c
:

(61)

One expects that the new odd-parity dimensionless combi-
nation j‘ (61) will, like k‘, depend less strongly on the
value of the compactness c than b‘ itself.
Let us now derive the precise link between the

odd-parity tidal response coefficient G�‘, defined by
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Eq. (12), and the dimensionless quantities b‘, Eq. (60), or
b‘c

2‘þ1, Eq. (61). To relate them, we start by noting that
the Regge-Wheeler metric function h0 entering the odd-
parity master quantity c , Eq. (32), parametrizes the time	
angle off diagonal component of the metric perturbation

H0A / h0ðrÞ�ABrBY‘mð�;’Þ; (62)

where A, B ¼ 2, 3 ¼ �, ’ are indices on the background
coordinate sphere S2r of radius r. The metric on S2r is
�ABdx

AdxB ¼ r2d�2, while �A
B � �BC�AC denotes the

mixed form of the volume form 1
2 �ABdx

A ^ dxB ¼
r2 sin�d� ^ d’ on S2r . Let us now consider the gravito-
magnetic field Ba, as defined by DSX. Modulo an irrele-
vant numerical factor, it is the 3-dimensional curl of the
time-space off diagonal metric component: Ba /
�abc@bH0c. Let us focus on the ‘‘radial component’’ of
the gravito-magnetic field Ba, i.e., the pseudoscalar

n 
B ¼ naBa / na�abc@bH0c / �ABrAH0B: (63)

Using then Eq. (62), one finds that

n 
B / �h0ðrÞ�AB�ACrBrCY‘m ¼ ‘ð‘þ 1Þ h0ðrÞ
r2

Y‘m;

(64)

where one used �AB�A
C ¼ �BC and the fact that

�ABrArBY‘m ¼ �‘ð‘þ 1Þr�2Y‘m, where the factor r�2

comes from the fact that �AB is the metric on a sphere of
radius r, rather than a unit sphere. (The various proportion-
ality signs refer to irrelevant, coordinate-independent, nu-
merical factors.} Finally, we have the link

c ¼ r3@r

�
h0
r2

�
/ r3@rðn 
 BÞ: (65)

Focusing on the two crucial (growing or decreasing)
asymptotic terms in the odd-parity metric, we can now
compare the definition of b‘, namely

c /
�
r‘þ1 þ b‘

�
GM

c20

�
2‘þ1

r�‘

�
Y‘mð�; ’Þ; (66)

to the stationary limit of the general gravito-magnetic
fields in a local A frame [see Eqs. (2.19) and (4.16) of
Ref. [7]],

Ba ¼ �Ba þ Bþ
a

¼ X
‘

1

‘!
XLHaL þX

‘

4G
ð�Þ‘
‘!

‘

‘þ 1
@aL

�
SL
r

�
: (67)

Inserting now SL ¼ �‘HL, contracting Ba with na, and

recalling that one has na@a ¼ @r and @Lðr�1Þ ¼ ð�Þ‘ 	
ð2‘� 1Þ!!r�ð‘þ1Þ, one finds

n 
 B ¼ X
‘

1

ð‘� 1Þ! r
‘�1HLn

L þX
‘

4G�‘

ð�Þ‘
‘!

‘

‘þ 1

	 @r@L

�
HL

r

�

¼ X
‘

1

ð‘� 1Þ!
�
r‘�1 � 4G�‘ð2‘� 1Þ!! 1

r‘þ2

�
nLHL;

(68)

so that

r3@rðn 
BÞ ¼ X
‘

1

ð‘� 2Þ!

	
�
r‘þ1 þ 4G�‘ð2‘� 1Þ!! ‘þ 2

‘� 1

1

r‘

�
nLHL:

(69)

The comparison with Eq. (66) finally yields

4ð‘þ 2Þ
‘� 1

ð2‘� 1Þ!!G�‘ ¼ b‘

�
GM

c20

�
2‘þ1 ¼ b‘c

2‘þ1R2‘þ1

(70)

or

G�‘ ¼ ‘� 1

4ð‘þ 2Þ
b‘

ð2‘� 1Þ!!
�
GM

c20

�
2‘þ1

¼ ‘� 1

4ð‘þ 2Þ
j‘

ð2‘� 1Þ!!R
2‘þ1; (71)

where we used the notation j‘ � c2‘þ1b‘ of Eq. (61). As
announced, we see that, modulo a numerical coefficient,
the odd-parity analog of the R-scaled Love number k‘ is
the combination c2‘þ1b‘, Eq. (61). In the odd-parity, quad-
rupolar case (‘ ¼ 2) the above link reads

G�2 ¼ 1

48
j2R

5 ¼ 1

48
b2

�
GM

c20

�
5
; (72)

while the explicit expression of j2 ¼ c5b2 reads

j2 ¼ 96c5ð2c� 1Þðy� 3Þ
5ð2cð12ðyþ 1Þc4 þ 2ðy� 3Þc3 þ 2ðy� 3Þc2 þ 3ðy� 3Þc� 3yþ 9Þ þ 3ð2c� 1Þðy� 3Þ logð1� 2cÞÞ : (73)
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VI. COMPUTATION OF THE SHAPE LOVE
NUMBER h‘

We have indicated above (following a recent study of the
gravitational polarizability of black holes [24]) how one
can generalize to a relativistic context the shape tidal
constant h‘ (the ‘‘first Love number’’) introduced in
Newtonian theory. Let us first point out that, though in
general there is no direct connection between h‘ and k‘,
there is a simple relation between them in the case where
the deformed object is a ball of (barotropic) perfect fluid,
treated in Newtonian gravity. Indeed, in the Newtonian
theory of tidal deformation (see [42,43]), we have the
result that an external ‘‘disturbing’’ tidal potential

Udisturb ¼ X
‘

c‘r
‘P‘ðcos�Þ (74)

deforms the constant-pressure (and constant-density) level
surfaces [p ¼ pðaÞ] of a fluid star into

rðaÞ ¼ a

�
1þX

‘

f‘ðaÞP‘ðcos�Þ
�
: (75)

