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Abstract
Black holes (BHs) in general relativity (GR) are very simple objects. This
property, that goes under the name of ‘no-hair’, has been refined in the last few
decades and admits several versions. The simplicity of BHs makes them ideal
testbeds of fundamental physics and of GR itself. Here we discuss the no-hair
property of BHs, how it can be measured in the electromagnetic or gravita-
tional window, and what it can possibly tell us about our Universe.

Keywords: black holes, general relativity, observations of black holes,
gravitational waves, tests of general relativity

(Some figures may appear in colour only in the online journal)

1. What is the no-hair hypothesis (and why should we care)?

1.1. The simplicity of black holes (BHs) in general relativity (GR)

We celebrate this year the first direct detection of gravitational waves (GWs) and the first
detection of a BH binary, in its last stages of coalescence [1]. In this context, it is appropriate
to also honor the centenary of the Schwarzschild solution, which describes any regular
asymptotically flat, static and spherically symmetric vacuum spacetime in GR. In standard
Schwarzschild coordinates, the solution reads
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where G is Newton’s constant and c the speed of light. The most distinctive feature of the
solution above is a coordinate singularity at =r GM c2 2, describing a null surface (the event
horizon) which causally separates the inside and outside regions. For physical setups where
(static, spherically symmetric) matter is present, the solution should be truncated at the radius
of the object and merged smoothly with some interior solution. For pure vacuum spacetimes,
it describes a BH. In other words, any static BH in the Universe which is non-spinning and
that lives in approximately empty surroundings is described by the geometry(1.1).

The Schwarzschild solution is fully characterized by a single parameter, the total grav-
itational mass M. In this respect, it is not dissimilar from its Newtonian counterpart: a
spherically symmetric, vacuum, static solution of Newton’s gravity is also described by only a
mass parameter. It turns out to be difficult to construct BH solutions described by more
parameters. For example, let’s try to ‘anchor’ a weak, static massless spin-s field onto the
Schwarzschild solution. For the sake of illustration we focus on minimally coupled scalars,
vector fields described by Maxwell’s theory and gravitational fluctuations within vacuum GR
[2]. At a linearized level (i.e., keeping the background geometry fixed), these fields can be
expanded in scalar, vector or tensor harmonic functions, parametrized by an integer number
= ¼l 0, 1, 2, , which carry information on the angular dependence of the field. These fields

are all described by the equation [2]
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where Ψ denotes the field amplitude, =s 0, 1, 2 for scalars, vectors and tensors, respectively,
and primes stand for radial derivatives. One can now multiply the above equation by the
complex conjugate *Y , integrate from the horizon to infinity, and look for regular solutions of
the above equation. We get, upon performing an integration by parts and dropping a boundary
term (regular solutions evaluate it to zero)
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For any l s the integrand is negative-definite outside the horizon, and the only solution to
the above equation is the trivial one, Y = 0. For vector fields, there is a nontrivial solution
Y = const for l=0, describing a weakly charged BH. For tensors, the only non-trivial
solutions (for which the integrand is not positive-definite) have =l 0, 1 and correspond to a
slight change of mass and addition of small amount of angular momentum [3]. This simple
exercise then leads one to the following conclusions:

(i) It is impossible to ‘anchor’ non-interacting scalars (and it turns out, also fermions) onto a
Schwarzschild BH.

(ii) The Schwarzschild solution allows, in principle, for a generalization that includes (only)
electric charge and rotation.

Note that the conclusions above are drawn in the context of GR; other theories would
lead to different equations of motion that could (and do, sometimes) lead to other types of
solutions. Thus, non-rotating BHs do not exhibit any ‘protuberance’. John Wheeler and others
summarized these results with the expression ‘BHs have no hair’, where ‘hair’ is a measure of
the complexity of the gravitational field of the geometry. We will soon see that, within GR,
BHs can rotate and be electromagnetically charged. Thus in fact BHs have a finite number of
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hairs, although the term ‘no-hair’ is still loosely applied to these solutions as well. In general,
as we show below, if one characterizes the geometry through its multipole moments, BHs
have only a finite and small number of independent quantities that suffice to completely
describe its multipolar structure.

1.2. The uniqueness and no-hair theorem(s)

In fact, a charged and rotating BH solution was discovered many decades after Schwarzs-
child’s work, and is now known as the Kerr–Newman BH, carrying mass, electric charge and
angular momentum [4, 5]. In addition, in a series of uniqueness theorems (see [6–10] for
reviews), it was established,

Theorem 1. An isolated, stationary and regular BH in Einstein–Maxwell theory is
described by the Kerr–Newman family.

In other words, the structure of asymptotically flat, stationary BHs of Einstein–Maxwell
theory is completely determined by its global charges defined at infinity, in particular its
mass, angular momentum and electric charge. Astrophysical BHs are thought to be neutral to
a very good approximation, because of quantum discharge effects, electron–positron pair
production and charge neutralization by astrophysical plasmas [11]6. Because of this, we will
focus almost entirely on electrically neutral geometries. The neutral version of the Kerr–
Newman solution is simply described by the two-parameter Kerr metric [4], which in standard
Boyer–Lindquist coordinates reads
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Note that theorem 1 does not require axi-symmetry, it being a consequence of statio-

narity. Note also that theorem 1 as well as all results discussed in the text, makes further
analiticity assumptions, which we do not discuss here (but see [13, 14]). Due to these
assumptions (which are required to infer axi-symmetry from stationarity), there are also those
who advocate that the no-hair theorems are less general than commonly stated (see [15] and
references therein).

From now on, we will use geometric units with G=c=1, and express the Kerr solution
as above with qS º + D = - +r a r Mr acos , 22 2 2 2 2. This metric describes the gravita-
tional field of a spinning BH of mass M and angular momentum =J aM . The event horizon
is located at = + -+r M M a2 2 , and the BH spin is bounded from above by a M∣ ∣ .

This uniqueness result is also an example of a no-hair theorem, and the horizon plays a
crucial role in exclusion of ‘hair’, as it prevents information traveling at finite speeds (other
then that conveyed by conserved charges) to cross the horizon. This expectation, originally
conjectured by Wheeler, was put on firmer ground in a series of works. For example, Hartle
[16] and Teitelboim [17–19] showed that it is impossible to measure baryon or lepton
numbers of BHs. In flat space there is a long-range r1 5 potential between two collections of

6 These mechanisms are suppressed in theories of minicharged dark matter, when the charged particles have a
charge-to-mass ratio much smaller than that of the electron, and for which BHs may be charged under a hidden U(1)
symmetry [12].
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matter arising from the exchange of neutrino pairs between them. But once one of the
neutrinos crosses the horizon, a weak-interaction force of this kind ceases to exist. A Kerr BH
has no exterior neutrino field with classical effects.

In fact, two strong results emerged regarding BHs in the presence of fundamental fields.
The first concerns the existence of stationary BHs surrounded by stationary matter, in the
form of fundamental fields without self-interactions7.

Theorem 2. An isolated, stationary and regular BH in the Einstein–Klein–Gordon or
Einstein–Proca8 theory with a time-independent boson is described by the Kerr family
[21–24].

The fields can be also massless and complex, but the theorem requires them to inherit the
spacetime symmetries, i.e., no time-dependence. Physically, time-dependent fields will scatter
to infinity and/or enter the horizon and therefore break the assumed stationarity. A non-trivial
time-dependence can be excluded for real scalars9.

Theorem 3. An isolated, stationary and regular BH in the Einstein–Klein–Gordon theory
with one real scalar is described by the Kerr family [21–24].

Real scalars with a nontrivial time dependence will give rise to a nontrivial quadrupole
moment, therefore emitting GWs, again breaking the stationarity assumption. Notice that
complex scalars are able to avoid this result, by producing a time-independent stress–energy
tensor. At the same time, they are also able to avoid being absorbed at the horizon through a
superradiant mechanism. We will see in section 3.2 that in fact complex fields are able to
produce hairy BHs.

We should mention that there are also some ‘no-hair’ results for dynamical BH systems,
and that these may even include evolving BH binaries. We refer the reader to [26] for a
discussion of the general situation, but we will not discuss these examples any further here.

In summary, the ‘no-hair’ theorem(s) are a set of proofs that—under some conditions—
Kerr–Newman is the only possible asymptotically flat and regular solution of the field
equations in the presence of fundamental fields (see [8, 27–30] for further details).

1.3. The ‘no-hair’ or ‘Kerr’ hypothesis

However, there is no proof that Kerr–Newman is the most generic solution of the field
equations (see below in section 3 for the reasons why such proof cannot exist). The ‘no-hair’
or ‘Kerr’ hypothesis states simply that the Kerr geometry—which depends on only two
parameters—describes any BH in the Universe (with the exception of those involved in
highly-dynamical phenomena). This is no modest proposal!

One thus is led to two questions:

(a) If one sets up some arbitrary initial conditions how is the final, Kerr state approached?
(b) Is Kerr inevitably the final state?
(c) How can one test for (a) or (b)?

We will try to answer these questions below. The no-hair hypothesis is pivotal to
interpret observations of massive astrophysical bodies. The only other compact object that is

7 See section 3 for counter-examples involving other forms of matter like anisotropic fluids.
8 The Einstein Proca theory describes a theory with a massive photon, see e.g., [20].
9 See also [25] for an analysis of the spacetime symmetry inheritance of the scalar fields.
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agreed to populate the Universe are neutron stars. But neutron stars in GR cannot be more
massive than ~ M3 [31], as not even degeneracy pressure can be sustained for stars more
massive than this limit. Thus, within the framework of GR with a standard matter sector, and
of the no-hair hypothesis, any compact object10 with mass larger than ~ M3 is a Kerr BH.
Conversely, any observation of a compact object with mass larger than~ M3 and with metric

Figure 1. Four different physical processes leading to substantial quasinormal ringing.
In all of them, quasinormal ringing is clearly visible. The upper-left panel (adapted
from [32]) is the signal from two equal-mass BHs initially on quasi-circular orbits,
inspiralling towards each other due to the energy loss induced by GW emission,
merging and forming a single final BH. The upper-right panel shows gravitational
waveforms from numerical simulations of two equal-mass BHs, colliding head-on with

=v c 0.94 in the center-of-mass frame: as the center-of-mass energy grows (i.e., as the
speed of the colliding BHs tends to the speed of light) the waveform is more and more
strongly ringdown-dominated [33]. The bottom-left panel shows the gravitational
waveform (or more precisely, the dominant, l=2 multipole of the Zerilli function)
produced by a test particle of mass μ falling from rest into a Schwarzschild BH [34]:
the shape of the initial precursor depends on the details of the infall, but the subsequent
burst of radiation and the final ringdown are universal features. The bottom-right panel
(reproduced from [35]) shows GWs emitted by two massive neutron stars with a
polytropic equation of state, inspiralling and eventually collapsing to form a single BH.
With the exception of the infalling-particle case (where M is the BH mass, μ the
particle’s mass and y2 the Zerilli wavefunction), y22 is the = =l m 2 multipolar
component of the Weyl scalar Y4, M denotes the total mass of the system and r the
extraction radius (see e.g. [32]). Taken from [2].

