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Rotating, ultra-compact stars in general relativity can have an ergo­
region, in which all trajectories are dragged in the direction of the star’s 
rotation. The existence of the ergoregion leads to a classical instability to 
emission of scalar, electromagnetic and gravitational radiation from the 
star. In this paper we calculate eigenfrequencies (including e-folding 
times) for stable and unstable modes of a scalar field on a background 
metric which has an ergoregion. Within a W.K.B.J. approximation for 
modes with angular dependence exp (i we find that unstable modes 
exist for all \m\ > m0(m0 depending upon the star), but that the e-folding 
time is asymptotically r  = r0exp (2/3m), where (3 is of order 1. Typically, 
t0 is several orders of magnitude longer than the age of the universe. How­
ever, the techniques evolved here should be applicable to other ‘ rotational 
dragging’ instabilities in general relativity. Particularly useful should be 
the result that links the eigenfrequencies to resonances in the effective 
potentials governing photon motion in the metric; these potentials are 
rotationally ‘split’.

1. I n t r o d u c t i o n

The rotation of a star in general relativity causes the trajectories of particles and 
photons to be dragged in the sense of the rotation. An observer far from the star 
would measure, for example, the period of a circular equatorial orbit near the star to 
be shorter in the prograde direction than in the retrograde direction. This effect, the 
dragging of inertial frames, can in principle be so strong that in some region all 
trajectories must rotate in the prograde direction: no trajectory, no matter how 
strongly accelerated, could rotate backwards around the star relative to a distance 
observer (see, for example, Misner, Thorne & Wheeler 1973). This region of space is 
called an ergoregion (e.r.). We have elsewhere given a preliminary discussion of the 
likelihood that e.rs will arise in important astrophysical situations (Schutz & 
Comins 1978). Here we examine in detail the instability found by Friedman (1975): 
a star without a horizon but with an e.r. is unstable to the emission of scalar, 
electromagnetic and gravitational waves, in the sense that any small pertur­
bation will grow unboundedly large within the approximation of linear perturbation 
theory.

There are two reasons for our interest in this question. First, if the instability is a 
strong one, growing large within a few rotation periods of the star, then it will have
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important consequences in those stars which develop e.rs even for brief periods. 
Second, and more important in view of the evident rarity of e.rs, is tha t the e.r. 
instability is just one example of a class of instabilities tha t Friedman & Schutz 
(1978) have called ‘rotational dragging instabilities’. Another example of this class 
is the gravitational-radiation instability in rotating stars, discovered in the Mac- 
laurin spheroids by Chandrasekhar (1970) and shown to exist in any rotating star, 
no matter how slowly rotating, by Friedman & Schutz (1978). We develop below an 
effective-potential approach to solving the wave equation which helps one under­
stand the instability by making a close analogy with the more familiar problem of 
quantum-mechanical resonant scattering. This technique should prove applicable 
to all the rotational-dragging instabilities.
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light cone

sta tionary  world line

F igure  1. The tilting  of light cones in a  ro ta tin g  sta r. The region w here th e  s ta tio n a ry  w orld 
lines are spacelike is called the  ergoregion (e.r.). Since energy a t  infinity  is m easured by  
referring to  tim elike vectors parallel to  th e  s ta tio n a ry  world lines and  is positive, th e  
energy in the  e.r. (where the  tim e vector a t  infinity  is seen as spacelike) is negative. 
F riedm an has shown th a t  th is  region is unstab le to  rad ia tion  of scalar, electrom agnetic 
and g rav ita tiona l rad ia tion . Topologically the  e.r. is a  toroid. F or m ore discussion of th e  
s truc tu re  of th e  e.r. see Schutz & Comins (1978).

The physical reason for the ergoregion instability is best understood by looking 
at the trajectories of photons and particles. Rotation causes the light cones in the 
vicinity of the star to ‘tilt over’ relative to those a t infinity. In the e.r., the light 
cones have tilted so much tha t world lines which are stationary relative to infinity 
are actually outside these light cones (figure 1). I t  follows tha t all particles and 
photons in the e.r. must rotate in the sense of the star’s rotation as seen by an 
observer a t infinity. However, the observer a t infinity measures energies by pro­
jecting four-momentum vectors onto his own time-vector, which may be thought of 
as parallel to the stationary world lines. As far as particles in the e.r. are concerned, 
this distant observer is using a spacelike -  or tachyonic -  energy measure, with the 
result tha t some e.r. particles are assigned a negative total energy by the distant