Here f‘ðaÞ ¼ ð�r=rÞ‘ satisfies the Clairaut equation [in
which �
ðaÞ indicates the mean density within 0 � r � a]

a2f00‘ þ
6
ðaÞ
�
ðaÞ ðaf

0
‘ þ f‘Þ � ‘ð‘þ 1Þf‘ ¼ 0; (76)

and is related to the disturbing tidal coefficient c‘ via

f‘ðAÞ ¼ ð2‘þ 1Þc‘A‘þ1

Gð‘þ �‘ÞM ; (77)

where A is the surface value of a (i.e., A ’ R, the undis-
turbed radius) and where �‘ ¼ ½af0‘ðaÞ=f‘ðaÞ�a¼A denotes

the surface logarithmic derivative of f‘ðaÞ. The latter
quantity is related to the ‘‘second’’ Love number k‘ via

k‘ ¼ ‘þ 1� �‘

2ð‘þ �‘Þ : (78)

On the other hand, using the definition of h‘, i.e.,�
�R

R

�
‘
¼ f‘ðAÞ ¼ h‘

c‘R
‘

GM=R
; (79)

we find

h‘ ¼ 2‘þ 1

‘þ �‘

: (80)

By eliminating �‘ between Eqs. (78) and (80), we finally
get a simple relation between h‘ and k‘, namely,

h‘ ¼ 1þ 2k‘: (81)

For instance, a Newtonian � ¼ 2 polytrope has a density
profile 
ðrÞ / sinx=x, where x � r=R, from which one
deduces, using either the Clairaut equation, or the
Newtonian limit of the (‘ ¼ 2) even-parity master equa-
tion (27), namely, [6]

H00 þ 2

r
H0 þ

�
4G


d


dp
� 6

r2

�
H ¼ 0; (82)

that H / x�1=2J5=2ðxÞ. [Note that this result is misprinted

as xþ1=2J5=2ðxÞ in [6]]. This leads to [6]

kN2 ð� ¼ 2Þ ¼ � 1

2
þ 15

22
’ 0:259 91; (83)

and therefore

hN2 ¼ 15

2
’ 1:519 82: (84)

When generalizing the definition of h‘ to the relativistic
context it seems that we lose the existence of a functional
relation between h‘ and k‘. Let us explicate the meaning
and implementation of the relativistic version of h‘,
Eq. (16). First, we define �R=R as the fractional deforma-
tion of a sphere, embedded in an auxiliary 3-dimensional
Euclidean manifold, such that the inner geometry of this
deformed, embedded sphere is equal to the inner geometry
(induced by the ambient curved spacetime) of the real,
tidally-deformed neutron-star surface (considered at fixed
coordinate time). In general, one would need to consider
the Gaussian curvatures of both surfaces to express their
identity (as done in the black hole case [24]). Here, things
are simpler because we are using the Regge-Wheeler
gauge. In that gauge, it is easily seen that the inner metric
of the surface r ¼ rð�;’Þ of an (even-parity) tidally-
deformed star is

ds2 ¼ ðrð�;’ÞÞ2ð1� KÞd�2

¼ R2
0

�
1þ

�
2
�r

r
� K

��
d�2; (85)

where rð�;’Þ ¼ R0ð1þ �r=rÞ is the radial coordinate lo-
cation of the star’s surface. [Here we absorbed the
Y‘mð�; ’Þ factors inK and �r=r.] Because this inner metric
is conformal to the usual sphere S2 of the unit radius
d�2 ¼ d�2 þ sin2�d’2, it is easily checked that it would
be the inner geometry of a flat-embedded sphere (linearly)
deformed by �R=R, with

�R

R
¼ �r

r
� 1

2
K: (86)

We can further compute the value of the coordinate defor-
mation �r=r by using the fact that the logarithmic enthalpy
h ¼ Rp

0 dp=ðeþ pÞ must vanish on the star surface. Since

hðrÞ ¼ h0ðrÞ þ �hðrÞ, where h0ðrÞ is the enthalpy of the
background undeformed star, and where �h ¼ �H=2, we
then find

�r ¼ 1

2

�
H

h0

�
r¼R

¼ 1

2

�
eþ p

p0 H

�
r¼R

; (87)

where the prime denotes d=dr. Finally, we have the ‘‘flat-
equivalent shape deformation’’:
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�R

R
¼ 1

2

�
eþ p

rp0 H � K

�
r¼R

: (88)

As we said above, the metric variable K can be expressed
as a linear combination [31] of H and H0, namely, K ¼
�1H

0 þ �2H. The coefficients �1 and �2 evaluated on the
unperturbed surface r ¼ R of the star read

�1 ¼ 2cR

ð‘� 1Þð‘þ 2Þ ; (89)

�2 ¼ 1

ð‘� 1Þð‘þ 2Þ
�
‘ð‘þ 1Þ þ 4c2

1� 2c
� 2ð1� 2cÞ

�
:

(90)

In addition, using the TOV equations, we also have on the
star surface

rp0

eþ p
¼ � c

1� 2c
: (91)

By replacing (on the surface) also RH0 ¼ yHðRÞ, we fi-
nally obtain

�R

R
¼ � 1

2
HðRÞ

�
1� 2c

c
þ 2cy

ð‘� 1Þð‘þ 2Þ þ �2

�
: (92)

At this stage, we have obtained an expression of the form
�R=R ¼ HðRÞfðc; yÞ. To proceed further and compute h‘,
it remains to obtain the value of Udisturb

‘ . Following

Ref. [24], and the spirit of the Newtonian definition of
h‘, we define �2Udisturb

‘ ðRÞ as being the analytic continu-

ation at radius r ¼ R of the leading asymptotically grow-

ing piece in H, i.e., the part of Hgrowing ¼ aPP̂‘2 which
grows as r‘. In other words, we define it by the Newtonian-
looking formula

Udisturb
‘ ðRÞ ¼ � 1

2
aP

�
R

M

�
‘
: (93)

We can then compute Udisturb
‘ ðRÞ in terms of the full value

of H on the surface HðRÞ ¼ aPP̂‘2ðxÞ þ aQQ̂‘2ðxÞ (with,
we recall, x ¼ R=M� 1 ¼ 1=c� 1) by separating two
‘‘correcting factors’’ out of HðRÞ, namely,