10 By compact we mean compactnesses  -- -GM c R2 10 102 3 2.
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different from the Kerr geometry would inevitably signal a departure from standard physics
(either in the gravitational or in the matter sector). Therefore tests of strong-field gravity
targeting BH systems aim at verifying the ‘Kerr hypothesis’ in various ways.

2. The dynamics of hair-loss for massless fields

The first studies concerning the dynamics of BH spacetimes were mostly focused on Kerr BH
backgrounds, weakly disturbed by massless, minimally coupled and non-interacting fields
(see section 3 below for the full picture). They included the scattering of Gaussian wave-
packets [36] and the infall of a point-like particle [34]. These attempts showed that the GW
(or scalar or electromagnetic) signal from a perturbed BH can in general be divided in three
parts [2] (see figure 1). The signal starts with a prompt response at early times, which depends
on the initial conditions and corresponds to direct propagation of the wave from source to
observer.

After the prompt response, and as the source crosses the BH light ring (i.e, the unstable
circular null geodesic), it excites the oscillation modes of the BH11. The vibration modes of
BHs are called quasinormal modes (QNMs) and consist on a superposition of exponentially
damped sinusoids

å åY ~ =w f t p f t+ - + -A Ae e e e , 2.1
lmn

lmn
t t

lmn
lmn

f t ti 2 ilmn lmn lmn lmn lmn lmn ( )

with characteristic QNM frequencies w t, 1lmn lmn( ) that depend only on the BH mass and
spin, because the ‘progenitor’ is fully characterized by these two parameters. These
frequencies are tabulated and publicly available [2, 38, 39]. The modes depend on the integers
l m, labeling the angular dependence, where = ¼l 2, 3, and =   m l0, 1, 2 ... . The
overtone index = ¼n 0, 1, [2, 39].

Figure 2. Frequencies and quality factors for the fundamental modes with =l 2, 3, 4
and different values of m. Solid lines refer to =m l ,.., 1 (from top to bottom), the
dotted line to m=0, and dashed lines refer to = - -m l1 ,.., (from top to bottom).
Quality factors for the higher overtones are lower than the ones we display here. Taken
from [2].

11 These modes can, alternatively, be thought of as a slow leakage of waves trapped in the circular null
geodesic [37].
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For a Schwarzschild BH, the quadrupolar fundamental frequencies read
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It is sometimes more convenient to work instead with the quality factor w t=Q 2lmn lmn , a
measure of how many ringdown cycles are contained in the signal. The frequencies and
quality factor of Kerr BHs are shown in figure 2, as function of the dimensionless angular
momentum ºj a M . Highly spinning Kerr BHs are good resonators, the quality factor
becoming very large.

In [2, 38, 39] the frequencies and quality factors of the first three overtones (for
=l 2, 3, 4 and all values of m) were fitted by functions of the form

p = + -Mf f f j2 1 , 2.4lmn
f

1 2 3( ) ( )

= + -Q q q j1 . 2.5lmn
q

1 2 3( ) ( )

Here the constants fi and qi depend on l m n, ,( ) (see tables VIII–X in [39]), and the fits are
accurate to better than 4% for Îj 0, 0.99[ ].

Finally, at very late times, a power-law falloff of the field, not visible in figure 1, ensues
[40, 41]. In the Schwarzschild geometry it takes the form

Y ~ - +t , 2.6l2 3 ( )( )

while for Kerr the behavior is slightly more complex [42, 43]. This decay is clearly visible in
evolutions of Gaussian wavepackets, as shown in figure 3.

Figure 3. Evolution of a Gaussian profile of a massless scalar field with width =w M2
centered at =r M120 around a Schwarzschild (left panel) and a Kerr BH with

=a M 0.99 (right panel). We depict the = =l m 0 (solid black line) and = =l m 1
(red dashed line) multipoles. The multipolar components of the field were extracted at

=r 10ex . The waveform displays an early transient followed by an exponentially
decaying sinusoid (QNM ringdown) and a power-law tail at late times. The late-time
power-law tail has the form t p for the monopole, with = -p 3.08 for =a M 0 and
= -p 3.07 for =a M 0.99 in good agreement with the prediction = -p 3 obtained

from the low-frequency expansion of the wave equation (2.6). Reprinted with
permission from [20]. Copyright 2013 by the American Physical Society.
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3. The death of the no-hair hypothesis

Although very attractive, the no-hair hypothesis is dangerously close to either being (i)
useless, if it requires vacuum or truly stationary spacetimes, in which case there is probably
no BH in our Universe satisfying these assumptions or (ii) contradicted by every-day
observations of BHs surrounded by quasi-stationary matter, such as accretion disks or
orbiting stars, since these systems are not described by the Kerr solution.

In other words, observations of BHs are bound to happen in ‘dirty’ environments, not in
vacuum. For massive BHs, it can be argued—and make the statement precise—that accretion
disks or orbiting stars can be disentangled from the BH background, by treating them as a
small fluctuation. In this sense, tests of the no-hair hypothesis would still be possible, if the
full spacetime deviates only ‘slightly’ from that of a Kerr BH, and the ‘slightness’ is con-
trolled by the amount of matter that we see around the BH.

We will now argue, and show, that even at a fundamental level the ‘no-hair’ hypothesis
has been falsified several times in the past: there exist stationary solutions of the field
equations which represent BH spacetimes that are not Kerr and that cannot be mapped to Kerr
with the help of some small, observationally controlled parameter.

3.1. Anisotropic fluid hair

One intuitively expects that stationary—or at least very long-lived—hairy BHs are possible if
one encloses a small spherical BH at the center of a large spherical ‘wall’, with pressure just
enough to keep the wall static. In other words, we do not expect anything drastic to occur if a,
say, 1 Kg or -10 mm24 BH is placed inside a big room.

This expectation stands up to scrutiny. Analytical solutions describing an infinitely-thin,
spherically symmetric shell surrounding a static BH were constructed (and shown to be stable
in some regions of parameter space [44, 45]). They are described by the geometry
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and where R stands for the radius of the shell, which is described by an
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with = - k M R1 2 1 2( ) . A finite-thickness shell version was studied recently [46, 47].
The previous solution is somewhat artificial, in that the shell of matter is infinitely thin,

and supported outside the horizon. However, even reasonable ‘short-hair’ (‘short’ because it
can be localized arbitrarily close to the horizon) solutions are possible, and can be found in
closed analytical form. An example of a BH solution surrounded by an anisotropic fluid is
described by [48]
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where ρ and P are the density and (angular) pressure, respectively, of the anisotropic fluid,
and Qm is a constant, describing the ‘matter-hair’. The stress–energy tensor of the fluid is
given by

r s r= + -mn m n m nT U U P u u , 3.3ab ( )

where Uμ is the fluid four-velocity, uμ is a unit radial vector such that =m
mu U 0 and

s = + -mn mn m n m ng U U u u . The solution above corresponds to an anisotropic stress–tensor,
specified by (3.2) in [48], and it reduces to the Reissner–Nordstrom BH when k=1.

It seems unlikely that these hairy solutions form in practice, in any kind of realistic
environment. However, hairy solutions that have been observed in numerical simulations are
compact torii around the final BH formed as the endstate of the coalescence and merger of
two neutron stars [49]. These torii can have masses as large as 10% of the total mass, and
seem to be stable on dynamical timescales.

3.2. Hairy BHs in the standard model and extensions thereof

The above solutions refer to fluids, which are themselves effective descriptions of fermions,
and have not—with the exception of torii—been observed to form in realistic scenarios. We
will now discuss a more natural framework for hairy BHs, in the context of fundamental
fields. We will not try to make a systematic classification of solutions in this setup, and
instead refer the reader to some of the outstanding reviews out there [8, 27–30, 50]. We would
like to stress however, that all solutions need massive or self-interacting fields, in line with the
fluid counterpart discussed previously.

Conceptually, the discovery of BHs with ‘color’ (static BH solutions in Einstein–Yang–
Mills (EYM) theory [51, 52], that require for their complete specification an additional
parameter—besides the mass—not associated with any conserved charge), was the first
example showing that the no-hair hypothesis needs revision. The theory is EYM with SU(2)
gauge group, described by the action

ò p= - - mn
mnS x g R G F F gd 16 , 3.4a a4 2( ) ( )

where mnFa is the Yang–Mills field strength and g1 2 the coupling constant. To see how new
solutions are possible, let’s go back to the perturbative framework of section 1.1 and ‘freeze’
gravity by sending g1 02 . Then, gravity effectively decouples from the YM field, and any
vacuum solution solves the Einstein equations. Let us take again a Schwarzschild
background. The YM field can be expressed in terms of a field yY = w-t r r, e ti( ) ( ) . The
radial wavefunction y r( ) satisfies the equation [53, 54]

⎛
⎝⎜

⎞
⎠⎟y w

y
y¢ ¢ + +

-
=f f f

r

1
0, 3.52

2

2
( ) ( )

with = -f M r1 2 . Note that trivial static solutions to this equation are y = 0, 1.
Equation (3.5) is stable on the y = 1 branch: its linearized (around y = 1) version is identical
to that of l=1 electromagnetic modes, and a fundamental frequency
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w = -M i0.248 263 0.092 4877 satisfies the necessary boundary conditions [54]. On the
other hand, linearization around Y = 0 yields unstable solutions, as is easy to prove. We find
the unstable mode w =M i0.123 2877. This indicates that there is a nontrivial static (w = 0)
solution of equation (3.5). Such solution can be found imposing the appropriate asymptotic
behavior at the horizon and demanding that y ¥ = 1( ) .

The violation of the no-hair hypothesis was confirmed with the discovery of static BH
solutions in theories like Einstein–Skyrme [55–57], and Einstein-non abelian-Proca [58, 59].

