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I summarize results from a numerical study of spherically symmetric collapse of a massless scalar
Field. I consider families of solutions, 8[p], with the property that a critical parameter value, p,
separates solutions containing black holes from those which do not. I present evidence in support
of conjectures that (1) the strong-field evolution in the p ~ p* limit is universal and generates
structure on arbitrarily small spatiotemporal scales and (2) the masses of black holes which form
satisfy a power law MsH Ix ]p —p*~~, where p 0.37 is a universal exponent.

ds = —n (r, t)dt + a (r, t)dr + r dA,

where the radial coordinate r, which directly measures
proper surface area, is a geometric quantity. A geometric
time variable is provided by the proper time of a central
observer,

Introducing the auxiliary scalar field variables 4 = P'
and II = aP/n, where an overdot denotes 0/Bt and a
prime denotes 8/Br, a sufficient set of equations for the
model is

i=(—rr)',
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—2~r (11'+C') = O.
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(5)

The above system is invariant under the trivial rescal-
ing r —+ kr, t —+ kt, where k is an arbitrary positive
constant —such transformations amount to a choice of
units, and refiect the absence of a mass/length scale in
the model. I will discuss the dynamics of the scalar Geld
in terms of variables, X and Y, which are form-invariant
under these transformations:

4'(r, t)—:+2~ —4 = Q2~-r rBQ
(6)a a Br

Y (r, t)—:v 2' —II = g2m-r r0$
(7)a nBt

PACS numbers: 04.20.Jb
The model problem [1—5] of a single, massless scalar

field, P, minimally coupled to the gravitational field, g»,
provides one of the simplest arenas in which to investi-
gate the nature and consequences of nonlinearity in gen-
eral relativity [6]. With large-scale computation and ad-
vanced numerical techniques, it is now possible to make
detailed surveys of the phenomenology of the model.
Here I summarize such a survey which reveals several in-
triguing nonlinear phenomena arising in the regime where
black holes form, or "almost form. "

The general time-dependent, spherically symmetric
metric can be written

In terms of these new variables, the total (conserved)
mass, M, of the spacetime is

dm
dr = X+Ydr,

where the mass aspect function m is related to the metric
function a in (1) by a = (1 —2m/r)

I solve Eqs. (3)—(5) using finite-difference techniques
and an adaptive mesh-refinement algorithm [4, 7], where
the basic scale of discretization, 6, is allowed to vary
locally (in both space and time) in response to the de-
velopment of solution features. This adaptivity has been
instrumental in the discovery and study of the phenom-
ena described here which can unfold on arbitrarily small
spatiotemporal scales. The large dynamic range required
to resolve the phenomena and the extreme sensitivity of
the solutions to initial conditions complicate the task of
ensuring that the numerics faithfully represent the under-
lying physics. I have carefully examined this issue and
will discuss it in detail elsewhere; here I assert that there
is very strong evidence that the observed phenomena are
not numerical artifacts.

Let 8 denote a solution of (3)—(5) . I have fo-
cussed study on one-parameter families of solutions, 8Ip],
which are generated by evolving initially in-going pack-
ets (shells) of scalar field. Each family has the property
that the parameter, p, characterizes the strength of the
ensuing gravitational self-interaction of the scalar field.
For each family, there is a parameter value, p~«k, such
that in the limit p ~ p, k, the spacetime is flat and
the evolution of the scalar field is described by a solu-
tion of the (linear) wave equation where the scalar wave
packet implodes through r = 0 and then escapes to in-
finity. At the other extreme is a parameter value, p, i,~„s,
such that as p ~ p,q, „z,the end state of the evolution
is a black hole formed by the collapse of the packet, with
an arbitrarily small fraction of the scalar field escaping
to infinity. Generically, between these two extremes is a
"critical" parameter value, p*, where black hole forma-
tion first occurs. Assuming that pw«i, ( p" ( p,q,~„s,I
will refer to solutions 8Ip ( p*] and 8$ & p*] as subcrit-
ical and supercritical, respectively. In both regimes, and
for all the families I have considered, I have found that

1992 The American Physical Society



VOLUME 70, NUMBER 1 PH YSICAL REVIEW LETTERS 4 JANUARY 1993

the quantity ln [p —p [
is a natural choice for discussing

the phenomenology of the solutions S[p].
From numerical studies of many families 8[p], I have

found two key features of strong-field (2m/r = 1), near-
critical dynamics as p —+ p*, which I formulate here as
two conjectures. First, the precisely critical (p = p*)
dynamical behavior is unieersat. In terms of the scalar
field variables Z = [Ã, Y], there is a unique sequence, Z*,
which is naturally expressed as a function of logarithmic
independent variables, p and r:

(b)

p:—ln(kr) = lnr+ r,
r = ln[k(Tp Tp)] = In(Tp To) + K,

(9)
(10)

where the family-dependent constant r = ink is cho-
sen to normalize the overall scale (units) of the solution,
and the constant T& will be defined shortly. Second, the
critical sequence, Z*(p, r) satisfies a remarkable scaling
relation:

FIG. 1. Typical initial profiles of the scalar field P (solid
lines) and the radial mass-energy density dm/dr (dotted lines)
for the four families defined in Table I.

Z*(p —A, r —6) = Z*(p, r),
where 4 is a universal constant with a numerical value of
about 3.4. In order to understand the second conjecture
from a physical viewpoint, it is important to emphasize
that it pertains only to the strong field dyna—mics of crit-
ical evolution, which always occurs in a neighborhood
of r = 0. The scaling relation means that if I freeze a
critical evolution at some time during the strong-field in-
teraction and examine the profiles of X and Y out to
some [imprecisely defined, hence the in (11)] maxi-
mum radius r~~„,then continue the evolution for a cer-
tain amount of geometric time 6Tp and reexamine the
solution on a scale e+ = 30 times smaller than previ-
ously, I will see the same field profiles. If I then wait
an additional time interval bTo/e+ and "zoom in" by
another factor of e+, I will again see the same profiles.
Thus, a precisely critical configuration will be character-
ized by an infinite series of "echoes" in the field profiles
(as well as any other form-invariant quantity such as a,
m/r, or drn/dr), which arise from dynamics unfolding
on increasingly smaller spatiotemporal scales. Because
of the geometric relationship between the scales of suc-
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cessive echoes, the strong-field, critical evolution will con-
clude at some finite central proper time, T&.

The numerical results I now summarize come from a
study of several families of solutions characterized by the
parametrized initial scalar field profiles listed in Table I
Representative initial profiles of P and dm/dr are shown
in Fig. 1. For each family, I found a critical parameter
value (to the limit of machine precision, hp/p —10 is)
using a binary search predicated on whether or a not a
black hole formed during a calculation. Black hole forma-
tion is signaled by 2m/r —+ I for some rBH, from which
the mass of the hole, MsH = 2rBH, immediately follows.

Figure 2 shows two profiles of the scalar field vari-
able A from a single near-critical evolution of family (a)
data. The curve marked with solid circles represents the

TABLE I. Initial data specification for various one-param-
eter families discussed in text. For families (a)—(c), I specified
the initial pulses to be purely in-going. For family (d), the
functions X&(r), Y((r) and X&(r), Y&(r) are late-time fits
to subcritical and supercritical evolutions, respectively, of the
pulse shape shown in Fig. 1(d).

0.0

—0.1

—0.2

Family

(a)
(b)
(c)
(d)

Form of initial data

0(r) = Ar'e p( —[(r —r )/~l')
P(r) = Pp tanh[(r —ro)/b]

4(r+«) = Par '[e»(1/r) —1]
'

X(r) = (1 —il)X((r) + ilX&(r)
Y(r) = (1 —il)Y((r) + il Y&(r)
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FIG. 2. Illustration of the rescaling or echoing property
observed in near-critical evolution of the scalar field. The
curve marked with open squares shows the profile of the scalar
field variable, X, at some proper central time To. The curve
marked with solid circles is the profile at a later time To+ e
but on a scale e & —30 times smaller.
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"echo" of the earlier profile marked by squares. I de-
termined the (radial) rescaling factor A~ quoted in the
figure by minimizing the total relative deviation between
the early profile X(r, To) and the rescaled echo profile
X(e+~r, To+ e+ ). I independently computed the tem-
poral rescaling factor 4 by estimating the critical time,
Tp for the calculation and then using the defining rela-
tion (10). The near equality of A~ —3.44 and 4 = 3.43
provides additional evidence for conjecture (11).