� 1

2
HðRÞ ¼ ½c‘P̂‘2ðxÞ�

�
1þ a‘

Q̂‘2ðxÞ
P̂‘2ðxÞ

�
Udisturb

‘ ðRÞ: (94)

Putting all the pieces together, and inserting our general
result (39) for a‘ ¼ aQ=aP, we obtain the following final

result for h‘:

h‘ ¼ c‘þ1P̂‘2ðxÞ
�
1� 2c

c
þ 1

ð‘� 1Þð‘þ 2Þ
	

�
2cy‘ þ ‘ð‘þ 1Þ þ 4c2

1� 2c
� 2ð1� 2cÞ

��

	
�
1� @x logP̂‘2ðxÞ � cy‘

@x logQ̂‘2ðxÞ � cy‘

���������x¼1=c�1
: (95)

VII. RESULTS FOR THE EVEN-PARITY TIDAL
COEFFICIENT �‘

Having explained how to compute the various tidal
constants �‘ (or k‘), �‘ (or j‘), and h‘, let us discuss the
dependence of these quantities on the compactness c ¼
GM=ðc20RÞ, for various kinds of EOS. As we already

mentioned, we shall consider a sample of EOS.

A. Polytropic equations of state

First, we consider two kinds of relativistic polytropes:
the ‘‘energy polytrope,’’ or e polytrope, such that p ¼ �e�,
where e is the total energy density, and the ‘‘rest-mass
polytrope,’’ or � polytrope, with p ¼ ��� and e ¼ �þ
p=ð�� 1Þ, where � ¼ nmb is the baryon rest-mass den-
sity. For these polytropes, we shall focus on the adiabatic
index � ¼ 2, which is known to give a rather good repre-
sentation of the overall characteristics of neutron stars. We
shall also briefly explore what happens when � takes
values larger (or smaller) than 2. In particular, we shall
discuss, in the next subsection, the limit � ! 1, which
leads to an incompressible model, with uniform energy
density e. Let us note that the compactness of the � ¼ 2
e polytrope models ranges between 0 (for a formally van-
ishingly small central pressure) and 0.265 for the maxi-
mum mass model, while the compactness of the �
polytrope ranges between 0 and 0.2145. Note that the limit
of a vanishing compactness c ¼ GM=ðc20RÞ ! 0 formally

corresponds to the Newtonian limit. Augmenting � allows
one to reach higher compactnesses, and thereby to better
explore the effects of general relativistic strong-field grav-
ity. In particular, the incompressible limit, � ! 1, yields a
range of compactnesses which extends up to cmax ¼ 4=9 ¼
0:4444 . . . , quite close to the ‘‘black hole compactness’’
cBH ¼ 1=2 ¼ 0:5. We note that a theorem guarantees that
4=9 is the highest possible compactness of a general rela-
tivistic perfect-fluid ball (see, e.g., [44,45]).
Figure 1 exhibits the dependence of the dimensionless,

even-parity, Love number k‘ on the compactness c of � ¼
2 polytropes for three values of the multipole order: ‘ ¼ 2,
3,and 4. The results for the � polytrope (solid lines) are
compared with those for the e polytrope (dashed line). The
limiting values of k‘ for c ! 0 (which numerically means
c ’ 10�4) do agree, as they should, with the known
Newtonian results [46,47]. In particular, kN2 ð� ¼ 2Þ ¼
0:259 91 (as mentioned above) kN3 ð� ¼ 2Þ ¼ 0:106 45,
and kN4 ð� ¼ 2Þ ¼ 0:060 24.
The most striking structure of Fig. 1 is the very strong

decrease of k‘ with increasing compactness. For typical
neutron-star compactness, say c� 0:15, the general rela-
tivistic value of k‘ is about 4 times smaller than its
Newtonian estimate kN‘ . This might have an important

negative impact on the measurability of neutron-star char-
acteristics through gravitational-wave observations.
Leaving this issue to a future investigation [48], let us

THIBAULT DAMOUR AND ALESSANDRO NAGAR PHYSICAL REVIEW D 80, 084035 (2009)

084035-12



focus here on a deeper understanding of the c sensitivity
of k‘.

The main origin of the strong decrease of k‘, when c
increases, is the universal presence of an overall factor
ð1� 2cÞ2 in k‘. As discussed above, the presence of this
term is linked to the no-hair property of black holes, i.e.,

the fact that the star-rooted contribution / aQQ̂‘2 in the

metric variable H around a tidally-deformed star becomes
singular, in the black hole limit R ! 2GM=c20. In addition,
there are other c-dependent effects that tend to decrease the
value of k‘. This is illustrated in Fig. 2 which plots the

ratios k̂‘ � k‘=½kN‘ ð1� 2cÞ2� for the � ¼ 2, � polytropic

EOS. In the case of k2, Fig. 2 shows that the ‘‘normalized’’

Love number k̂2 is, to a good approximation, a linearly

decreasing function of c, k̂2ðcÞ ’ 1� �c, with a slope��
3. In other words, the c dependence of k2 (for � ¼ 2) is
approximately describable as

k2ðcÞ ’ kN2 ð1� 2cÞ2ð1� �cÞ ð� ¼ 2Þ; (96)

with � ’ 3. To get a more accurate representation, one
must include more terms in the c expansion of the normal-
ized k2, or more generally k‘, say

k‘ ¼ kN‘ ð1� 2cÞ2 X4
n¼0

a‘nc
n: (97)

Such a nonlinear fit yields an extremely accurate represen-
tation of the c dependence of k‘ðcÞ. The performance of
such fits is illustrated in Fig. 2 (dashed lines) and the best fit
values of the coefficients a‘n, 0 � n � 4 (fitted over the full

range 0< c< cmax) are listed in Table I. Note that, if we
were to trust these fits beyond the range 0< c< cmaxð�Þ
where k‘ðcÞ is defined, they would predict that k‘ðcÞ van-
ishes for a value c‘� slightly smaller than cBH ¼ 1=2, and
would become negative before vanishing again (now quad-
ratically) at c ¼ cBH. The critical value c‘� is around 1=3,
and approximately independent of ‘.