As Bekenstein pointed out, these hairy solutions are possible in a way that parallels the
existence of charged BHs: the gauge invariance of electrodynamics causes the Coulomb
potential to propagate instantaneously in an appropriate gauge. Thus, the argument that
information about hair cannot leave the horizon because it would need to travel faster than
light, does not apply to the Coulomb potential, and charged BHs exist. Likewise, it seems
intuitive that gauge invariance of non-abelian gauge theories should allow one or more of the
gauge field components generated by sources in a BH to ‘escape’ from it [6].

It is possible that a different mechanism might act to allow hairy BHs to exist: instead of
allowing the hair to leave the horizon, one could in principle prevent it from falling in, in the
first place! Superradiance in BH physics allows for precisely this, amplifying low-frequency
bosonic waves, at the expense of the ‘horizon’s rotational energy’ [60]. For massive fields, a
finite-height barrier exists at large distances, confining the field and triggering an instability.
Thus Kerr BHs are unstable against massive bosonic perturbations [60–64]. To be specific,
the theory of a minimally coupled scalar with a mass term mS

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ò k

m
= - - Y Y -

YY
mn

m nS x g
R

gd
1

2 2
. 3.6S4

, ,

2
¯

¯
( )

admits Kerr BHs solutions which are linearly unstable against fluctuations of the scalar Ψ.
The nonlinear development of the instability is not yet known [20, 65, 66], but linearized
evolutions show that sufficiently small dimensionless coupling mM S leads to configurations
that can live longer than a Hubble time around a Kerr BH. An example of the evolution of a
Gaussian wavepacket around a Kerr BH is shown in figure 4. Notice how differently massless
and massive fields behave (compare with figure 3). As such, even minimally coupled massive
scalars produce what for all purposes are hairy solutions.

Figure 4. Evolution of (the dipole component of) a scalar Gaussian wavepacket in a
background Kerr geometry, with =a M0.99 . The scalar has mass parameter
m =M 0.42S . Reprinted with permission from [20]. Copyright 2013 by the American

Physical Society.
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It seems intuitive that for real fields, the instability acts in such a way as to reduce the
angular momentum off the BH, producing a slowly-spinning Kerr BH [67]. This is also a
consequence of theorem 3 in section 1.2. Complex fields on the other hand, may give rise to a
time-independent stress–energy tensor and therefore avoid energy loss, and both theorems 1
and 2. It is thus not surprising that new solutions might branch off Kerr. These solutions were
described in [29, 68] (and previously, at the linear level, in [69]) and are the perfect (because
of their simplicity) example of how no-hair theorems can be circumvented. These ‘hairy’
solutions can be generalized to complex vectors [70] (for which the Kerr geometry is also
linearly unstable [20, 60, 71, 72]) and also to self-interacting scalars [73, 74].

Models of minicharged dark matter predict the existence of new fermions which possess
a fractional electric charge or are charged under a hidden U(1) symmetry [75–80]. Their
corresponding charge is naturally much smaller than the electron charge and their coupling to
the Maxwell sector is suppressed. The following classical Lagrangian captures these theories
[77]

⎜ ⎟⎛
⎝

⎞
⎠

p
p p p= - - - + + +mn

mn
mn

mn m
m

m
m

m
mg

R
F F B B ej A e j B ej A

16

1

4

1

4
4 4 4 , 3.7h h hem ( )

where ¶ - ¶mn m n n mF A A≔ and ¶ - ¶mn m n n mB B B≔ are the field strengths of the ordinary
photon and of the dark photon, respectively, mjem and mjh are the electromagnetic and the
hidden number currents, e is the electron charge, and eh is the gauge coupling of the hidden
sector. The model(3.7) describes a theory in which a charged fermion is coupled to ordinary
photons with coupling  e2 2 and to dark photons with coupling e eh h

2 2 2≔ . The parameters ò
and h are free. In this theory, BHs are described by the Kerr–Newman family of geometries,
but now the classical and quantum discharge mechanisms can be suppressed. Thus, BHs can
acquire electric ‘hair’ [12].

Finally, another possible mechanism for hair growth, consists on dropping the statio-
narity assumption, and use time-dependent boundary conditions. Under certain conditions,
this can lead to non-trivial BH geometries [26, 81, 82].

3.3. Hairy BHs in other theories or frameworks

In addition to simple extensions of GR, there are a number of proposed modifications of GR
that actually change the gravity sector. The ‘zoo’ is too big to describe here, we refer the
reader to recent reviews on the topic [28, 83]. Some modifications are string-theory motivated
and are also expected to arise in a completion of GR, and in this sense it is not too surprising
to find theories which include higher-order-in-curvature terms, like Chern–Simons gravity
[84] or Einstein-dilaton Gauss–Bonnet (EDGB) gravity [85, 86]. These theories give rise to
hairy BH solutions [85–89]. We should also point out that even scalar–tensor theories can
give rise to BHs surrounded by scalar fields, although the scalar fields needs nontrivial matter
content to be anchored on [90, 91].

Other modifications of GR are motivated by a search for massive gravitons, a quest
related to solutions of the cosmological constant problem, but also to nonlinear completions
of GR. BHs in some of these theories also circumvent uniqueness and no-hair results and may
be surrounded by massive-graviton hair [30, 92, 93]. Hairy BH solutions also appear in
Lorentz-violating gravity theories. BH solutions naturally have hair in these theories, because
the preferred foliation can be described in terms of a scalar field (see e.g. [94] and references
therein).
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Recent studies of quantum effects in BH geometries argue that BHs should be sur-
rounded by ‘soft’ hair at quantum level [95], while some advocate that hair is a rule rather
than the exception [96].

To conclude, BHs acquire hair in a variety of setups.

3.4. Horizonless compact objects

The no-hair hypothesis in astrophysical settings is tangled with the assumption that the
compact object is too massive and compact to be anything else than a BH. Theories as simple
as gravitating massive scalars or vectors give rise to objects—boson stars and oscillatons—
which could mimic BHs: they can be very massive, they are dark because the interaction
cross-section with normal matter is small, and they can be very compact [97–102]. It turns out
that even the optical appearance of boson stars can be similar to that of BHs [103]. Other
proposals for compact massive objects include gravastars [104], superspinars [105], worm-
holes [106] and even mixed wormhole-star systems [107]. Superspinars invoke the existence
of unknown quantum effects that allow the existence of Kerr geometries without classical
horizons.

Very compact objects with a hard and thermally emitting surface, such as gravastars, can
be strongly constrained by observations [108, 109]. However, these constraints assume that
the radiation channel is all in some standard model particles and is unlikely to strongly
constrain boson stars, for example.

4. ‘No-hair’ rises again

Despite the several conceptual deaths of the no-hair hypothesis, there are good reasons to
believe that astrophysical BHs are—to a good extent—described by the Kerr geometry:

• When a BH is surrounded by an accretion disk, the density of the disk is so small that the
deviations from Kerr spacetime are tiny and, in many respects, can be neglected.
Typically the disk can be understood as moving in a Kerr background geometry and used
to infer properties of that background (as we explain in section 5.4.3). More massive
matter configurations may form (for instance, the dense disk discussed in [49]), but it is
difficult to imagine that they persist for a significant fraction of the BH life.

• There is no indication that realistic collapse scenarios lead to the presence of substantial
amounts of any of the hair discussed previously. Evolutions of the superradiant
instability, for example (see section 3.2) indicate that minimally coupled scalar clouds
make up at most ∼30% of the system ADM mass, and that it is spread over a wide region
[67] (therefore with negligible backreaction). Likewise, with the exception of boson stars
and oscillatons [102, 110], none of the other ultracompact horizonless objects seem to
arise as endpoints of gravitational collapse. Some of these objects (like wormholes, etc)
are ‘cut and paste’ or very contrived constructions, casting doubts on their ability to make
actual predictions or doubts that their dynamics can ever resemble closely that of the
objects they are supposed to mimick [111].
Note also that astrophysical BH-candidates come in all scales, from stellar mass to
gigantic, supermassive objects. Boson stars and oscillatons, on the other hand, have a
maximum mass (and compactness) dictated by the mass of some fundamental boson. It is
thus hard to devise natural mechanisms to explain all observations.

• Even though hairy BH solutions or horizonless compact objects exist as equilibrium
solutions of the field equations, some (many?) are dynamically unstable in a large portion
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of the parameter space: BHs in EYM theory are unstable [112]; BHs surrounded by
minimally coupled massive scalars are suspected to be unstable in parts of the parameter
space against an ergoregion instability [60, 113]; horizonless, spinning ultracompact
objects12 are unstable also against ergoregion instabilities [114–116]. In fact, some
studies also suggest that any ultracompact object (spinning or not) is unstable
[117, 118]13.

• It is possible that a carefully concocted horizonless object is stable on small timescales.
However, for compactnesses extremely close to that of a BH (for example by modifying
the geometry on Planck scales), the geometry is for many purposes still that of a BH in
GR. In fact, such objects might be very hard to distinguish, observationally, from BHs
[11, 106, 121].

• In a large class of modified or extended theories of gravity, such as scalar–tensor or f (R)
theories, the Kerr geometry is still an equilibrium solution [122], albeit not necessarily
unique. Insofar as tests of the background geometry are concerned, they are
indistinguishable from GR BHs, but their fluctuations do also probe the underlying
theory [123], making GW-based tests of the no-hair hypothesis relevant (see below for an
expanded discussion on this point).

• Modified theories of gravity are typically parametrized by ‘small’ coupling parameters,
which induce parametrically small changes in the corresponding BH solutions. In
addition, and perhaps even more relevant, ultracompact objects or Kerr BHs surrounded
by small amounts of matter may be observationally indistinguishable from Kerr BHs:
their ringdown waveform depends mostly on the properties of the unstable null circular
geodesic, which is typically not significantly affected by ‘dirtiness’ nor even by the
presence or absence of an horizon [11, 121].

All the arguments above indicate that spinning BHs in our Universe are likely to be
described well by the Kerr geometry. The no-hair hypothesis is—and should be—taken
seriously In any case, observations hinting otherwise would provide clear signs of new
physics or fields, and therefore measurements of ‘hair’ are pursued with vigour.

5. Tests of the ‘no-hair’ hypothesis

In order to test whether a compact object is described by the Kerr geometry, one needs to
make observations. These can be, for instance, observations of stars orbiting around the
compact dark companion, or observations of GWs from its oscillations. The former is an
example of a non-dynamical test, which probes whether the stationary spacetime metric of the
compact object is described by the Kerr solution. The latter, instead, is an example of a
dynamical test, since it probes the compact object behavior in a dynamical process.