observer. What makes this significant is that the energy so defined is actually con­
served along a freely moving particle’s path. I t  is therefore possible to create, at 
zero net cost, a negative-energy photon and a positive-energy photon in the e.r. The 
negative-energy photon is trapped while the positive-energy one can be sent to 
infinity, removing energy from the star. This ‘Penrose process’, first suggested for 
black holes (Penrose & Ployd 1971), extracts rotational kinetic energy and angular 
momentum from the source of the metric. I t  has a direct analogue in the propaga­
tion of waves in the metric. For rotating black holes it implies the existence of 
‘ super-radiant ’ wave modes, in which incident radiation is amplified by scattering 
off the hole. The amplification factor is, apparently, always finite (Press & Teukol- 
sky 1975). For stars without horizons, however, the process actually leads to an 
instability, in which a small initial negative-energy perturbation radiates positive 
energy to infinity, thereby amplifying itself in order to conserve energy. (This does 
not lead to an instability in the case of a black hole because the negative energy can 
flow across the horizon faster than the positive energy flows to infinity, damping the 
wave. For a star, the negative energy is trapped inside the e.r.)

We shall limit our discussion to the massless scalar field because we have found 
that for a certain class of metrics having e.rs the scalar wave equation separates 
completely using spherical harmonics. This facilitates the mathematical treatment, 
while still permitting us to draw conclusions about the more physical cases of 
electromagnetism and gravitational radiation. We apply standard W.K.B.J. 
techniques in the limit of large axial eigenvalue m, and find a family of unstable 
modes whose e-folding time increases exponentially with m. The relativistic calcu­
lations below follow the notation of Misner et al. (1973).
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2. S c a la r  w a v e  e q u a t i o n  i n  a c l a s s  op s p a c e t i m e s

W I T H  E R G O R E G I O N S

The metric of a stationary, axisymmetric, rotating star can be written in the form

ds2 = —e20 d t2 + e2A dr2 -f- r2 e2/t + r2 e2̂  sin2 — co df )2,

where 0, A, y, yand w are functions of r and 6. If  the metric does not contain a
horizon, none of the metric coefficients is singular. The boundary of the e.r. occurs 
when the asymptotically timelike killing vector is null (lies along the boundary of 
the tilted light cone of figure 1). The boundary is given by

0 = Zt ’ = 9oo = “  e20 + Q2yr2oj2 sin2 0. (1)
Solutions of (1) are topologically toroids, symmetric under reflexion through the 
equator.

In our analysis of the occurrence of e.rs in stars (Schutz & Comins 1978), we have 
found that realistic uniformly rotating stars with e.rs have a metric which is nearly 
spherical. This can be written in approximate form as

ds2 = - e 20^ d t2 + e2Â d r2 + r2dd2 + r2&in2d(d<P-o){r)dt)2, (2)



where the functions 0 , A and o> are computed numerically. This metric can describe 
a spacetime with an e.r.; it is not a solution of Einstein s equations, but when used 
as a background metric for the analysis of the scalar wave equation it should give 
reliable results. Its  principal advantage is tha t it permits the scalar wave equation to 
separate completely, by using spherical harmonics. The scalar wave equation,
V W  = 0, may be written:

'  ' W  + * (ln flW ,, = 0, (3)
where g = |detgr | = r4sin20e2(0+/1). I t  is easy to verify that, since 0  and A  are 
functions only of r,(3) separates with \Jr in the form

r, 6, <f>) = Xim(r) ftiJO, 0) ei(rt, (4)
where \}rlm(d, 0) are the spherical harmonics, and is the complex frequency of the 
wave. This gives the radial equation

Xw + [2/ r + ^  - d ' ] y )r + [(<r + mw)2e2(/1- 0)-Z(Z+ l)e 2/1/ r 2]y  = 0. (5)

I t  will be convenient to write this equation in the form

X!rr + m*T(r,Z)x = 0, (6) 
where m is the angular eigenvalue and E  = is the negative of the pattern speed 
of the wave. (The pattern speed is the angular velocity at which surfaces of constant 
phase rotate.) The appropriate transformation is

y = y e x p { - ^ J ( ?  + 0 , - d /)d r} . (7)

Substituting this into (5) yields an equation of the form (6), with

T{r,E) = (E+<o)2e*A- 0)— (l(l+l)/m  (8a)

where y = 2 /r + 0 ' — A'. (86)

In the high-m limit, where Friedman (1975) has suggested tha t the instability sets 
in, the equation for y simplifies considerably. For this case we take 0, set 
and consider modes for which E  = 0(1 )f. Equations (6) and (8a) become, keeping 
dominant terms,

y rr + m2e2(/l_0){(Z'+w)2 —e20/ r 2}y = 0. (9)