B. Incompressible equation of state

To further explore what happens for large compact-
nesses, we have studied in detail the limit � ! 1, i.e.,
the incompressible EOS, e ¼ const. Let us recall that in
this case the TOV equations can be solved analytically
giving

p ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2c

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2cr2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2cr2

p
� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2c

p : (98)

Here r denotes the dimensionless ratio rphys=R, so that 0 �
r � 1. Note that the central values (r ¼ 0) of the pressure

are pc ¼ eð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2c

p � 1Þ=ð1� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2c

p Þ, so that pc !
1 when c ! 4=9, which shows that cmax ¼ 4=9 is the
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FIG. 1 (color online). Polytropic EOS: gravito-electric Love
numbers k‘ (or apsidal constants) for ‘ ¼ 2, 3, 4 versus com-
pactness c ¼ M=R. We use two different polytropic EOS’s,
either of the rest-mass type (p ¼ ���; solid lines) or of the
energy type (p ¼ �e�; dashed lines). For both EOS’s we use
� ¼ 2. Note that the maximum compactness allowed by the e
polytrope is larger than that for the � polytrope.
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FIG. 2 (color online). Normalized Love numbers versus c for a
� ¼ 2 � polytrope (points) and performance of the fitting with
the template given by Eq. (97) (dashed lines). The coefficients of
the fit for each ‘ are listed in Table I.

TABLE I. Fitting coefficients for k‘ as defined in Eq. (97) for a
� ¼ 2 � polytrope, up to ‘ ¼ 4.

‘ 2 3 4

a‘0 0.9991 0.9997 0.9998

a‘1 �2:9287 �5:0933 �7:1938
a‘2 �1:1373 7.2008 18.9509

a‘3 14.0013 1.0826 �21:8488
a‘4 �50:9711 �18:7750 4.9031
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maximum compactness reachable by an incompressible
star.

Let us now discuss the computation of k‘ for an incom-
pressible star. The limit e ¼ const creates a technical
problem in the use of the master equation (27). Indeed,
the coefficient C0 of H, Eq. (29), contains a contribution
/ ðeþ pÞde=dp which formally vanishes in the incom-
pressible limit e ¼ const. However, as eðrÞ is an inverted
step function which vanishes outside the star, eðrÞ ¼
e0ð1� �ðr� 1ÞÞ, this term actually contributes a term
/ �ðr� 1Þ which must crucially be taken into account in
the computation of k‘. We can then proceed as follows.
First, one numerically integrates the incompressible limit
of Eq. (27) in the open interval 0< r < 1 representing the
interior of the star. The output of this integration is the
value of the logarithmic derivative of H at r ¼ 1�, say
yin � yðR�Þ. Second, one corrects this value into the value
yout � yðRþÞ just outside the star. To compute the correc-
tion let us evaluate the ‘‘strength’’ of the delta-function
singularity in the only singular piece of C0, namely,

Csing
0 ¼ 4Ge	ðeþ pÞde=dp. Using the TOV equations

giving the radial derivative of p, we can write (reverting
to general units, with r ¼ rphys)

Csing
0 ¼ � 4Gr2

mðrÞ þ 4Gr3p

de

dr
: (99)

In the incompressible limit de=dr ¼ �e0�ðr� RÞ,
mðrÞ ¼ ð4G=3Þe0R3, and pðRÞ ¼ 0, so that

C
sing
0 ¼ þ 3

R
�ðr� RÞ: (100)

Then the effect of the singular term in Eq. (27), or, more
clearly, in the corresponding Riccati equation for yðrÞ ¼
rH0=H,

ry0 þ yðy� 1Þ þ rC1yþ r2C0 ¼ 0; (101)

is easily found to introduce a step function singularity in
yðrÞ with strength ysingðrÞ ¼ �3�ðr� RÞ. This shows that
the correct value yout ¼ yðRþÞ to be used in evaluating k‘ is
(independent of the value of ‘)

yout‘ ¼ yin‘ � 3: (102)

As a check on this result, we can consider the Newtonian

limit of Eq. (27). In this limit, the exterior solutions P̂‘2ðxÞ
and Q̂‘2ðxÞ reduce to ðr=MÞ‘ and ðM=rÞ‘þ1, respectively,
so that one has

kN‘ ¼ 1

2

‘� y

‘þ 1þ y
; (103)

which generalizes the ‘ ¼ 2 result of [6] to an arbitrary ‘.
Then, the incompressible limit, in the interior, of the
Newtonian limit of Eq. (27) reads

H00 þ 2

r
H0 � ‘ð‘þ 1Þ

r2
H ¼ 0; (104)

which coincides with the exterior, Newtonian equation for
H, with general solution H ¼ aPðr=MÞ‘ þ aQðM=rÞ‘þ1.

Regularity at the origin selects the aP term, so that yin‘ ðrÞ ¼
‘ ¼ yin‘ ðRÞ. Then, Eq. (102) determines

youtN‘ ¼ ‘� 3; (105)

so that

k
NðincompÞ
‘ ¼ 3

4ð‘� 1Þ : (106)

This result agrees with the known result for a limiting � ¼
1 (n ¼ 0) polytrope [46].
Figure 3 shows our numerical results for the k‘ Love

numbers of a relativistic incompressible star, as a function
of c, in the range 0 � c � cmax ¼ 4=9. We exhibit the
three first multipolar order ‘ ¼ 2, 3, and 4. Note that the
c ! 0 values of k‘ðcÞ agree with the Newtonian limit,
Eq. (106). The phenomenon of the ‘‘quenching’’ of k‘ as
c increases is even more striking, in this incompressible
case, than in the � ¼ 2 case considered in Fig. 1 above.
Note, in particular, the very small values reached by k‘ for
the maximum compactness c ¼ 4=9. To understand better
the quenching of k‘ by strong-field effects, we have ana-
lytically studied the incompressible model in the limit of
maximum compactness c ! 4=9. This limit is singular
(because pc ! 1), but is amenable to a full analytical
treatment of k‘. This analytical study is thereby a useful
strong-field analog of the analytical study of the � ¼ 2
model in the weak-field (Newtonian) limit. Let us sketch
how one can analytically solve the � ¼ 1, c ! 4=9
model. First, by introducing the variable
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FIG. 3 (color online). Incompressible EOS: gravito-electric
Love numbers k‘ (or apsidal constants) for ‘ ¼ 2, 3, 4 versus
compactness c ¼ M=R.
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x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