Evidence for the universality of the strong-field evolu-
tion of a critical configuration is shown in Fig. 3 which
displays profiles from near-critical evolutions for the fam-
ilies listed in Table I. Each group of four closely spaced
lines consists of one profile from each family at a partic-
ular instant. Logarithmic time proceeds toward the back
of the plot and the graph shows 3/4 of one cycle of the
evolution. For each family, I chose a single value of K to
minimize the deviations among the profiles at the first
time instant (front of the plot). This choice fixes the def-
initions of p and ~ for the subsequent instants. The close
similarity of the profiles illustrates the uniqueness of the
critical evolution, independent of the initial profile.

The results shown in Figs. 2 and 3 are all generated
from the evolution of subcritical initial data sets. The
critical regime may also be studied using supercritical
evolutions which are characterized by the formation of
black holes. In this case, in addition to the echoing be-

O

FIG. 3. Illustration of the conjectured universality of crit-
ical evolution in the model problem. Each group of four lines
consists of one profile, at a particular instant, w, from near-
critical evolution of each of the families listed in Table I [fam-
ilies (a)—(d), front to back]. For each family, I chose a single
overall scaling constant, k, to maximize agreement among the
first (foreground) group of curves. Agreement of the profiles
at later times (towards the back of the plot) demonstrates
universality of the evolution, regardless of initial pulse shape.
Since these plots show less than one full cycle of evolution,
echoing is not apparent here.

TABLE II. Numerically determined values of the scaling
exponent p in the conjectured relationship MsH cf ]p—p* ~~.

p;„andp „arethe minimum and maximum mass fractions
(p:—MsH/M) of the black holes computed in the simulation
and p is the least-squares estimate of the scaling exponent.

Family

(a)
(a)
(a)
(a)
(b)
(c)
(d)

Parameter

Po
6
q

TO

Po
4o
rl

@min

7.9 x 10
1.3 x 10
3.1 x 10
1.3 x 1Q

2.8 x 10
4.9 x 10
2.2 x 10

@max

8.9 x 10
9.4 x 10
9.8 x 10
9.2 x 10
4.0 x 10
9.9 x 10
1.7 x 10

0.376
0.372
0.372
0.379
0.372
0.366
0.380

havior described above, I have observed another intrigu-
ing phenomenon. Empirically, the black hole mass is re-
markably well described by a power law

MiiH-cf]p p ] (12)

where cf is a family-dependent constant, but where p
is an apparently universal scaling exponent which has a
numerical value p 0.37. As Kaiser pointed out [8], this
is suspiciously close to 1/e = 0.367. . . . However, at this
time I have no way of reliably assessing whether or not
this is merely a numerical coincidence, nor do I know of
any theoretical argument which would suggest that the
critical exponent should have a value of 1/e. Table II lists
values of the exponent p determined from least-squares
fits to data generated from each of the four families. Also
listed are the computed minimum and maximum mass
fractions, p;„andp „,of the black holes in each data
set (p = MzH/M). It is notable that in many cases the
scaling law holds even for p. close to unity, where almost
all of the scalar field ends up in the black hole. Figure 4
plots the three data sets corresponding to the first three
lines of Table II. The resulting near coincidence of the
three sets of data points, as well as the near linearity
of each set, is striking. Finally, I note that the mass-
scaling relation (12) together with relation (11) strongly
suggests that black hole formation generically turns on at
infinitesima/ mass in this model, rather than at a finite
mass, as earlier calculations suggested [2].

The results described here provide a picture of the
strong-field dynamics of a model problem which is in
many ways considerably simpler than might have been
anticipated. For near-critical configurations, it appears
that virtually any "detail" that might appear in the spec-
ification of the initial data is "washed out" by the inter-
action between the scalar and gravitational fields. At
the same time, the appearance of dimensionless quanti-
ties such as 4 and p is very interesting and has yet to be
explained theoretically. It might be suspected that the
simplicity and high degree of symmetry in the model are
largely responsible for the observed behavior. However,
extension of this work to a nonminimally coupled field [5]
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FIG. 4. Illustration of the conjectured mass-scaling rela-
tion (12). Data from three separate one-parameter variations
of the pulse shape shown in Fig. 1(a) are shown. For each
variation, I chose constants n, and P, to normalize the ranges
of the abscissa and place the data point corresponding to the
smallest black hole in each family at the origin. The maxi-
mum ordinate value is I/e.

as well as investigations of the collapse of gravitational
waves in axisymmetry [9] suggest phenomena of this type
may occur generically in the strong-field interaction of
massless fields and gravity.
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