3. E f f e c t i v e  p o t e n t i a l s  f o r  s c a l a r -w a v e  s c a t t e r i n g

There is evident similarity between (9) and the Schrodinger equation. In  the limit 
as oj goes to zero there is a direct analogy between E 2 and the energy of a quantum 
mechanical particle. In  our case (w ^  0), one might simply speak of a ‘frequency

f  The assum ption 27 =  0(1) m eans th a t  we m ay have errors for m odes w ith  |27| <  o)/m. 
W e shall discuss th is  in detail a t  th e  end of §7. The assum ption =  picks th e  m ost u n ­
stab le m o d e ; modes w ith  l> mmust be close to  modes w ith  =  0 for some l, and  these are
never unstable. The assum ption m  >  0 is no restric tion  a t  all. F rom  (5) it  is clear th a t  if  cr is an  
eigenvalue for m  w ith  eigenfunction y , th en  — cr* is an  eigenvalue for — m  w ith  eigenfunction 
y*. I f  y  exp (i at)is outgoing unstab le , so is y* exp ( — i
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dependent’ potential, meaning that 27 enters in a complicated way. One can, 
however, make a good analogy with the Schrodinger equation by factorizing the 
potential Tin (6) using (9):

t  = e*A- * \ z - v +){ E -  (io)

Ft = —o)±e0/r.(11)

This gives us two rotationally split ‘effective potentials’, V+ and V_, typical 
examples of which are shown in figures 2 and 3. (In the absence of rotation, V+ = — V_ 
is the square-root of the usual effective potential.) These potentials represent a 
generalization of the quantum-mechanical potential curves with ‘allowed’ and 
‘ forbidden ’ regions. In the regions where 27 is above the curve V+ or below the curve
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F igure 2. Effective potentials for our approxim ation to  a rigidly rotating , uniform density 
star w ith a very small e.r. The region where the top  curve, V+9 is negative is the  e.r. The 
local maximum in the bottom  curve, V_, shows th a t there is a stable photon orbit co- 
rotating with the star. The star has mass M  and radius I?*, with 2M /R *  =  0.849. I t  has 
rotational period 47.4M. The e.r. stretches from r0 = 0.454i?* =  1.01M  to  r1 = 0.595 
I?* =  1.40M; V+ a ttains its maximum depth, — 1.67 x 10~3 M ~ x a t R  — 0.520R*. 
Other data : eAiR) =  1.14, e0(/2) =  0.146, V_(R) = — 0.0240 Details of the con­
struction of the model are in Schutz & Comins (1978). To convert to  ordinary units use 
1 M q  =  4.90 its.

V_, solutions of (9) have oscillatory behaviour (allowed regions). Where E  lies 
between V+ and V__ the solutions have exponential behaviour (forbidden region). 
Note that the e.r. (if its exists) is the region where V+ < 0. To see this compare 
V+ in equation (11) with the boundaries for the e.r. in the equatorial plane, found 
by using the metric in (2) with (1). The e.r. boundaries are given by

ro) = e0. (12)

It is not hard to show that V± are exactly the effective-potential curves for the motion 
of photons (i.e. null geodesics) in this geometry, as discussed for the Kerr metric by
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Misner et al. (1973, ch. 33). The curve V+ is appropriate to photons with negative 
angular momentum (that is, in the sense opposite to tha t of the star) and V_ is for 
positive angular momentum. The minimum in V+ shows clearly tha t an e.r. in a star 
always contains a stable circular photon orbit of negative energy. I t  is this orbit 
which the high-frequency, exponentially-growing modes can be expected to popu­
late.

4. O u t g o i n g  w a v e  n o r m a l  m o d e s

We will now show that the complex eigenfrequencies of the scalar wave modes 
can be found by examining the scattering of real-frequency waves in these potentials. 
Consider first the scattering of waves with complex frequency cr, which come in from 
infinity with amplitude Cin{cr), scatter, and return to infinity with amplitude 
Coni(cr). The scattering amplitude S  is defined as Cout/C in. Purely outgoing 
waves occur as poles of the scattering amplitude: Cln = 0 and Cout ^  0. A pole of S  
gives a complex frequency crp for which there is finite outgoing radiation for zero 
incoming radiation, which is what one calls an ‘outgoing-wave normal mode’. 
Recalling the time dependence of the radiation (equation (4)), eiat, we see tha t Re crp 
is the frequency of the mode and (Im crp)~1 is the e-folding time of the radiation. 
The unstable modes are those with Im crp< 0. Finding <rp exactly requires a search 
over the complex-frequency plane. For these poles near the real axis (Re crp >  Im ap) 
we shall show tha t it suffices to look for the resonances on the real frequency axis 
which the poles induce; the width of a resonance determines the distance of the 
associated pole from the real axis.