9
r2

s
; (107)

Equation (27) becomes

ðx2 � 1Þ2 d
2H

dx2
þ ð4x3 þ x2 � 4x� 1Þ dH

dx

þ ð2x2 þ x� ‘ð‘þ 1Þ � 1ÞH ¼ 0: (108)

We found two exact, analytical solutions of this equation,
which are both of the form ð1� xÞ�ð1þ xÞ� with some
rational exponents �, �. More precisely, either

� ¼ ‘� 1

2
; � ¼ � ‘þ 1

2
; (109)

or

� ¼ � ‘þ 2

2
; � ¼ ‘

2
: (110)

Regularity at the origin8 selects the first solution, namely,

HðxÞ ¼ ð1� xÞð‘�1Þ=2ð1þ xÞ�ð‘þ1Þ=2: (111)

As a result, the interior value of the logarithmic derivative
yint of H has the simple form

yðxÞ ¼ ‘

x
� 1: (112)

Adding the effect of the � function at the surface (r ¼ 1,
i.e., x ¼ 1=3), Eq. (102) finally leads to

yout‘ ¼ yintð1=3Þ � 3 ¼ 3‘� 4: (113)

Inserting this result in our general result (49) for k‘ gives an

analytical expression for k
ðincompÞ
‘ ðcmaxÞ. For instance, one

finds the following value for ‘ ¼ 2

kðincompÞ
2 ðcmaxÞ ¼ 4096

10 935ð308� 81 log3Þ ’ 0:001 710 3:

(114)

Note the striking quenching of k2, by nearly 3 orders of
magnitude, from the c ! 0 value kN2 ¼ 0:75 to this result

for cmax ¼ 4=9.

C. Realistic equations of state

Before discussing our results for the other tidal coeffi-
cients (b‘, �‘, h‘), let us end this section devoted to the k‘
(and �‘) Love numbers by briefly considering the k‘, for
the dominant quadrupolar order ‘ ¼ 2, predicted by the
two realistic (tabulated) EOS’s, FPS and SLy.9 We recall
that we have chosen them here because they have been
used in some recent numerical relativity simulations of
coalescing neutron-star binaries [28,29]. The maximum
compactness of the two realistic EOS’s that we retained

are cFPSmax ¼ 0:2856 and c
SLy
max ¼ 0:303.

The corresponding results for k‘ are shown in the left
panel of Fig. 4 for 2 � ‘ � 4. The right panel focuses only
on the results for the ‘ ¼ 2 case, that are plotted together
with several illustrative � polytropes, namely, � ¼ 1:8, 2,
and 2.3. The � ¼ 1:8 polytrope illustrates the reason why
the realistic EOS’s lead to a decrease of k‘ as c ! 0. This is
due to the fact that the ‘‘local’’ adiabatic index

� ¼
�
1þ p

e

�
d logp

d loge
¼ d logp

d log�
(115)

of these EOS’s varies with the density (or pressure). As
shown, e.g., in the bottom panel of Fig. 1 of Ref. [27] for
�nuclear densities it stays in the range 2 & � & 2:3, while
for lower densities (around neutron drip) it drops to low
values � & 1, before rising again towards �� 4=3 for low
densities. Let us recall in this respect that Newtonian
polytropes have a finite radius only for � > 1:2 (n < 5).
When � ! 1:2, a Newtonian polytrope has finite mass, but
its radius R tends to infinity. As k2 uses a scaling of�2 by a
power of R, this causes kN2 ¼ k2ðc ¼ 0Þ to tend to zero as

� ! 1:2 (see [46]). Anyway, the decrease of krealistic2 ðcÞ as
c ! 0, linked to the small value of � for low (central)
densities and pressures is a mathematical property which is
physically irrelevant for our main concern, namely, the
tidal properties of neutron stars. Indeed, neutron stars
have a minimal mass determined by setting the mean value
of � equal to the critical value �4=3 for radial stability
against collapse [49]. Moreover, we are mainly interested
in neutron-star masses �1:4M�. Such neutron stars are
expected to have radii varying at most in the range
10 km & R & 15 km, corresponding to compactnesses
0:13 & c & 0:2. To be on the safe side, we shall consider
the interval 0:12 � c � 0:22, which is indicated by verti-
cal lines in the right panel of Fig. 4. Focusing our attention
on this interval, we can draw the following conclusions
from the inspection of the right panel of Fig. 4:

8Note, however, that because of the singular behavior of pðrÞ
at the origin, the ‘‘regular’’ solution HðrÞ is less regular than
usual: HðrÞ / r‘�1 instead of r‘.

9Since these EOS’s are given through tables, to use them in a
numerical context it is necessary to interpolate between the
tabulated values. As in [27], we use simple linear interpolation
(instead of third-order Hermite or spline ones) to avoid the
introduction of spurious oscillations in the speed of sound. See
Ref. [27] for further details.
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(1) The� polytropes � ¼ 2 and � ¼ 2:3 approximately
bracket the k2ðcÞ sequence predicted by the two
realistic EOS’s.

(2) Actually, the two realistic EOS’s that we retained
here, FPS and SLy, lead to rather close predictions
for k2ðcÞ.

(3) In the range 0:12 � c � 0:22 the two, realistic k2ðcÞ
can be approximately represented by the following
linear fit

k
ðFPS;SLyÞ
2 ’ A� Bc; (116)

with A ’ 0:165 and B ’ 0:515.