5.1. Multipole moments

One of the most natural ways to test the spacetime metric of a compact object is to study—
through astrophysical or GW observations—the motion of stellar objects in its surroundings.
We here discuss the multipole expansions framework, which is probably the most appropriate

12 By which it is meant an horizonless object with a light ring.
13 Curiously, all the stable configurations of a BH surrounded by a thin spherical shell of anisotropic fluid, described
in 3.1, require that > -R M3 , i.e., that the shell is outside the BH circular light ring. In this sense, it conforms to a ‘no
short-hair’ theorem [119, 120], but can also be looked at as an example that ultracompact objects are generically
unstable.
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to describe and perform these (non-dynamical) tests of the ‘no-hair’ hypothesis. Multipole
expansions have been first introduced in Newtonian mechanics, to describe the gravitational
(or electrostatic) potential generated by a distribution of masses (or charges) in terms of a set
of scalar quantities, the multipoles (see e.g., [124] and the first chapter of [125], and refer-
ences therein). They have then been extended to GR [126–129].

Multipole expansions are a powerful tool to extract physical content from a (gravitational
or electrostatic) potential, or from a spacetime metric. Indeed, the multipoles capture all the
properties of the potential or of the metric, and in many cases the observable quantities can be
expressed in terms of a multipolar decomposition. The measurement of the different multipole
moments, through electromagnetic and GW observations, would allow the mapping of a BH
spacetime.

In the following, we shall briefly introduce multipolar expansions in Newtonian gravity
and in GR; further details are discussed in the appendix.

5.1.1. Multipolar expansions in Newtonian gravity and in general relativity. In Newtonian
gravity, the gravitational potential F


t x,( ) in the exterior of a body with mass density r


t x,( )

is the solution—in vacuum—of Poisson’s equation p r F = G42 . This solution can be
written as a series expansion in r1 (where =


r x∣ ∣), called multipolar expansion of the

potential, which, in the case of a stationary, axisymmetric body, is
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where qP cosl ( ) are the usual Legendre polynomials, and
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are the multipole moments of the body. The first moments are well known: =M M0 is the
body’s mass; M1 is its dipole moment, vanishing in the center-of-mass frame; =M Q2 is the
quadrupole moment, M3 is the octupole moment, and so on. Introducing dimensionless
multipole moments = -J M MRl l

l( ), where R is a characteristic length of the body (in the
case of the Earth, R is the equatorial radius)

Figure 5. The gravitational field of the Earth (known as the Potsdam Potato), based on
data from the LAGEOS, GRACE, and GOCE satellites and surface data. Gravitational
field strength is represented by elevation and color. Credit: CHAMP [133], GRACE
[134], Research Center for Geophysics (GFZ) [135], NASA [136], DLR [137].
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The multipole moments of an astronomical body are a measure of its departure from spherical
symmetry. Generally, planets and stars rotate so slowly that their deviation from spherical
symmetry is tiny (other sources of asymmetry are even smaller). For instance, for the Earth

= ´ -J 1.083 102
3, and the >l 2 dimensionless multipoles are at least a thousand times

smaller. These quantities have been determined by studying the motion of satellites orbiting
around the Earth [130–132]. A depiction of the gravitational field of the Earth as
reconstructed with data from these mission is shown in figure 5, where differences in the
gravitational field across the globe are represented by elevation and color.

The generalization of multipolar expansions to GR is not straightforward, due to the
nonlinearity of Einstein’s equations. The relativistic multipole moments of a stationary,
asymptotically flat spacetime have been defined by Geroch and Hansen [126, 127], with a
complex mathematical construction that allows to describe the deviation of the asymptotic
geometry from flatness in terms of two sets of tensorial quantities evaluated at the point at
infinity: the mass multipole moments and the current multipole moments (see the appendix).
In the Newtonian limit, the mass multipole moments reduce to the moments in Newtonian
theory14. It has been shown that the spacetime is uniquely determined by its multipole
moments [138–140]: in other words, they completely characterize the spacetime geometry
outside any stationary body. It has also been shown (in the axisymmetric case) that it is
possible to reconstruct the full spacetime from any ‘well-behaved’ set of relativistic multipole
moments [141, 142].

As in the Newtonian case, when the body (and the spacetime) is axisymmetric, the
relativistic (mass and current) multipoles reduce to a set of scalar quantities M J,l l( )
[127, 129]; if the spacetime is reflection-symmetric (i.e., symmetric with respect to a
reflection on the equatorial plane), the odd mass moments and the even current moments
identically vanish: = =+M S 0l l2 1 2 . As in the Newtonian case, =M M0 is the mass, =M Q2

is the quadrupole moment; moreover, =S J1 is the angular momentum. For the Kerr
spacetime
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Notice that this expression is a manifestation of (‘no-hair’) theorem 1 (section 1.2), as it fixes
all multipole moments as function of two parameters only.

An alternative definition of relativistic multipole moments of stationary, asymptotically
flat spacetimes has been introduced by Thorne [128]. This is an extension of the standard
procedure of extracting the mass and the angular momentum from the far-field limit of the
spacetime metric [143]. In Thorne’s construction, all multipole moments can be read out from
the asymptotic spacetime metric. In the axisymmetric case

14 The current multipole moments do not appear in Newtonian theory, because they do not affect the motion of
masses.
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This definition requires that the coordinate system belongs to a special class, the
‘asymptotically Cartesian and mass centered’ (ACMC) coordinates, which means that it
becomes Minkowski with sufficient rapidity at large radii (see the appendix for details), and
that the origin of the space coordinates lies at the center of mass of the source. As long as the
coordinates are ACMC, the multipole moments M S,l l( ) are coordinate-independent.
Moreover, it has been shown that the definitions of relativistic multipole moments given
by Geroch–Hansen and by Thorne are actually coincident [144]15.

In the case of a weak-field source, the multipole moments of a stationary spacetime can
also be expressed as integrals over the source of the energy and momentum densities [145],
i.e. (in the axisymmetric case) by equation (5.2) for mass multipoles, and a similar expression
for current multipoles [146, 147]. This definition can be extended, using properly defined
‘effective’ (energy and momentum) densities, to the case of strong-field sources, as long as
the source can be covered by a so-called ‘de Donder’ coordinate frame [128]; this is the case,
for instance, of compact stars. Multipole moments of BHs, instead, can only be defined in
terms of their asymptotic geometry.

Given a spacetime metric expressed in a specific coordinate frame, there is a simple
method to compute the Geroch–Hansen multipole moments of the spacetime. This procedure

Figure 6. Typical values of the normalized quadrupole moments for the Earth, the Sun,
a neutron star and two examples of BH. The neutron star [156, 157] has a mass

= M M1.4 , a radius R=12 km, is spinning at 716 Hz (the maximum observed spin
rate [158]) and is described using the equation of state of [159]. The BHs are the final
BH in the GW150914 coalescence [1], having =a M0.67 , and a near-extremal BH
with =a M0.98 .

15 Note that Thorne [128] uses a normalization for multipole moments different than that of Geroch and Hansen
[126, 127]. In equations (5.5) we follow the conventions of Geroch–Hansen, which is also adopted in most of the
recent literature on the subject.
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is based on Ryan’s formula [148], which was introduced as a phenomenological tool to
express observable quantites in terms of multipole moments (and will be discussed in more
detail in section 5.3), but is also a powerful computational tool. One computes the energy of
(geodesic) circular orbits as a function of the orbital frequency nE ( ). A particle moving in
that geodesic would emit GWs at frequency n=f 2 , and the so-called ‘gravitational
spectrum’, i.e. the amount of GW energy emitted per logarithmic interval of frequency, is

n nD = = -E f f E f Ed d d dgw( ) . Ryan has found a general, explicit expression of DE f( )
in terms of the multipole moments of the spacetime (equation (5.19) in section 5.3);
comparing the functionDE f( ) with this expression, one can extract the entire set of (Geroch–
Hansen) multipole moments. This approach can be useful to express the asymptotic
expansion of the metric—which in general in not expressed in an ACMC coordinate frame—
in terms of the gauge-invariant multipole moments, for instance when the metric is the result
of a numerical integration [149–152], or of a perturbative computation [153, 154]. When the
metric is known in ACMC coordinates, instead, the multipoles can be extracted by
comparison with Thorne’s expansion(5.5), as e.g. in [155].

5.1.2. The multipole moments of some astrophysical objects. To conclude this discussion, we
show in figure 6 typical values of the normalized quadrupole moment = -J Q MR2

2( ), as a
function of the compactness M/R, for different astrophysical objects: the Earth and the Sun
[160]; a neutron star; the final BH observed in the first LIGO detection [1], having
=a M0.67 and =R M1.74 ; a near-extremal BH with =a M0.98 (and thus =R M1.20 ).

This figure shows that the normalized quadrupole moment of astrophysical objects comes in a
variety of ranges, and that therefore the BH multipole moments are not accidentally shared by
many other objects.

However, we should also add that (exotic) ultra-compact objects can have multipole
moments arbitrarily close to that of BHs. For example, in the ultra-compact limit, the mass
quadrupole moment of gravastars is [161]
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showing that it can be arbitrarily close to that of a BH with the same mass, i.e., =Q J M2 .
This somewhat contrived example shows that the law(5.4) is not, by itself, evidence for the
existence of a horizon, but the alternatives usually invoke somewhat more exotic physics.

5.2. Dynamical tests with GWs: ringdown

5.2.1. Using two or more modes to test the Kerr hypothesis. Tests of the no-hair hypothesis
based on the motion and observation of stars at large distances probe the background
geometry in the weak-field regime. A multipolar decomposition is meaningful here, because
the contribution of higher multipoles to the motion of stars is suppressed. Nevertheless, such
tests are unable to probe different theories with the same background solution. To probe the
dynamical content of the field equations, dynamical tests are necessary, and GWs are the ideal
tool for this.

As we discussed in section 2, the vibration modes of BHs in GR are completely
determined by the two parameters specifying the Kerr solutions. In any other theory with the
same Kerr background, the functional relation among modes would be different. Thus,
conceptually one can proceed as follows: measure the dominant mode of oscillation, which is
characterized by a ringing frequency ω and a damping time τ. In GR, the dominant mode is
invariably (when the oscillations are the result of a BH binary coalescence, which is likely to
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be the most efficient way to excite the QNMs) that with = =l m 2, n=0 mode, of
frequency w220 and damping time t220. In the Schwarzschild limit these are the numbers
shown in equation (2.3). These numbers allow one to determine the (redshifted) mass and
angular momentum of the BH. Now measure the most important subdominant mode
(typically = = =l m n3, 0) and check that it is located at the GR prediction. One thus has
at hand a null test of GR based on the observation of ringdown modes of BHs.