The method of proof we use here was suggested to us by R. Sorkin (private com­
munication); it is similar to the argument given by Thorne (1969). The scattering 
amplitude S  is an analytic function of cr in some neighbourhood of the real axis. We 
define a conjugate function S(cr) = [$(cr*)]*, where * denotes complex conjugation; 
S  is likewise analytic. Since S  has a pole a t S  has a pole at cr*. Consider real values 
of cr, for which conservation of energy implies |$| = 1, or

S(cr)[S(cr)]* = 1.

Since cr is real this is equivalent to

S(<r) = [S
Since this is true for all real cr, it is true everywhere where S  and S  are analytic. In  
particular, since S  has a pole at cr*, it implies tha t S  has a zero a t cr*: an incoming
wave normal mode. I f  the pole is simple (the usual case), it follows tha t near the
pole S  can be written

S(o-) = e2i3o(<r —

where £0 is a constant phase, and where terms quadratic in — <r and <7*have 
been neglected. This is the classical resonance behaviour of the scattering phase- 
shift. We shall need it in the following form

S  = e2W«(o- —crr —i/r)/(cr —<rr + i/7), (13)



where crr and — 1/r are the real and imaginary parts of ap, respectively. In 
this convention for r, positive r represents exponential growth and negative r, 
decay.
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5. W.K.B.J. A N A L Y S I S  OF R E S O N A N T  S C A T T E R I N G

In the high m limit, where Friedman (1975) expects the instability to be most 
easily excited, we shall find it convenient to treat the problem as an eigenvalue 
problem for Z  = cr/m rather than for cr itself. To apply the W.K.B.J. analysis 
(cf. Morse & Feshbach 1953) we must, strictly speaking, transform to a coordinate x 
which sends the point r — 0 to x  = — co: r Then we define xjr an(l  keep
only the dominant terms in m in (9):

xjr xx + m2\p2<'x+A~0\ Z  + o>)2 — e2(0-a;)] 0,

where now — 00 < x < 00. To first order in an asymptotic expansion in 1/m, ^  is 
given by

f  = ^exp[± im /T idr]/rP 7d , T  (14)
where we have substituted rback in for ex. (This substitution should be viewed 
strictly as a convenient coordinate transformation.) We shall see that the unstable 
modes are members of a family of modes for which approaches the minimum in 
V+ from above. A typical member of this family is shown in figure 3. The four sep­
arate regions of the scattering problem are drawn in figure 3: I, the innermost 
forbidden region (0 < r < r0); II, an allowed region containing or lying entirely 
within the e.r. depending on the sign of Z rq); III, the potential barrier 
region (r1 < r <r2); and IV, the external allowed region (r2 < I t  will become
clear that the resonant scattering problem is the usual one: interaction of incoming 
radiation with the nearly-bound states of the potential well in V+ by tunnelling 
through either V+ or V_. Of course the whole potential T(Z, r) depends both on V+ 
and V_, but the qualitative features of the problem are well described by V+, except 
for the one unusual feature: curves with 0 tunnel out through These will 
turn out to be the unstable modes.

The W.K.B.J. matching of the wave functions in the different regions is begun in 
region I with the boundary condition that xjs is finite at r = 0. Since A, 0 , and 10 are 
finite at r = 0, (14) implies that T  ~ r~2 for small r. Accordingly, yjr must vanish at 
r = 0. The radial wavefunction in region I is

\Jr-i = Cx exp m j y \ T \ d ry ri\T\i,

where the Cx and all the Ci to follow are constants. The connection equations (Merz- 
bacher 1961, ch. 7) relate to the wavefunction in other regions and in particular 
to the incoming and outgoing parts of x]flw in region IV. (The connection relations 
are unchanged by the fact that T  contains both Z  and Z 2.) Writing ^qv as

' l j TAr} + ^ i e x v [ ~ im! j T i ( 18)
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F igure  3. Same as figure 2 for a more rapidly  ro ta ting  star. Any particu la r value of 27 divides 
space into four regions: I (0 < r < r0) is classically forbidden; I I  (r0 <  r <  r t) is 
allowed; I I I  (r1 < r < r 2) is again forbidden, and  is th e  w ave-tunnelling region; IV  
(r > r2) is the  asym ptotically  free allowed region. The radii r0 and  rx in figure 2 corre­
spond in th is no ta tion  to  27 =  0. I f  27 >  0, modes corresponding to  alm ost bound sta tes  of 
the  V+ well are stable and tunnel ou t of the  barrier th rough  F+. I f  27 <  0 th ey  are unstab le 
and tunnel th rough V_. This s ta r  has the  same value of M / R * as in figure 2, b u t has 
ro tational period 41.5M . The e.r. ex tends from  0.3231?* to  0.7621?*; V+ a tta in s  its 
m axim um  depth, -  1.85 x 10"2 M “\  a t R  = 0.5141?*. The o ther param eters are eA(R) = 
1.14, e0(R) =  0.145, V_(R) = — 0.258M -1. The V+ well is no longer accurately  described by 
a parabola.