VIII. RESULTS FOR THE ODD-PARITY TIDAL
COEFFICIENTS �‘

As explained above, the odd-parity tidal coefficients �‘

are obtained by solving the master equation (31). Let us
start by noticing that the formal Newtonian limit of this
master equation is simply

r2c 00 ¼ ‘ð‘þ 1Þc : (117)

Indeed, all the matter-dependent contributions to Eq. (31)
are, fractionally, of order GmðrÞ=ðc20rÞ � 4Gr2e=c20 or

4Gr2p=c20, and vanish in the Newtonian limit c ! 0. In
this limit, Eq. (117) does not contain any effect of the star,
and, in particular, is the same in the interior or in the
exterior of the star. This shows that the origin-regular
solution of Eq. (117) is, everywhere, of the form

c NðrÞ / r‘þ1 (118)

and does not contain any decreasing, Q-type contribution
bQc

N
Q / r�‘. This proves that the odd-parity Love number

b‘ ¼ bQ=bP vanishes in the Newtonian limit. More pre-

cisely, as the first post-Newtonian corrections to Eq. (117)
are fractionally of order c ¼ GM=ðc30RÞ, we can then

easily see that the R-normalized odd-parity Love number
j‘ ¼ c2‘þ1b‘ will be of order c as c ! 0 (in agreement
with the results of [23] concerning the ‘ ¼ 2 case).
As we have pointed out above that b‘ also contains a

factor 1� 2c, we conclude that j‘ vanishes bothwhen c !
0 and c ! 1=2, and should qualitatively be of the type

j‘ ¼ c2‘þ1b‘ ’ B‘cð1� 2cÞ: (119)

This approximate result suggests that a 1 PN-accurate
calculation of the solution of the master equation (31)
should give us access to the coefficient B‘, and thereby,
in view of Eq. (119), to a global understanding of the c
dependence of j‘. In particular, one expects from (119) that
jj‘j ¼ jc2‘þ1b‘j will attain a maximum value somewhere
around c ¼ 1=4, with the value

jj‘jmax � jB‘j
8

: (120)

Therefore, a 1 PN computation of the coefficient B gives an
indication of the maximum strength of the odd-parity Love
number. We have analytically computed the coefficient B‘

[defined by j‘ ¼ B‘cþOðc2Þ] by solving Eq. (31) by
perturbation theory c ¼ c 0 þ c 1. Here c 0 ¼ r‘þ1 is
the solution of the c ! 0 limit, Eq. (117), of Eq. (31),
and c 1 is the first-order effect of the matter terms in
Eq. (31). Actually, we found it convenient to get c ¼
c 0 þ c 1 by using Lagrange’s method of variation of con-
stants: c ðrÞ ¼ c1ðrÞr‘þ1 þ c2ðrÞr�‘, with c1ðrÞ ! 1 and
c2ðrÞ ! 0 as r ! 0. Skipping technical details, we found
that the logarithmic derivative
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FIG. 4 (color online). The gravito-electric Love numbers k‘ (or apsidal constants) for ‘ ¼ 2, 3, 4 versus compactness c ¼ M=R for
the two tabulated realistic equations of state FPS and SLy (left panel). Right panel: comparison between k2 from various relativistic �
polytropes (with different �) and the FPS and SLy realistic EOS’s.

THIBAULT DAMOUR AND ALESSANDRO NAGAR PHYSICAL REVIEW D 80, 084035 (2009)

084035-16



y ¼ rc 0

c
’ ð‘þ 1Þ

�
1� 2‘þ 1

‘þ 1

c2ðrÞ
c1ðrÞ r

�ð2‘þ1Þ
�

(121)

takes the following value at the star surface:

yðRÞ ¼ ð‘þ 1Þ
�
1þ ‘þ 2

‘þ 1

1

R2‘þ1

Z R

0
drr2‘

	
�
2ð‘� 2Þm

r
þ 4r2ðe� pÞ

��
: (122)

The integral term in this result represents the 1 PN correc-
tion due to the presence of matter. On the other hand, the
small-c limit of the general result (61) yields for ‘ ¼ 2
(chosen for simplicity)

j2 ’ � y� 3

yþ 2
’ � y� 3

5
; (123)

where we used the fact y ¼ 3þOðcÞ. Combining this
result with Eq. (122) above yields

j2 ¼ c5b2 ’ � 4

5R5

Z R

0
dr4Gðe� pÞr6: (124)

One can analytically compute this integral in the case of a
Newtonian polytrope with � ¼ 2. Recalling that in this
case we have e� p ’ 
c20 ’ 
cc

2
0 sinx=x, with x ¼

r=R, the result is

j2 ¼ B2cþOðc2Þ ð� ¼ 2Þ (125)

with

B2 ¼ � 4

5

�
1� 20

2
þ 120

4

�
’ �0:164 395; (126)

in agreement with [23] (modulo normalization issues that
we did not check).

In view of the reasoning above, we then expect that j2 ’
B2cð1� 2cÞ will be negative, will vanish at c ¼ 0 and
(formally) at c ¼ 1=2, and will reach a minimum value
ðj2Þmin

�¼2 ’ B2=8 ¼ �0:020 55 around c ¼ 1=4. For com-

pleteness, let us also mention that the case of an incom-
pressible neutron star leads to

B
ðincompÞ
2 ¼ �12

35 ¼ �0:342 857 (127)

and ðj2Þmin
incomp ’ �0:042 857. We have qualitatively and

semiquantitatively confirmed these results on the c depen-
dence of the odd-parity Love number by numerically in-
tegrating Eq. (31). We display in Fig. 5 the resulting odd-
parity quadrupolar Love number j2, versus c, for both a
� ¼ 2� polytrope (solid line) and an incompressible EOS
(dashed line). We have numerically checked that the slope
at the origin of the c axis is indeed B2 as analytically
determined above. In both cases (though it is more evident
in the incompressible case, where higher values of c are
allowed) j2 has a negative minimum before rising again
towards zero. The numerically determined minimum of j2
isminðj2Þ ’ �0:0216 (reached around c ’ 0:21) for � ¼ 2

andminðj2Þ ’ �0:0634 (reached around c ’ 0:315) for the
incompressible EOS.
From the conceptual point of view, these results on the

odd-parity Love number [and, via Eq. (72), on the corre-
sponding magneticlike tidal coefficient �‘] are interesting
counterparts of the even-parity results discussed above.
They have points in common (their vanishing in the formal
limit c ! 1=2), and they also strongly differ in other
aspects: �‘ vanishes when c ! 0, while �‘ has a well-
known Newtonian limit, and �‘ is proportional to the first
power of 1� 2c, while �‘ / ð1� 2cÞ2. Moreover, �‘, as
naturally defined, is negative, while�‘ is positive. As, with
our DSX-like normalization, the interaction energies asso-
ciated to both types of couplings are proportional (modulo
positive numerical constants) to �MLGL ¼ ��‘G