In practice, there are measurement errors associated with the different sources of noise in
the detector, and each of the stages in the test carries associated uncertainties. These
uncertainties are best described in units of the ‘signal-to-noise’ ratio (SNR) ρ [162, 163]. As a
rule-of-thumb, a total r 8 is required for a detection. In the following we focus on the SNR
for the ringdown part of the signal only. Fortunately, accurate measurements of the mass and
angular momentum of BHs are feasible [39, 164]: for detection of the fundamental
= =l m 2 bar mode, for example, figure 7 shows the estimated error (multiplied by ρ) in

measuring the mass M, angular momentum parameter ºj a M , QNM amplitude Almn, and
phase flmn (see equation (2.1) for definitions of these quantities and [39] for further details).
At large ρ, the uncertainties are well approximated by [39, 165]
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where primes stand for derivatives with respect to the dimensionless angular momentum j,
and can be performed with the help of the fits in equations (2.4) and (2.5) , or taken from the
numerical data [2, 38, 39]. Even for marginal detection events, the accuracy of mass and spin
measurements is at the level of 10% or better.

For large SNRs, one enters the regime where a second mode can be disentangled in the
signal. To understand what criteria needs to be met, consider first disentangling frequencies.
The error associated with the direct measurement of the frequency and damping time of one
mode (‘1’) in the signal is [39, 165]

Figure 7. Errors (multiplied by the signal-to-noise ratio ρ) in measurements of different
parameters for the fundamental = =l m 2 mode as functions of the angular
momentum parameter j. Solid (black) lines give rsj, dashed (red) lines rs MM ,
dotted–dashed (green) lines rs AA , dotted–dotted–dashed (blue) lines rsf, where sk

denotes the estimated rms error for variable k,M denotes the mass of the BH, and A and
f denote the amplitude and phase of the wave. Reprinted with permission from [39].
Copyright 2006 by the American Physical Society.
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These errors refer to mode ‘1’ in a pair. By considering the ‘symmetric’ case f f= = 01 2 ,
the errors on f2 and t2 are simply obtained by exchanging indices ( «1 2).

A natural criterion (á la Rayleigh) to resolve frequencies and damping times is

s s t t s s- > - > t tf f max , , max , . 5.10f f1 2 1 21 2 1 2∣ ∣ ( ) ∣ ∣ ( ) ( )

In interferometry this would mean that two objects are (barely) resolvable if ‘the maximum of
the diffraction pattern of object 1 is located at the minimum of the diffraction pattern of object
2’. We can introduce two ‘critical’ SNRs required to resolve frequencies and damping times
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and recast our resolvability conditions as

r r r r r r r r> = > =t tmin , , max , . 5.12f f
crit crit crit both crit crit( ) ( ) ( )

The first condition implies resolvability of either the frequency or the damping time, the
second implies resolvability of both.

A related question is the magnitude of the SNR in order to detect a multi-mode signal,
and to resolve two signals of different amplitudes. This problem was studied in [165], and
quantified by deriving a critical SNR for amplitude resolvability rGLRT based on the
generalized likelihood ratio test. This criteria is almost (but not quite) equivalent to requiring
that the second, sub-dominant mode alone has enough energy that it could be detected on
its own.

Figure 8.Minimum SNR (in ringdown only) required to resolve two modes, as function
of the binary’s mass ratio q. If r r> GLRT we can tell the presence of a second mode in
the waveform, if r r> crit we can resolve either the frequency or the damping time, and
if r r> both we can resolve both. Mode ‘1’ is assumed to be the fundamental mode
with = =l m 2; mode ‘2’ is either the fundamental mode with = =l m 3 (solid lines)
or the fundamental mode with = =l m 4 (dashed lines). Reprinted with permission
from [165]. Copyright 2007 by the American Physical Society.
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The different SNRs required to resolve the two modes of a final BH which is the end-
product of an unequal-mass merger of two BHs, is shown in figure 8. The figure shows that
tests of the no-hair hypothesis require large, but not-too-large-to-be-impossible SNRs.

The implementation of this method in an actual search pipeline for two planned GW
detectors ET and NGO was described in [166]. The authors consider a theory-independent
parametrization of the QNM frequencies given by

w w w= + D1 , 5.13lm lm lm
GR ( ˆ ) ( )( )

t t t= + D1 , 5.14lm lm lm
GR ( ˆ ) ( )( )

where wlm
GR( ) are the values of the fundamental QNM frequencies and damping times of Kerr

BHs, and w tD D,lm lmˆ ˆ parametrize the relative deviations to these numbers. The BH is

Figure 9. Projections in the M j,( )-plane of the 90% confidence limits on w22, t22 and
w33 (blue, blue dotted and red lines respectively) for injections of signals consistent
with GR for = M M500 (left at 125 Mpc; SNR=2888), and = M M108 (right at
1 Gpc; SNR=115 154). The injected value is denoted in each case by a diamond.
Reprinted with permission from [166]. Copyright 2012 by the American Physical
Society.

Figure 10. Projections in the M j,( )-plane of the 90% confidence limits on w22, t22 and
w33 (blue, blue dotted and red lines, respectively) for non-GR injections of

= M M500 (left at 125 Mpc for the ET telescope; with wD = -0.0122ˆ ,
SNR=2867) and and = M M108 (right at 1 Gpc for NGO telescope; with
wD = -0.00122ˆ , SNR=115 130). The injected value is denoted in each case by a

diamond. Reprinted with permission from [166]. Copyright 2012 by the American
Physical Society.

Class. Quantum Grav. 33 (2016) 174001 V Cardoso and L Gualtieri

20



assumed to be the endpoint of a mass ratio q=2, 10 binary BH merger and its spin is
assumed to be =j 0.6, 0.26.

When the signal is described by GR, estimates of mass and spin from, say, three modes
will be consistent and yield (generically accurate) measurements of these quantities. This is
depicted in figure 9: the three estimates intersect at a common point, which will be the best
estimate for the mass and spin of the final BH (the injected signal corresponds to a BH of
mass M500, 108( ) for NGO and ET respectively, and the best estimate is very close to the
injected value).

By contrast, if the signal is inconsistent with GR the intersections of the confidence
regions will not agree, as in figure 10.

Figure 11. Width of the 90% confidence intervals for wD 22ˆ , wD 33ˆ and tD 22ˆ (blue, red
and blue dotted lines respectively) against luminosity distance for injections of 500
(left, ET) and M108 (right, NGO). Reprinted with permission from [166]. Copyright
2012 by the American Physical Society.

Figure 12. Top panels: posterior density functions for dw22ˆ (left), dw33ˆ (middle), and
dt22ˆ (right), both for a single source at a distance of 20.69 Gpc (z=2.47) with an SNR
of 19.14, and for a catalog of 20 sources. Bottom: evolution of medians and 95%
confidence intervals of PDFs as more and more sources are included. Reprinted with
permission from [167]. Copyright 2014 by the American Physical Society.
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The accuracy with which the deviation constants can be estimated and the mode
parameters resolvable is shown in figure 11. For each BH system considered, the width of the
90% confidence intervals for the extracted values of wD lmˆ and tD lmˆ were plotted against
luminosity distance, for injections with GR waveforms

The previous results all assume comparatively large SNRs. This analysis was recently
extended to multiple detections with larger noise, using a model selection scheme called
TIGER (Test Infrastructure for GEneral Relativity), for the ET telescope [167].

As an example, assume that GR is correct (dw dw dt= = = 022 33 22ˆ ˆ ˆ ). How would GW
observations of ringdown actually constrain the deviation parameters? Results are
summarized in figure 12. The top panels show the probability distribution function (PDF)
both for an example single source at =D 20.69L Gpc (z=2.47), and for a catalog of 20
sources. As expected, the single-source PDFs are quite wide and uninformative. For dw22ˆ and
dw33ˆ , with 20 sources the PDFs become strongly peaked, with very little bias. There is a clear
advantage in using all available detections.

If the BH progenitor is known with some accuracy, further tests are possible, even with a
single ringdown mode: the inspiral phase allows, in principle, the mass and spin of the two
components to be determined. GR then predicts a well-defined final BH with a certain mass
and spin, a prediction which can be tested using the dominant ringdown mode [168]. In fact,
in some cases it might even be possible to infer the properties of the progenitor from
ringdown observations [169, 170].

These results were recently used, in conjunction with population synthesis models of the
formation and evolution of BH binaries, to estimate how many detections would yield tests of
GR. The results are optimistic for space-based detectors or future generations of Earth-based
ones [171].

5.2.2. Constraining alternative theories. Up to now, we studied how two modes can test GR.
We can turn this around and use measurements of two (or more) ringdown modes to
constraint specific modified theories, converting the errors (5.8) and (5.9) on the frequency
and damping time to errors on physical quantities by using a simple propagation of errors
[12]. Specifically, let =M j a M, be the mass and dimensionless angular momentum of the
BH, and Q an extra parameter which presumably enters the description of the geometry. Since
Q measures deviations from GR or from the Kerr geometry, we will always take it to be small.
Then

s s
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Q
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where t=X f f, ,1 2 1( ). It is straightforward to solve the system of three equations above for
sM , sc and s ;Q this yields

 rs t= F f f, , , , 5.16M 1 1 2 1 2 1( ) ( )

 rs t=c F f f, , , , 5.172 1 2 1 2 1( ) ( )

 rs t= F f f, , , , 5.18Q 3 1 2 1 2 1( ) ( )

where Fi are, usually, cumbersome analytical functions. Finally, and because Q is small, we
can view sQ as an upper bound on the quantity Q itself and use it to estimate the constraint
that can be imposed by a ringdown detection with a certain SNR ρ. This strategy was used to

study constraints on the electric charge of BHs, resulting in the constraint 
r

0.1Q

M

100∣ ∣

[12]. A similar procedure can used to constraint the magnitude of the Gauss–Bonnet coupling
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constant, or of any other theories, as long as the QNMs are well understood in these
theories [172].

5.2.3. Environmental effects. The QNMs of BHs are intimately connected to the null circular
geodesic, or light ring [11, 37, 121, 173]. In addition, orbits that pass inside the light ring
must plunge into the BH. Indeed, the innermost stable circular orbit (ISCO) for example, is
always outside the light ring. As such, stars or matter debris composing accretion disks are not
expected to populate the region close to the light ring. In turn, this means that ‘environmental
effects’ (i.e., the impact of matter surrounding the BH) are expected to have a small impact on
the QNMs of BHs and consequently on tests of the Kerr-hypothesis.