it is easy to show tha t (71? (74 and (75 are related, in matrix notation, by

( C ^ \ U 2 V + 1/2V (CA
2 \- i{ 2 r j- i /2 r i)  2V+ \/2rj ’

where £ = ra f *J (17)
J r0

In (tj) = m (18)

The identification of the incoming and outgoing amplitudes (7in and Cout with the 
constants C4 and C5 depends on the sign of the frequency. If  E  is negative, C4 = CoUt 
and C5 = Cin; the opposite is true if E >0. For 0, the scattering amplitude may
be written, using (15)

Cj _  + 1) e1̂ — i (4?/2 — 1) e"1̂
Cb i(4?/2—l)e ^  + (4?/2+ l ) e _i£ ' (19)

The imaginary part of the normal-mode frequency crp will be small only if the 
barrier-penetration integral is large. In the limit ^->oo, we have i unless
eif _  i Q-H — o, in which case S  — + i. So a resonance will clearly occur at a frequency



near that for which e ^ - ie _lS vanishes, or for which £ = where n is some
integer. We call this frequency crn and expand £ in a Taylor series about it:
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where

£(<r) = nn + J tc + aM(<r -  crn) + 0(<r -  cr n)2,

With this, the scattering amplitude becomes

( 20 )

(21)

_ - 3 ( q ' - O  + 1/ 4^2 + i[ 3 ( 0 ' - O + 1/ 4?/2] . 0(c  r  N2 
-  a(cr -  (xn) + 1/4?/2 -  i[a(<r -  <rn) + 1/4?/2]

where from now on we denote //(<Tn) and ccn simply by and a. 
To put this in the form (13), we rewrite it:

(22a)

1 —i 
1 + i ^ ) / H / (t * ) /

4?/2a (226)

Observe that (1 — i)/(l +i) = — i, which gives
S = —i[cr— crn — i/47j2a]/[<r-crn + i/4^2a]. (23)

Thus, to this order, the resonant frequency is <rn and the time r [see the discussion 
following (13)] is t = 4 fa.(24)

It is easy to see that a is positive, since the widening of the well in V+ with increasing 
27 guarantees that the integral for £ in (17) will increase with 27. Then the fact that r 
is positive means that these negative-27 modes are unstable. (Had 27 been positive, 
the above argument would have been identical apart from the identification 
Ci = Cin and Cb = (70ut. This would change S  into $ -1 and consequently r  into — r.)

6. A s y m p t o t i c  b e h a v i o u r  of t h e  i n s t a b i l i t y  f o r  l a r g e  m

Perhaps the most reliable information a W.K.B.J. analysis can give us about r  is 
its m-dependence for large m. Since we expect the instability to occur through high 
m modes, it follows that if r were, say, inversely proportional to m, then the growth 
time for modes of sufficiently high values of m would be smaller than any other 
dynamic time scales in the star and the instability could therefore be expected to 
have a dominant effect on the star. By contrast, if t increases rapidly with m (as we 
show to be the case) the time scales for large m would be very long and the instability 
would be weak. We discover the asymptotic dependence of r  on by showing the 
following: (i) that the higher m modes occur deeper in the e.r. well than the lower 
modes, with 27 approaching the minimum in V+; (ii) that a is independent of m for 
large m; and (iii) that (In rj)/mis independent of m for large m. It will follow that to 
dominant order in m, r  ~ exp (2m/?), where is a positive constant. We will obtain 
analytic expressions by approximating the bottom of the V+ well by a parabola. 
This will also give useful results for stars with incipient e.rs.
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We want to know where the higher-ra modes appear in the e.r. well compared to 
the lower modes. Combining equations (17) and (20) and taking = crn (on reson­
ance) gives a relation among 7}, m and 27:

m ( riJ T d r =  (n + l)n ; (25)
J r0

For fixed n, as m increases the integral must decrease. I t  is clear from (10) or figure 
3 that for the integral to decrease 27 must drop deeper in the well. Since —27 is the 
pattern speed of the wave, the modes for large m approach the behaviour of the 
stable orbiting pho ton-no t a t all a surprising result. Next, observe tha t the m 
dependence of ?/ and a can occur in both the integrand and the limits of integration. 
High in the well the change in a is small for small changes in 27 since the integrand 
and limits change only slightly. Low in the well this is not so obvious. By approxi­
mating the bottom of the well as a parabola we can study the change in a with m 
(or 27) in more detail. We let R  be the radius at which V+ attains its minimum value, 
and we set a = V+(R), a <0. Then we can write