2
L and

�SLHL ¼ ��‘H
2
L, respectively, this sign difference can

be interpreted as being linked to the well-known, Lorentz-
signature related, fact that current-current interactions have
always the opposite sign to charge-charge, or mass-mass,
interactions. Concerning the formal vanishing of�‘ as c !
cBH ¼ 1=2, the same remarks we made above for the even-
parity case apply here. This fact is essentially, given the no-
hair properties of black holes, a consistency check on the
definition of �‘ as measuring a violation of the effacing
principle. As said above, although it suggests that the
correct value of �‘ for black holes might be zero, it is far
from proving such a statement which has a meaning only
within a more complex nonlinear context.
From the practical point of view, an interesting output of

the investigation of �2 is that its numerical value happens
to be quite small. Indeed, for a � ¼ 2 � polytrope we have

jG�2jmax

R5
¼ 1

48
jj2jmax ’ 4	 10�4: (128)

We shall discuss in another work the precise dynamical
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FIG. 5 (color online). The j2, odd-parity, Love number for the
� ¼ 2, � polytrope and for the incompressible EOS.
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meaning of this small number (e.g., for the dynamics of
binary neutron stars), but the appearance of such a small
number clearly means that it will be an enormous chal-
lenge to measure it via gravitational-wave observations.

For completeness, we conclude this section by showing,
in Fig. 6, the behavior of j2 also for the two different
realistic EOS’s, FPS and SLy, that we have introduced
above. Similarly to the case of k2 [see Eq. (116) above],
in the range 0:12 � c � 0:22 (i.e., between the two dashed
vertical lines) the two realistic j2ðcÞ can be approximately
represented by the following linear fit:

jðFPS;SLyÞ2 ’ A� Bc; (129)

with A ’ 1	 10�4 and B ’ 0:1411.

IX. RESULTS FOR THE SHAPE LOVE NUMBERS
h‘

Equation (95) gave the final expression for the (even-
parity) shape Love number h‘. This expression contains
several terms that are singular as c ! cBH ¼ 1=2: (i) the
long curly bracket contains an explicit term / 1=ð1� 2cÞ;
(ii) the logarithmic derivative of Q̂‘2 behaves, when x ! 1

(given that Q̂‘2ðxÞ � ðx� 1Þ�1), as @x logQ‘2ðxÞ ’ �ðx�
1Þ�1; and (iii) the logarithmic derivative of P̂‘2 behaves,

when x ! 1 [given that P̂‘2ðxÞ ’ ðx� 1Þþ1, see below], as

@x logP̂‘2ðxÞ ’ þðx� 1Þ�1. The latter behaviors mean
that, in the limit R=ð2MÞ ! 1, the last factor in Eq. (95)
tends to 1þ 1 ¼ 2. As for the ð1� 2cÞ�1 singularity in the
curly bracket, it is compensated by the linear vanishing of

P̂‘2ðxÞ as x ! 1, indeed

P‘2ðxÞ � ðx2 � 1Þ d
2P‘ðxÞ
dx2

� x� 1 ¼ 1

c
� 2: (130)

Finally, the formal black hole limit, c ! cBH ¼ 1=2 of the

shape Love number h‘ðcÞ is finite and nonzero. Actually,
we found that this limit agrees with the results of a recent
direct investigation of the ‘‘gravitational polarizability’’ of
a black hole [24]. The general result for hBH‘ can be found

in the latter reference. Let us only mention here the values
of the first two shape Love numbers:

lim
c!1=2

h2ðcÞ ¼ hBH2 ¼ 1
4; (131)

lim
c!1=2

h3ðcÞ ¼ hBH3 ¼ 1
20: (132)

Figure 7 shows the results of inserting the numerically
determined value of y‘ðRÞ into the expression (95) of h‘.
We give the results for the first three multipolar orders, ‘ ¼
2, 3, 4, and for the two � ¼ 2 polytropes (� polytrope and
e polytrope). We have also investigated the results for the
incompressible EOS (� ! 1). They are shown in Fig. 8.
This information is completed in Fig. 9, where we inves-
tigate the effect of changing the EOS on the c behavior of
the leading, quadrupolar, shape Love number h2. In all
cases, we see that, somewhat similarly to the k2 case, the
strong self-gravity of a neutron star tends to ‘‘quench’’ the
value of h2. For instance, as we discussed above, the
Newtonian limit of a � ¼ 2 polytrope yields hN2 ð� ¼ 2Þ ¼
15=2 ’ 1:52. As we see in Fig. 9, this value is reduced
below 1, i.e., by more than 33%, for typical neutron-star
compactnesses. When exploring stronger self-gravity ef-
fects, notably for the incompressible model, one gets an
even more drastic quenching of h2, by an order of magni-

tude, from the Newtonian value hNðincompÞ
2 ¼ 2:5 down to a

value near the ‘‘black hole’’ value hBH2 ¼ 1=4 ¼ 0:25.
From the theoretical point of view, it is nice to see this
continuity, as the compactness increases, between the
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FIG. 6 (color online). The j2, odd-parity, Love number for FPS
and SLy EOS’s.
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FIG. 7 (color online). Shape Love numbers h‘ versus c for the
two � ¼ 2 polytropic EOS’s: the � polytrope (solid lines) and
the e polytrope (dashed lines).
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neutron-star case and the black-hole case. Note that neither
the no-hair property of black holes, nor the related effacing
principle, are relevant to the present result. What is relevant
is that the inner geometry of the horizon of a black hole is
well defined and that a black hole is an elastic object, like a
neutron star.

Similarly to what we did for k‘ discussed above, it is also
convenient and useful to represent h‘ as a c expansion of
the form

h‘ ¼ hN‘
X4
n¼0

b‘nc
n; (133)

where hN‘ is the Newtonian value [obtained from kN‘
through Eq. (81)] and the coefficients b‘n are obtained
from a fit. As an example, Table II lists these coefficients
for a � ¼ 2, � polytrope up to ‘ ¼ 4 (i.e., they are ob-
tained by fitting the solid lines in Fig. 7).
For completeness, we conclude this section by discus-

sing the h‘ results for the two different realistic EOS’s, FPS
and SLy, that we have introduced above. In Fig. 10 we
display the h‘ Love numbers (for ‘ ¼ 2, 3, 4) versus
compactness c. The fact that h‘ ! 1 when k‘ ! 0 (be-
cause of the small value of the local adiabatic index � for
low central densities and pressures) is understood via the
Newtonian link (81).