An exhaustive list of environmental effects, such as the impact of electric charge,
accretion disks, dark matter, cosmological constant, etc are presented and quantified in
[11, 173]. The results are summarized in table 1. These effects represent the ultimate precision
with which one can test the no-hair hypothesis, in the absence of more detailed knowledge
about the matter surrounding the BH. To summarize, no-hair tests are possible with ringdown
waves from perturbed BHs, with threshold SNRs shown in figure 8. Third-generation
detectors will be able to perform accurate tests of GR, or possibly infer details of the
environment surrounding BHs.

5.2.4. QNMs as a probe of the event horizon. As we remarked, the BH ringdown is a
dynamical probe of the underlying theory, and is tightly connected to the light ring properties.
It is not surprising therefore that ringdown probes the region very close to the event horizon
[174–176]. However, precisely because ringdown is related to the light ring, ultra-compact
objects with light rings may also display similar signals [11, 121].

5.3. Dynamical tests with GWs: inspiral

As shown by Ryan [148], the multipole moments of a central object which is assumed to be
stationary, axisymmetric and reflection-symmetric, can be measured by looking at the motion
of a test body orbiting around the central object. Indeed, observable, gauge-invariant

Table 1. Upper limits on the environmental corrections to the BH QNMs. We define
d w w= -1R I R I R I, , ,

0( ) , where ωR, I is the real (imaginary) part of the ringdown frequency
in the presence of environmental effects, whereas wR I,

0( ) is the same for an isolated BH
with the same total mass. Conservative environmental reference values are

r r= = =-
q B M10 , 10 Gauss, 10 pc3 8

3
DM

DM
3 3( ). We assume a Shakura–Sunyaev

disk model with viscosity parameter α=0.1 and Eddington ratio fEdd=10−4

( fEdd=1) for thick and thin disks, respectively. The spherical and ring-like matter
distributions have mass δ M∼10−3M. The scaling with the parameters is shown in
[11]. Taken from [173].

Correction d %R∣ ∣( ) d %I∣ ∣( )

Spherical near-horizon distribution 0.05 0.03
Ring at ISCO 0.01 0.01
Electric charge 10−5 10−6

Magnetic field 10−8 10−7

Gas accretion 10−11 10−11

DM halos r-10 21
3
DM r-10 21

3
DM

Cosmological effects 10−32 10−32
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quantities can be expressed in terms of the multipole moments, as defined by Geroch and
Hansen. These quantities are the GW spectrum, i.e. (as mentioned in section 5.1.1) the
amount of GW energy emitted per logarithmic interval of frequency; the perihastron pre-
cession and the orbital plane precession (‘epyciclic frequencies’); the number of cycles of the
GW signal emitted per logarithmic interval. For instance, the GW spectrum is
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where f is the frequency of the emitted GWs (twice the orbital frequency ν), μ is the mass of
the test body, and p=v Mf 1 3( ) . Since the frequency is associated with the Killing vector of
the stationary spacetime, all of these quantities are gauge-invariant. Note that the post-
Newtonian expansion(5.19) is only accurate for v 1; near the ISCO, ~ -v 6 1 2( ) (or larger
for rotating BHs) and higher-order terms should be included in the expansion [177].

Ryan’s construction [148], in principle, seems to be an extremely powerful phenomen-
ological tool. GW and electromagnetic observations can be used to measure the multipole
moments of the central object, thus providing a mapping of the spacetime. In particular, the
moments can be extracted from the GW signal emitted by an extreme mass–ratio inspiral
(EMRI), i.e., a stellar-mass BH inspiralling around a supermassive BH—a target source for
space-based detectors such as eLISA [178, 179]. A comparison with the moments of Kerr’s
solution(5.4) would provide a test of the ‘no-hair’ hypothesis.

In practice, the ambitious program of ‘mapping the BH spacetime’ with its multipole
moments turned out to be less practical than expected. Firstly, it has been observed that
multipole expansions are poorly convergent in the strong-field region near the BH horizon,
where a large number of terms is required to describe the spacetime [180]. Although the
detection of an EMRI waveform by an eLISA-like detector could allow to measure the
quadrupole =Q M2 with good accuracy [181, 182], a deviation from Kerr spacetime can
affect the higher-order multipoles as well, which are difficult to measure independently.
Secondly, the beautiful expression ofDE in terms of the multipole moments(5.19) is useless
if we do not also know the geodesic motion and the emitted GW flux, which are required to
compute the gravitational waveform [183]; and both geodesic motion and GW flux are very
difficult to describe for a non-Kerr spacetime with arbitrary multipole moments. We also
remark that the GW flux depends on the dynamical equations of gravity.

Several different approaches have been developed to deal with these concerns. Ryan’s
construction has been extended to specific modified gravity theories, such as scalar–tensor
gravity [184, 185] and, to some extent, to EDGB gravity [186], in order to make the ‘theory
bias’ towards general relativity less severe. Other authors have constructed parametrized
deviations of Kerr spacetimes (‘bumpy’ or ‘quasi-Kerr’ BHs), studying geodesics and EMRI
waveforms In some of these solutions, the deviation only affects the quadrupole moment
[180, 183]; in others, higher-order multipoles are also affected [187–193]. However, in many
of these ‘bumpy’ BH solutions the spacetime metric is not parametrized by multipole
moments. These solutions have also been used to devise non-dynamical tests of the ‘no-hair’
hypotheses based on astrophysical, electromagnetic observations (see section 5.4).
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5.4. Tests with electromagnetic observations

Non-dynamical tests of the ‘no-hair’ hypothesis can also be done with astrophysical obser-
vations of the electromagnetic emission from the surroundings of BH candidates (see e.g.
[194–196] and references therein).

5.4.1. Motion of stars. A promising measurement of the multipole moments of BH
candidates is the (electromagnetic) observation of stars on tight orbits around supermassive
BHs, most specially Sgr A*, the compact object at the center of our Galaxy [197–200].
Although such tests are complicated by several additional factors (related to the fact that such
orbits have typical radii much larger than those involved in GW observations), progress in
instrumentation makes them attractive possibilities in the near-future.

The idea is very simple, and consists on measuring the pericenter and orbital plane
precession of stars orbiting a massive BH, on tight and eccentric enough orbits. The
precession depends on the mass of the central object (the Schwarzschild—S—part of the
geometry), on the spin J and on the quadrupole moment Q of the BH and can therefore be
inverted to estimate each of these quantities, testing the no-hair hypothesis.

Define

p
=

-
A

c

GM

a e

6

1
, 5.20S 2 2( )

( )

⎡
⎣⎢

⎤
⎦⎥

p
=

-
A

j

c

GM

a e

4

1
, 5.21J 3 2

3 2

( )
( )

⎡
⎣⎢

⎤
⎦⎥

p
=

-
A

j

c

GM

a e

3

1
, 5.22Q

2

4 2

2

( )
( )

with M the central, massive object, j its dimensionless spin, e the star’s eccentricity and a its
semi-major axis. In the orbit-averaged approximation, and assuming that the orbiting stars are
much lighter than the central object, stars experience an advance of the orbital periapse given
by (to lowest post-Newtonian order)

dv = - - -A A A i2
1

2
1 3cos , 5.23S J Q

2( ) ( )

per orbit. In addition the orbital plane also precesses due to coupling between the orbital
angular momentum and the central object spin J. The nodal precession is

dW = -A A icos , 5.24J Q ( )

with i the orbital inclination.
It can be seen that the Schwarzschild contribution exceeds the spin and quadrupole terms

for in-plane precession, for most of the parameter space. Fortunately, the orbital plane
precession depends only on the spin and quadrupole contributions. However, to test the no-
hair hypothesis, one must determine five parameters (the BH mass, quadrupole moment and
the three spin components), thus the orbits of two stars are required [197].

In addition, there are a number of effects that complicate the determination of the BH’s
multipole moments, such as [197–199]

(i) The contribution of other orbiting stars to the mass, spin and quadrupole moment of the
central object. This contribution can be estimated once a stellar density distribution is
known or prescribed. Assuming a number density of stars
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one gets for the relative contributions to the mass, spin and quadrupole moment
[198, 199]
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characterizes the angular distribution of stars. The strongest constraint here comes from
the quadrupole corrections, which depend sensitively on the semi-major axis a. For the
corrections to be under control, a M1000 .

(ii) Perturbations to the orbit of the stars being measured. These effects include

Figure 13. The posterior likelihood of measuring the spin and quadrupole moment of
Sgr A* by tracing the orbits of two stars with GRAVITY, assuming an astrometric
precision of m10 as. The dashed curves show the 68% and 95% confidence limits, while
the solid curve shows the expected relation between these two quantities in the Kerr
metric. The assumed (dimensionless) spin and quadrupole moment are j=0.6,

=Q M 0.363 ). The two stars are assumed to have orbital separations equal to 800M
and 1000M and eccentricities of 0.9 and 0.8, respectively. Even at these relatively
small orbital separations, tracing the orbits of stars primarily measures the spin of the
BH, unless a very high level of astrometric precision is achieved. From [199].

Class. Quantum Grav. 33 (2016) 174001 V Cardoso and L Gualtieri

26



(iii) Decoherence of the orbit due to Newtonian interactions with other stars, on a timescale
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where m* is the average mass of a star within the stellar cluster.
(iv) Decoherence is the dominant perturbing effect, but in hydrodynamic interactions with the

accretion flow (drag), stellar winds and tidal effects on the stars being measured introduce
additional sources of error. These are quantified in [199].

In [199] the authors have studied how one can constrain the spin and quadrupole moment
of Sgr A*, by measuring the motion of two stars on eccentric orbits. The results are shown in
figure 13, assuming an astrometric precision of m10 as. It turns out that, even at the small
orbital separations used in their study, tracing the orbits of stars primarily measures the spin of
the BH.

We note, however, that even such large errors on the BH quadrupole moment already
impose some constraints on some hairy BH solutions (see, e.g, [68], where some of the BH
solutions have extremely large quadrupole moments).

5.4.2. Motion of pulsars. It was pointed out some time ago that the observation of a single
pulsar in orbit around a very compact object might still allow for tests of the Kerr hypothesis
[201]. The basic idea rests, of course, on data available through pulsar timing. The strategy
and sources of error are described in detail in [199, 202]. The mass of the central object (and
the inclination of the orbital plane) can be determined from the precession of the periastron or
via Shapiro delay. The Lense–Thirring precession, along with a measurement of the
precession of periastron, the projected semi-major axis and their time derivatives, allow for
the determination of all three spin components. Finally, Roemer delay can be used to estimate
the quadrupole moment [202].