V+(r) = (r — (26)

The boundaries r0 and rx are the roots of 27- = 0: r0 =
+ a/(F(27— a)).To calculate oc we need

d ^ T /d Z = ( Z  +o))4A-̂ /̂ T.(27)

Near the bottom of the well we shall take io,A, and 0  to be constants, the only 
significantly variable term being Z —V+. Then we can write for a

a _d
d27 dr (28)

the derivatives dr1/d27 and dr0/d27 do not enter because vanishes a t rx and rQ. 
We have

[Z

This is easily integrated to give

rR+ViPiS-a)) 1 1
Z - a — p ( r - R Y

J R-V(P(Z-a)) L
- i

dr. (29)

a  = kP?[Z+a)(R)][27- F  (£)]-! e ^ - ^ * ) .  (30)

This is clearly independent of m, since 27 approaches the constant a for large m.
W e now turn to the barrier-penetration factor tj. We take out the explicit factor 

of m and define

In?/ = m/?, /? = f V l^ ld r .  (31)
J n

For large mthe lower limit rx approaches R ,while r2 also approaches a constant value 
independent of m (cf. figure 2). I t  is clear, then, tha t /? is independent of m for large 
m.



Combining all of these arguments shows that

r  = 4t/2<x = 4 ae2m/J; (32)

i.e. that r  increases exponentially with m. The instability therefore rapidly becomes 
less important with short wavelength; the dominant unstable modes have small

On the ergoregion instability 221

7. D o m i n a n t  g r o w t h  r a t e s  f o r  m a r g i n a l l y  u n s t a b l e  s t a r s

We examine now the magnitude of the instability in those stars which have4 small 
ergoregions; to do this we must study the smallest unstable values of m. The 
W.K.B. J. approximation is worst for such modes, but we will use it to get an order of 
magnitude feeling for the instability. At the end of this section we will discuss its 
reliability further. The smallest unstable m one can have is obtained by solving 
(25) for m with n — 0 and 27 = 0: the minimum m is the smallest integer exceeding

ran /' eA~0(V+ F J id r (33)

where r0 and rl are the boundaries of the e.r. Of course, if there is a mode at 27 = 0 it 
will have zero growth rate (be marginally unstable) because the integral for is 
infinite. So the fastest-growing mode will have some value of 27 just below zero. Our 
aim is to find that maximum growth rate. We can obtain an analytic expression for 
it in the limit of a very small ergoregion, where our previous parabolic approxima­
tion to the well in V+ is valid throughout the ergoregion. Then equation (25) for the 
resonant frequencies becomes

\m jP e AW -0(R\Z-V _{R )]l[Z -V +{R)\ (34)

Denoting by A the terms (which are insensitive to 27 because |27| < |E,.(i2)|)

A = [27-F_(J?)]ie^)-^^, (35)
we have for n = 0

m[27-F+(JR)] = 1 /(AyjP). (36)

From (30) we have a, and for this case a is clearly insensitive to changes in 27 as long 
as 27 is near zero. Finally, we want /3for the growth rate,

fi=  f r2e^)-W[(27-F_)(F+ —r) ] id  r. (37)
J  n

For small 27, r1 will just be the outer boundary of the e.r. and r2, where 27 = V_, will 
be very large. Over most of the range of integration, e0 and eA will be nearly 1 and o) 
will be very small compared to 1/r. The outer limit is

and /? becomes
>•» = i/|£ |.

' • n - dr. (38)



This is easily integrated to give
/? = —1—ln ( || (39)

We want the minimum value of t. Because a is independent of this minimum is 
the minimum of m/?:

+ (40)
m dl /?dr'

We use equation (36) for dm/d27,

d m /d r  = -  (Z -V +(B))-2/{A jP ),

Moreover, we can also take d ^ /d Z  = 0, and, of course, d |2 '|/d 2 ’ = -  1. Then (40)

- ( 2 ’- F +(i?))-1- | 2 ’|- 1( l+ ln ( | | i ; | r 1))-1 = 0 

which is an equation for Z.It  may be written more conveniently as

e x p { - |F +(^ )/2 ’|} = | r 1|2’|. (41)
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G iven^ (the outer boundary ofthee.r. well) andFh(i?) (the depth of thee, r.), solving 
this equation gives the frequency Z  which should have the shortest e-folding time. 
This Z  will generally not be an eigenfrequency, but the eigenfrequency nearest it 
(for n = 0) will have the shortest growth time. The growth rate can be calculated, 
approximately, from (32) using (30) and (39).