X. CONCLUSIONS

We have studied the various tidal responses of neutron
stars to external tidal fields. We have considered both
electric-type (even-parity) and magnetic-type (odd-parity)
external tidal fields. As indicated by Damour, Soffel, and
Xu [7] some time ago, one can correspondingly introduce
two types of linear response coefficients: an electric-type
tidal coefficient G�‘ ¼ ½length�2‘þ1 measuring the ‘th
mass multipole GML induced in a star by an external
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FIG. 8 (color online). Shape Love numbers h‘ versus c for the
incompressible model.
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FIG. 9 (color online). Influence of the EOS on h2ðcÞ: com-
parison between the incompressible case and � polytropes with
two values of the polytropic index: � ¼ 2 and � ¼ 3. The red
circle on the right of the plot indicates the formal c ! 1=2 result.

TABLE II. Fitting coefficients for h‘ as defined in Eq. (133)
for a � ¼ 2 � polytrope, up to ‘ ¼ 4.

‘ 2 3 4

b‘0 0.9999 0.9999 0.9999

b‘1 �3:6764 �4:3700 �5:2361
b‘2 4.5678 6.9775 10.4578

b‘3 �0:0192 �4:1964 �9:6026
b‘4 �5:8466 �1:028 3.0415
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FIG. 10 (color online). Shape Love numbers h‘ versus c for
the two tabulated realistic equations of state FPS and SLy.
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‘th-order (electric) tidal fieldGL, and a magnetic-type tidal
coefficient G�‘ ¼ ½length�2‘þ1 measuring the ‘th spin
multipole GSL induced in a star by an external ‘th-order
magnetic tidal field HL. Dividing G�‘ and G�‘ by the
(2‘þ 1)th power of the star’s radius R leads to dimension-
less numbers of the type introduced by Love long ago in
the Newtonian theory of tides. In addition, one can define a
third10 dimensionless Love number (for any ‘), measuring
the distortion of the shape of the surface of a star by
external tidal fields.

We have studied, both analytically and numerically,
these various tidal response coefficients, thereby general-
izing a recent investigation of Flanagan and Hinderer. The
main results of our study are

(1) A detailed study of the strong quenching of the
electric-type tidal coefficients �‘ (or its dimension-
less version k‘ �G�‘=R

2‘þ1) as the compactness
c � GM=ðc20RÞ of the neutron star increases. This

quenching was studied both for polytropic EOS’s (of
two different types, see Fig. 1), for the incompress-
ible EOS (where the quenching is particularly dra-
matic, see Fig. 3) and for two realistic (tabulated)
EOS’s (see Fig. 4).

(2) Part (though not all) of this quenching mechanism
can be related to the no-hair property of black holes.
The latter property ensures that some of the tidal
response coefficients of neutron stars must vanish in
the formal limit where c ! cBH ¼ 1=2. At face
value, this suggests that the correct value of the �‘

and �‘ tidal coefficients of black holes is simply
zero. We, however, argued that this conclusion is
premature, until a 5 PN (5-loop) nonlinear analysis
of the effective worldline action describing gravita-
tionally interacting black holes is performed.

(3) We gave accurate nonlinear fitting formulas for the
dependence of the tidal coefficients k‘ and h‘ of a
� ¼ 2 � polytrope on the compactness [see
Eqs. (97) and (133)]. We also found that two real-
istic EOS’s give rather close values both for the
electric and magnetic tidal coefficients of neutron
stars. In particular, this suggests a possible, approxi-
mately universal analytical representation of the
leading, quadrupolar (electric) Love number for
neutron stars of the expected compactnesses, 0:12 &
c & 0:22, namely,

k2ðcÞ ’ 0:165� 0:515c: (134)

Even if this simple linear fit reproduces with only a
few percent accuracy, the c dependence of the
known realistic EOS, it might suffice to deduce
from future gravitational-wave observations an ac-

curate value of the neutron-star compactness.
Indeed, the dimensionless parameter which is cru-
cially entering the gravitational-wave observations
is the dimensionless ratio

�̂ 2ðcÞ � G�2

ðGM=c20Þ5
¼ 2

3
c�5k2ðcÞ: (135)

The strong c dependence of �̂2ðcÞ coming from the
c�5 power implies that even an approximate fit such
as (134) might allow one to deduce from the mea-
surement of �̂2ðcÞ a rather accurate (say to better
than 1%) estimate11 of c.

(4) We surprisingly found that the magnetic-type Love
numbers of neutron stars are negative, and quite
small. We showed, by analytical arguments, that
they can be approximately represented as / Bcð1�
2cÞ with a calculable coefficient B (that we com-
puted in a few cases).

(5) Following a recent investigation of the gravitational
polarizability of black holes [24], we studied the
shape Love numbers h‘ of neutron stars. Again the
quantity h‘ðcÞ is found to be drastically quenched
when c increases. However, in that case h‘ðcÞ does
not tend to zero as c ! cBH ¼ 1=2. Rather we found
that hNS‘ ðcÞ tends to the nonzero black hole value

hBH‘ [24] as c formally tends to cBH ¼ 1=2.
In future work, we will come back to the other issues

mentioned in the Introduction, namely:
(1) the incorporation of tidal effects within the effective

one body formalism, starting from the additional
term in the effective action

�S ¼ þ 1

4
�2

Z
dsE��E��; (136)

(2) the study of the measurability of various tidal co-
efficients within the signal seen by interferometric
detectors of gravitational waves.

After the submission of this work, a related paper by
Binnington and Poisson [50] appeared on the archives.
Reference [50] develops the theory of electric and mag-
netic Love numbers in a different gauge. Their results seem
to be fully consistent with ours, but are less general:
(i) their treatment is limited to e polytropes, (ii) they did
not consider the shape Love numbers, and (iii) they do not
discuss the effective action terms associated to tidal effects.
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