Tests of the Kerr hypothesis using single pulsars requires high-eccentricity pulsar and
sub-year orbital periods, but is a promising tool for the near-future [199, 202].

5.4.3. Accretion disks. Matter accretion onto BHs is one of the most luminous phenomena in
the Universe: the efficiency for converting rest mass into radiation in this process can be as
large as ~10%, much larger than, i.e., thermonuclear processes. The radiation emitted by
accreting matter at few gravitational radii from the horizon, can be a promising probe of the
BH strong-field region.

The matter surrounding a BH forms an accretion disk [203, 204], in which each element
approximately moves in circular, Keplerian orbits. As the matter element loses angular
momentum, it moves inward to a different circular orbit, until it reaches the inner edge of the
disk, corresponding to the ISCO of the BH spacetime. Then, since there is no stable orbit
inside the ISCO, the matter dynamically falls into the BH. As the ISCO represents a transition
point in the physics of the accretion disk, it should be possible to extract its location, rISCO,
from the electromagnetic signal emitted (mostly in the x-ray band) by the accreting matter.

As noticed in [205], rISCO (or, equivalently, the ISCO angular velocity WISCO) is
characterized by the first multipole moments of the central object. In particular, the
contribution of the quadrupole moment to rISCO is comparable to that of the BH spin.
Therefore, a measurement of rISCO or WISCO, either for a stellar-mass BH or for a
supermassive BH, would be a (non-dynamical) test of the ‘no-hair’ hypothesis. In practice,
since the physics of accretion disks is very complex, is not easy to extract rISCO with good
accuracy from the electromagnetic signal from accreting BHs. The two main approaches to
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extract information on the BH spacetime from the x-ray emission of the accretion disk are the
analysis of the iron aK line [206], and the study of the thermal component of the spectrum
using the so-called continuum-fitting method [207]. Presently, they allow to measure (with
some confidence) the value of BH spins [208, 209], but the constraints on the BH spacetime
(see e.g. [195, 196] and references therein) are still weak.

The iron aK line is the brightest component of the x-ray emission from the accretion disk
of supermassive BHs, and one of the brightest components in the case of stellar-mass BHs. It
is broadened and skewed due to (special and general) relativistic effects and Doppler effect,
which determine a characteristic shape. An analysis of this shape (assuming that the
spacetime is described by the Kerr metric) allows to measure the BH spin and the inclination
of the accretion disk, even if the BH mass is unknown [209]. In order to test the BH
spacetime, the theoretical model of the line shape has been extended to parametrized
deviations of the Kerr spacetime (‘quasi-Kerr’ or ‘bumpy’ BHs, see section 5.3); a
comparison of these models with future, more accurate observations of the iron aK line can
allow to set bounds to the parameters characterizing these solutions, and then to test the ‘no-
hair’ hypothesis [210–217]. The main limitation of this approach is that current theoretical
models of the iron line are too simple to prevent systematic effects, which may dominate
possible deviations from Kerr spacetime [195].

The spectrum emitted by accretion disks of stellar-mass BHs has a strong thermal
component, which can be analyzed with the continuum-fitting method, i.e. by comparison
with a theoretical model, in order to measure rISCO. In this model the standard, Novikov–
Thorne description of of the accretion disk [203, 204] is assumed: the disk is geometrically
thin, optically thick, orthogonal to the BH spin, with matter moving in circular geodesics, and
inner edge at rISCO (this description is believed to be accurate for a subset of the actual BH
accretion disks). The background spacetime is assumed to be described by the Kerr metric. If
the mass, distance and disk inclination are known from independent measurements, this
approach allows to determine rISCO and then to measure the BH spin [208]. This model has
been generalized to ‘quasi-Kerr’ or ‘bumpy’ BH spacetimes, in order to set bounds,
comparing the model with observational data, to the deviations from the Kerr metric, and then
to test the ‘no-hair’ hypothesis [210, 215–221]. While the continuum-fitting method can
provide, assuming the Kerr background, a reliable measurement of the BH spin for a
significant fraction of the stellar-mass BHs, it is much less effective in constraining deviations
from the Kerr metric. Indeed, the parameters characterizing the deviation are typically
degenerate with rISCO [195, 196]. This degeneracy is partially removed when the ISCO is
very close to the horizon, i.e. for near-extremal BHs.

5.4.4. BH ‘shadows’. As discussed in section 5.3, when matter is moving very close to a BH
(or any compact object) a multipolar decomposition of the gravitational field is not
particularly useful since all, or a substantial number of, multipoles contribute to the
gravitational potential and to the motion of matter. However, the spacetime around compact
objects possesses unique features—such as ISCOs, light rings (unstable null geodesics), etc
[222]—that might be used as smoking guns of the BH-nature of the object and even of GR. In
particular, the null geodesics carry information about the effective size of BHs, since in
essence any particle or light ray penetrating the light ring will never reach asymptotic
observers. Thus, BHs create ‘shadows’ of matter around them [223–225]. The exact shape
and appearance of BHs depends on the source illuminating them, but a crucial ingredient
determining the optical appearance is the rotation rate, which determines how close to the
horizon the co-rotating light ring is, and how far away from the horizon the counter-rotating
light ring is. The rotation rate also determines how tight the accretion disk can bind to the BH,
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and how much the gravitational and Doppler shift emitted from the disk will be. An example
of the optical appearance of BHs is shown in figure 14, for a Kerr BH rotating with

=a M 0.9 and being illuminated by an accretion torus [103].
Observations of BH shadows as a tool to probe the geometry close to the event horizon

became possible with the advent of powerful instruments such as the Event Horizon
Telescope [231]. The main obstacles to performing tests of GR with observations of BH

Figure 14. Image at l = 1.3 mm of an accretion torus surrounding a Kerr BH. The
Kerr BH is spinning with =a M 0.99, and the torus is being observed at an angle
=i 85o. The torus has an inner radius of M4.2 , temperature ´5.3 1010 K and a

polytropic index 5/3. For further details see [103]. The color bar indicates the cgs value
of specific intensity. The directions on the observer’s sky that asymptotically approach
the event horizon when ray tracing backwards in time are marked in black color. The
black area at the center of the image is the BH shadow. Its exterior limit nearly
coincides with the light ring. The right panel shows a zoom on the central region.
From [103].

Figure 15. Left panel: s1 and s2 confidence contours of the probability density of the
mass and distance of SgrA* for existing measurements (S-stars, ‘G09’ [226]; masers,
‘R14’ [227]; star cluster, ‘C15’ [228]), a simulated measurement of the shadow size of
SgrA* for N=10 observations with a seven-station EHT array (‘EHT’), and several
combinations thereof. The simulated EHT measurement improves the other constraints
on the mass and distance significantly. Center and right panels: Simulated s1 and s2
confidence contours of the probability density of the deviation parameters a13 and β,
respectively, corresponding to N=10 and N=100 EHT observations, each
marginalized over the mass and distance using the combination of all data sets (‘all’)
in the N=10 case and of simulated stellar-orbit observations from a 30 m class
telescope [229] in the N=100 case. Reprinted with permission from [230]. Copyright
2016 by the American Physical Society.
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shadows are (a) the large number of parameters that describe the shadow, including the
inclination angle of the object, the mass and angular momentum of the BH, and all the details
of the accretion mechanism (the illuminating source); (b) the lack of a robust parametrization
of deviations from the Kerr geometry, in the strong-field limit.

Recently, a proof-of-principle describing tests of the Kerr hypothesis with observations
of BH shadows was put forward [230]. As a background, the following metric (belonging to
the class of ‘quasi-Kerr’ spacetimes introduced in [193]) was proposed
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where bD = D + M2˜ and a= +A M r11 13
3 3. This geometry is parametrized by the BH

mass M, angular momentum J=Ma and the constants a b,13 . We should point out that this
particular form of the metric is rather ad hoc and does not describe any known theory, but that
in any case the results are to be taken only as proof-of-principle.

The shadow resulting from the metric (5.31) was compared to simulations of
observations by the Event Horizon Telescope of the BH at the center of our Galaxy, SgrA*.
The result is summarized in figure 15. The study uses a reconstructed image of SgrA* based
on a simulated image of a radiatively-inefficient accretion flow. Within the working
hypothesis, the prospects for constraining the unknown parameters b a, 13 are good: with 100
observations, the parameters can be determined to be

a = -
+

-
+0.13 , 5.3213 0.21

0.43
0.34
0.9 ( )

b = -
+

-
+0.03 . 5.330.10

0.05
0.24
0.07 ( )

The uncertainties associated with these parameters are such that they are effectively of order
 1( ), precisely the order at which they enter in the metric16.

Hairy BHs arising naturally from simple theories, such as the minimally coupled scalar
theory(3.6) [29, 68], will also give rise to shadows which can, in principle, be discriminated
from those of Kerr BHs [233].

It should be noted that shadow observations can also, in principle, be used to test the BH-
nature of compact objects. One could expect that objects without a horizon, and presumably
with a surface, will feature a bright surface, allowing immediately to discriminate between
BHs and, say, gravastars. It was pointed out in [103] that the main factor determining the
shadow is the light ring. As such, horizonless compact objects with a light ring can mimick
Kerr BHs very efficintly, provided the illuminating source is not accreted towards the center
of the object.

6. Conclusions

It is by now well-known that the Kerr family is not the most general solution of Einstein’s
field equations in the presence of reasonable forms of matter. However, there are good

16 Note also that, when trying to translate such constraints to specific modified theories, care has to be exercised: in
EDGB theory, for example, the natural parameter that appears in the equations is a¢ M 2 where a¢ is the theory’s
coupling constant, with dimensions of mass squared [28, 232]. Effectively then, one is constraining a¢ M 2 which
yields poor constraints on the coupling constant itself for supermassive BHs.
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reasons to believe that BHs which do not belong to the Kerr family are either dynamically
unstable or do not form out of realistic collapse scenarios.

The no-hair or Kerr hypothesis is therefore a cherished belief, which upcoming experi-
ments can test, either in the GW or electromagnetic band. Some of these measurements will
be more sensitive to the null geodesic around compact objects, than to the presence of the
event horizon itself [121]... but given that even light rings are a unique feature of relativistic
theories of gravity, these are all exciting years ahead.
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Appendix. Multipole moments in Newtonian gravity and in general relativity

In this appendix we describe the multipole expansion framework, discussed in section 5.1,
both in Newtonian gravity and in GR. For a more detailed discussion, we refer the reader to
[124, 125] (Newtonian gravity) and [126–128, 234] (GR).