One may be concerned about the accuracy of this ‘fastest ’ growth rate, since the 
modes concerned have wavelength comparable to the size of their ‘ allowed ’ region. 
A careful discussion of the likely sources of error, however, proves reassuring. There 
are two numbers one wishes to calculate, the eigenfrequency Z  and the growth time 
r, and they are determined by integrals over different regions. The eigenfrequency 
comes from an integral over the ‘ allowed ’ region (ergoregion), and in this region the 
W.K.B.J. approximation may be unreliable. (It must be pointed out, however, th a t 
the W .K.B.J. approximation happens to be good for the simple harmonic oscillator; 
to the extent tha t the well in V+ can be approximated by a parabola and tha t the 
deviation of the potential from a parabola at distances far from the ergoregion can be 
neglected, our approximate eigenfrequencies may in fact be quite good.) But even 
if we admit substantial uncertainty in the exact eigenfrequencies, the growth rates 
should be much more accurate. This is because they result from integrals over the 
barrier-penetration region (III in figure 3), in which the modes do have wavelength 
very short compared to the scale lengths of V+ and (This remark would not 
apply to very unstable stars with deep ergoregions.) So it should be possible to trust 
the W .K.B.J. approximation for calculating the general run of growth time for 
marginally unstable stars, as in § 8 below.

Another source of inaccuracy is the neglect of certain terms in passing from the 
exact form of the potential in (8) to its approximate form (9). The terms tha t were 
dropped are negligible compared to Ft if mis sufficiently large and are negligible 
compared to A7 if | A7| is of the same order as o). In  the present case it is certainly true



that \Z\ <4 w/ra, so that we should expect the retention of these neglected terms 
could make a big change in Z. But again this in itself does not affect the barrier- 
penetration factor too much. On the other hand, if m is small then these extra terms 
should be included in V± and could make a difference in the calculation of the growth 
rate. But it is hard to believe that for, say, 4, this would change / by more than 
say, 20 %. Inasmuch as the values we calculate for /? in §8 below are so large, this 
change would not affect any physical conclusions.

There is another perspective on the problem of whether the potentials V± are 
accurate for small m. The numerical results, in the next section will be obtained for 
an extremely idealized example of the ergoregion instability. If  it should prove 
possible to have an ergoregion in a realistic star (cf. Schutz & Comins 1978), the 
‘effective potentials’ appropriate to that case will surely differ from the V± we use 
by terms comparable in magnitude to the ones we are neglecting here. Again, in 
view of the long growth times we shall find, it seems unnecessary to attempt any 
greater accuracy.
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8. N u m e r i c a l  r e s u l t s  f or  e .r s  i n  u n i f o r m  d e n s i t y  s t a r s

In order to obtain some idea of whether these growth rates will be important in 
stars, it is necessary to use a numerical model of an e.r. We have computed several 
such models in a slow-rotation approximation (Schutz & Comins 1978) and we shall 
calculate eigenfrequencies for two of them, both based on a uniform density star 
of mass M  and radius i?*, with 2 MfR* = 0.849. The first model rotates just rapidly 
enough to have an e.r., while the second has a comparatively deep e.r. The star with 
the incipient e.r. has rotational period 4 (angular velocity 0.133iff-1) and 
angular momentum J  /  M 2 equal to 0.549. The potentials for this star are displayed 
in figure 2. The part of V+ below the axis can be approximated very closely as a 
parabola. For a well this shallow we can use the analytic approximation developed 
in §§6 and 7 for finding the eigenmodes and their corresponding e-folding times. 
These are presented in table 1. We have checked these against full numerical integra­
tions (within the W.K.B.J. approximation, of course), and find that and In r  are 
accurate to within 15 %.

The e.r. instability will have a significant effect on stellar evolution if it had an 
e-folding time on the order of the dynamic time scales of the star. From table 1, we 
see that the minimum time for the e.r. instability is huge. For such a small e.r., the 
instability is clearly negligible.

Next, we consider a more rapidly rotating version of the same star, with a much 
deeper e.r. In this case the star has a rotational period of 41.5 and an angular 
momentum J /  M 2 of 0.625. Its potentials are plotted in figure 3; its e.r. well is an 
order of magnitude deeper than in the previous case. From (25) we see that as the 
e.r. increases in size, lower values of m should become unstable, and that is just what 
we find. The lowest unstable mode has decreased from m = 39 in the first case to 
m = 4 here. Furthermore, the time scales have become shorter, the shortest (In (r f  M )
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= 69.8) corresponding to the lowest m mode (but still far too long to be of interest). 
This does not contradict the previous argument tha t the very lowest m unstable 
modes should have long time scales because the mode = 4 occurs relatively deep 
in the well. Table 2 gives the results ( m, X, r) for this star. I t  is interesting to note that 
although this e.r. is much deeper and wider than the previous one and almost all 
values of m have unstable modes, it is still shallow compared to such factors, in the 
well, as a typical value of o)( = 0.138M-1) and Q (=  0.1

Table 1. E igenfrequencies of the lowest unstable modes of a scalar

FIELD IN THE GEOMETRY OF THE STAR DESCRIBED IN  FIGURE 2

(Modes behave like Y lm(0, (/>) exp (i crt),and we define =  cr/m; th is  is th e  negative of the  
p a tte rn  speed. We calculate only those modes for which =  and approxim ate >  1. The 
columns give th e  mode num ber m, th e  eigenfrequency and the  e-folding tim e r  of th e  e.r. 
instability , all deduced from an analytical calculation based on approxim ating  th e  bo ttom  of 
V+ by a parabola (see te x t, §§6 and 7). (Note th a t  for these d a ta  |27| so th e  eigen-
frequencies m ay no t be located well.) The param eters of th e  fit are : R  = 1.23 P  =  16.9 
M 3; a = 1.68 x 10- 3M -1 ; V_ = - 0 .2 4 0 M -1.)

Table 2. E igenfrequencies of the lowest unstable modes for the star

DESCRIBED IN FIGURE 3

(Columns correspond to  those in tab le  1. The only approx im ation  is W .K .B .J . Again we 
have \Z\ <4 co/m. (Here to =  0 .138M -1 a t th e  bo ttom  of th e  V+ well.)

m - r x ( 1 0 5M) In
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

3.62
7.70

11.6
15.3 
18.9 
22.2
25.5
28.5
31.4
34.4
37.0 
39.7
42.1
44.5 
47.0

752
711
695
688
687
689
692
697
703
709
716
724
732
741
749

m - Z x ( W M )  In
4
5
6
7
8 
9

10

1.87
5.03
7.16
8.68
9.85

10.8
11.5

69.8
73.4
80.7
88.8
97.2

106.0
115.0
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9. D i s c u s s i o n

We have shown that the time scales for scalar radiation caused by the e.r. insta­
bility are much longer than the dynamic time scales of the stars, but are extremely 
sensitive to the size of the e.r. In particular, for constant density stars which are 
extremely relativistic, the e.r. time scales can be over 106 times longer than the age 
of the universe. Our calculations of the structure of e.rs (Schutz & Comins 1978) 
shows that neutron stars will not have e.rs, and even hyperon stars (should they 
exist) are unlikely to. Even if an e.r. forms briefly in a star (immediately after 
collapse to compact form, or even during its collapse to a black hole), the instability 
here described will be far too weak to have any effect. The interest of these calcula­
tions, then, lies in the method.

As we noted in the introduction, there are great similarities between the e.r. 
instability and other general-relativistic instabilities. I t  is likely that many features 
of the e.r. instability will be present in the other ones. In outline, we may guess what 
these features will be. First, the wave equations will have certain rotationally split 
effective potentials at least for local disturbances in the equatorial plane (for the 
gravitational-radiation instability found by Friedman & Schutz (1977) these will 
presumably govern sound waves in the fluid). Second, instabilities will be present if 
the potential for the counterrotating waves changes sign somewhere inside the 
system. Third, in such a case the depth of the potential will be the pattern speed of 
the short-wavelength unstable wave. Our assumption of spherical symmetry in the 
t = constant slices of the background spacetime certainly has no qualitative effect 
on these calculations, since in the end only the effective potentials for equatorial 
photon motion were involved, and these exist independently of spherical symmetry. 
Where other rotational-dragging instabilities will differ from this one is in their 
coupling to radiation. The e.r. instability is an instability of the radiative field 
itself. The instability of sound waves inside a rotating star, on the other hand, is not 
present unless these waves are coupled to a radiation field. Calculations of e-folding 
times, then, will necessarily vary from one case to another. I t  is probably safe to 
assume, however, that in all cases the instability will set in for short wavelengths 
(large m) and become weaker as m -» 00, probably exponentially.

We are indebted to J. Friedman for pointing out an error in an earlier version of 
the manuscript .

After this paper was prepared, we received a preprint from Sato & Maeda (1977) 
which studies the ergoregion instability for a second-quantized massive scalar 
field, with similar qualitative conclusions, but with fewer asymptotic results for 
large m.
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