A1. Multipole moments in Newtonian gravity

The Newtonian gravitational potential in the exterior of a massive body with density r


t x,( ) is
the solution of Poisson’s equation p r F = G42 in vacuum:

ò
r

F = -
¢

- ¢
¢


 t x G

t x

x x
x,

,
d . 6.13( ) ( )

∣ ∣
( )

With a Taylor expansion of - ¢
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x 0 and a spherical harmonic

decomposition, this solution can be written as a series in r1 (where =


r x∣ ∣), which is
called multipolar expansion of the potential:
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where Ylm are the usual spherical harmonics, and

ò r q f= 
I t t x r Y x, , d 6.3lm

l
lm

3( ) ( ) ( ) ( )

are the multipole moments of the potential.
This expansion can also be expressed in terms of symmetric-trace-free (STF) tensors

[124, 128]:
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where - = - - - l l l l2 1 2 1 2 3 2 5 1( )!! ( )( )( ) , =n x ri i (in polar coordinates,
q f q f q=n sin cos , sin sin , cosi ( )), the brackets ⟨ ⟩ denote the symmetric and trace-

free part of a tensor, and ò r= ¢ -
 I t t x x x x, trace parts di i i i 3l l1 1( ) ( )( ) are the multipole

moments. For a given value of l, the components of the STF tensor n ni il1⟨ are
combinations of the spherical harmonics Ylm with = - ¼m l l, , , and I i il1 are combinations
of the multipoles(6.3) Ilm. The first terms of this expansion are

F = - -
GM
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G
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where I=M is the mass, ò r= =I x xd 0i i 3 in the center-of-mass frame,

ò r d= -I x x r x3 dij i i ij 2 3( ) is the quadrupole moment17.
In most cases, one considers the multipole expansion of a stationary, axisymmetric body

with symmetry axis =k 0, 0, 1ˆ ( ). Then, the only non-vanishing moments are Il0 and,
defining
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the expansion(6.2) reduces to equation (5.1):
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where, as discussed in section 5.1, =M M0 , =M 01 in the center-of-mass frame, =M Q2

quadrupole moment. With the further assumption that the body (and then, the gravitational
potential) is reflection-symmetric across the equatorial plane, i.e., symmetric for q p q - ,
then =+M 0l2 1 : the only non-vanishing multipoles are those with even values of l.

In STF notation, axi-symmetry with respect to k̂ implies that µ I k ki i i il l1 1 . Using
normalization properties of STF tensors [125], it can be shown that

= I M k k . 6.8i i
l

i il l1 1 ( )⟨ ⟩ ⟨ ⟩

For instance, the quadrupole STF tensor is d= -I M k k 3ij i j ij
2 ( )=Q diag(−1/3, −1/3,

2/3).

A2. Multipole moments in general relativity: the Geroch–Hansen construction

Geroch and Hansen developed a formalism to define and compute the multipole moments of
stationary, asymptotically flat solutions of Einstein’s equations in vacuum [126, 127]. Their
approach has then been generalized to non-vacuum spacetimes, including the electromagnetic
field [235] (see also [236]) and a scalar field [184]. The latter work can also be seen as a
generalization to modified gravity theories: the multipole structure with a scalar field, derived
in [184], also applies to vacuum spacetimes in Bergmann–Wagoner scalar–tensor theories
[237, 238]. Other scalar–tensor theories with additional terms falling off rapidly enough, such
as EDGB theory [86], enjoy the same multipole structure, as can be seen by comparing the
derivation of the quadrupole moment in EDGB BHs [186] with the computation of multipole
moments in Bergmann–Wagoner theories [184].

17 Some authors use a different normalization for the STF multipoles, i.e. = - Q l I2 1i i i il l1 1( )!! ⟨ ⟩. With this
notation the quadrupole tensor is ò r d= -Q x x r x3 dij i i ij 2 3( ) as, e.g., in [124].
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In the Geroch–Hansen construction, multipole moments are introduced as tensors at
infinity, generated by a set of potentials. The asymptotic behavior is defined without intro-
ducing a specific coordinate frame, through an asymptotic completion of spacetime in which,
after a conformal rescaling of the metric, the spacetime is extended to include the ‘infinite
point’ Λ. To understand this procedure, let us consider for simplicity the Euclidean flat space
in Newtonian theory, with metric d=s x xd d dij i j2 . The multipole expansion of a potential
F

x( ) is


åF = = + + +

+
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Changing coordinates to =x x ri i 2¯ , the metric reads d=s x x rd d dij i j2 4( ¯ ¯ ) ¯ . With a conformal
transformation the metric becomes d= W =s s x xd d d dij i j2 2 2 ¯ ¯ (where W = r2¯ ), regular at the
infinite point Λ ( =r 0¯ ). In the new coordinate frame, the conformally rescaled field is

F = W F = + + + +-x Q Q x Q x x Q x x x
1

2

1

6
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The STF derivatives of F̃ evaluated at the infinite point Λ yield the multipole moments:
F =L Q˜ , F =L Qi

i
,

˜ , F =L Qij
ij

,
˜ , F =L Qijk

ijk
,

˜ , and so on.
In GR the procedure is the same, with some differences:

• The three-space is the space of orbits of the timelike Killing vector (i.e., choosing the time
variable corresponding to the Killing vector, any =t const. submanifold). This is a
curved space, with its own covariant derivative Di (Di¯ after the conformal
transformation).

• The conformal transformation is not given explicitly; it is only required that the
conformally-rescaled metric is smooth at the infinite point Λ, and that the conformal
factor and its first derivative (but not the second) vanish in Λ, i.e. that Ω falls off ‘like

r1 2’. Actually, this requirement is the definition of ‘asymptotic flatness’ of the
spacetime.

• The derivatives on the fields are covariant derivatives Di¯ . Moreover, the requirement that
the moments do not depend on the choice of Ω determines extra terms involving the Ricci
tensor (of the three-space) in the definition of the moments. For instance

= F - F LQ D D 1 2ij
i j ij( ¯ ¯ ) .In this way, the asymptotic expansion of the potentials

can be constructed in a coordinate-independent way; the multipoles are defined as tensors
in Λ.

The next step is to define the potentials corresponding to the multipoles of the four-
dimensional spacetime. Given the Killing vector field xm, the mass potential and the angular
potential are l w lF = + - 1 4M

2 2( ) ( ) and w lF = 2J ( ), where



l x x

w x x w

= -

= =

m
m

a abgd
b d g

a

,
6.11

;
,

( )

(the fact that wa is a gradient is a consequence of Einstein’s field equations). The multipole
expansion of these potentials, defined with the procedure outlined above, yields the mass
multipoles M i il1 and the current multipoles S i il1 . In the weak-field limit, the Geroch–
Hansen mass multipole moments reduce to the Newtonian multipole moments I i il1 defined
in equation (6.4), with a different normalization: = - M l I2 1i i i il l1 1( )!! (STF mass
monopoles in Thorne’s paper [128], instead, have the same normalization as the Newtonian
multipole moments).
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When extra fields are present, they correspond to new potentials and then to new sets of
multipole moments. For instance, a scalar field f brings a potential fF =S [184] which
yields a set of scalar multipoles S i il1 . It should be noted that the Ricci terms ij in the
definition of multipole moments induce a mixing of the moments associated to different
fields.

When the spacetime is symmetric with respect to an axis k̂

= -
= -
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2 1 .
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The mass and current STF moments reduce to two sets of scalar momentsMl, Sl. The Geroch–
Hansen procedure can be cast in a simpler form [129], exploiting the powerful Ernst potential
formalism. Indeed, it can be shown that the complex combination z = F + FiM J is the
(secondary) Ernst potential, and Einstein’s equations can be formulated in terms of the Ernst
potential.

A3. Multipole moments in general relativity: Thorne’s expansion

The multipole moments of a stationary, isolated object can also be defined in terms of the
asymptotic behavior of the spacetime metric. Indeed, as shown by Thorne [128], the
(asymptotic) spacetime metric can be expanded in inverse powers of a suitable radial coor-
dinate; the coefficients of this expansion can be interpreted as the multipole moments:

⎜ ⎟

⎜

⎛
⎝

⎞
⎠

⎛
⎝ 





å

å

= - + + + ¢ <

= - + ¢ <

+ - -

+

+
-





g
M

r r l
M n n l l

g
r l

S n n l l

l

1
2 1 2

harmonics ,

2
1 1

harmonics

harmonics with parity 1 .

6.13
l

l
a a a a

j
l

l
jka ka a a a

l

00
2

1

0
1

1
...

l l

l l l

1 1

1 1 1

!
( )

!
( )

( ( ) ))

( )

⟨ ⟩

⟨ ⟩ ⟨ ⟩

The coordinate systems in which the spacetime metric has the form(6.13) are called ACMC
coordinates: they are asymptotically cartesian and (when the source is weak-field and covered
by the same coordinate system) the origin of the coordinate system lies at the center of mass
of the source. It has been shown [144] that the definitions of multipole moments by Thorne
and by Geroch–Hansen are equivalent. Actually, the moments appearing in [128] have
different normalization; however, for simplicity of notation, in equations (6.13) (and
throughout this review) we have used the normalizations of Geroch–Hansen, which are also
those adopted in most of the recent literature on the subject.

As discussed above, when the spacetime is symmetric with respect to an axis k̂ , the
multipole moments M a al1 , S a al1 reduce to the scalar quantities Ml, Sl (see
equations (6.12)). Using the normalization properties of STF tensors [125, 239], it can be
shown that
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where q = n kcos ˆ · ˆ, and primes denote derivatives with respect to qcos . The metric
expansion can then be written as
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(note that when the spacetime is symmetric with respect to the axis k̂ , the vector harmonics
with parity -1 l( ) in the expansion of g0j—see equation (6.13)—identically vanish). In polar
coordinates =k 0, 0, 1ˆ ( ), q f q f q=n sin cos , sin sin , cosˆ ( ) and  q f=n k x rd sin dijk i k j 2 ,
therefore equations (6.15) yield equations (5.5).

If the source can be covered by de Donder coordinates (in which
hº - - +mn mn mnh g g1 2¯ ( ) satisfies =n

mnh 0,
¯ , and Einstein’s equations can be written as flat-

space wave equations for mnh̄ ), it is possible to define an ‘effective’ stress–energy tensor tmn ,
which is the source of the wave equations. In these coordinates, Thorne’s multipole moments
can be expressed as integrals of tmn over the source [128]:
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When the spacetime is symmetric with respect to an axis k̂ , equations (6.16) give
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In the case of a weak-field source, t r=00 , t r= vj j0 , and equations (6.17) reduce to
[146, 147]
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