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ABSTRACT 

This paper outlines and applies a technique for analyzing physical processes around rotating 
black holes. The technique is based on the orthonormal frames of “locally nonrotating observers.” 
As one application of the technique, it is shown that the extraction of the rotational energy of a 
black hole, although possible in principle (e.g., the “Penrose-Christodoulou” process), is unlikely 
in any astrophysically plausible context. As another application, it is shown that, in order to emit 
“scalar synchrotron radiation,” a particle must be highly relativistic as seen in the locally non- 
rotating frame—and can therefore not move along an astrophysically reasonable orbit. The paper 
includes a number of useful formulae for particle orbits in the Kerr metric, many of which have 
not been published previously. 

I. INTRODUCTION 

Although there is as yet no certain observational identification of a black hole, the 
study of the properties of black holes and their interactions with surrounding matter 
is astrophysically important. Black-hole astrophysics is important for the following 
reasons, (i) At least some stars of mass ^ 2 M0 probably fail to shed sufficient matter, 
when they die, to become white dwarfs or neutron stars, and instead collapse to form 
black holes, (ii) At least one irregularly pulsating X-ray source, Cygnus X-l, has 
been identified with a binary system which has a massive, invisible component; this 
might well be a black hole emitting X-rays as it accretes matter from its companion 
(for observations, see, e.g., Schreier et al. 1971 and Wade and Hjellming 1972). 
(iii) A black hole of lOMO8 MQ might lie at the center of the Galaxy and be responsible 
for radio and infrared phenomena observed there (Lynden-Bell and Rees 1971). 
(iv) Gravitational waves seem to have been detected coming from the direction of the 
galactic center with such intensity (Weber 1971 and references cited therein) that 
black-hole processes are the least unreasonable source. We are faced with a double 
mystery: first, puzzling observations; second, a poor theoretical understanding of 
what processes might occur near a black hole. Both sides of the mystery call for further 
theoretical work. 

Most interactions of a black hole with its surroundings can be treated accurately 
by perturbation techniques, where the dynamics of matter, electromagnetic and 
gravitational waves takes place in the fixed background geometry generated by the 
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hole. (Notable exceptions are the interactions of two or more black holes, or of 
black holes with neutron stars of comparable mass, and the highly nonspherical 
collapse of a star to form a black hole; currently there are no adequate techniques 
for treating such processes.) Most previous perturbation analyses have dealt with 
nonrotating (Schwarzschild) black holes. The static nature of the Schwarzschild 
metric and its spherical symmetry vastly simplify most problems. The orbits of particles 
can be described easily, and’the theory of electromagnetic (Price 1972a) and gravita- 
tional (Zerilli 1971; Price 19726) perturbations is well developed. A number of 
interesting model applications have begun to appear in the literature (Davis et al. 
1971, 1972; Press 1971; Misner 1972a; Misner et al. 1972). 

However, black holes in nature are likely to be highly rotating (Bardeen 1970a), 
and must therefore be described by the Kerr (1963) metric, rather than the Schwarzs- 
child metric. Phenomena in the vicinity of a rotating black hole are considerably 
more complicated than in the nonrotating case. The metric is only stationary, not 
static, and only axisymmetric, not spherically symmetric. A complete description of 
particle orbits is rather complex (e.g., de Felice 1968; Carter 1968a). The equations 
governing electromagnetic and gravitational perturbations have only recently been 
separated into ordinary differential equations (Teukolsky 1972). The scalar wave 
equation has been known to be separable for some time, and has therefore been 
heavily relied on for qualitative perturbation results, even though there are no 
known classical scalar fields in nature. 

A further difficulty is the complexity of coordinate systems for describing processes 
near a Kerr hole. Boyer-Lindquist (1967) coordinates are the natural generalization of 
Schwarzschild curvature coordinates and are the best for many purposes, but sufficiently 
close to the hole—in the “ergosphere”—they are somewhat unphysical. Example: 
Physical observers cannot remain “at rest” (r, 0, <p = constant). 

In this paper we outline a method for treating physical processes in the Kerr 
geometry which has proved extremely fruitful in our research. The method, previously 
used by one of us for a different application (Bardeen 19706), replaces coordinate 
frames by orthonormal tetrads (i.e., nonholonomic frames) which are carried by 
“locally nonrotating observers.” In essence, the nonrotating observers are chosen to 
cancel out, as much as possible, the “frame-dragging” effects of the hole’s rotation. 
They “rotate with the black hole” in such a way that physical processes as analyzed 
in their frame are far more transparent than in any coordinate frame. The method of 
locally nonrotating frames (LNRF), and the nature of the Kerr geometry as seen 
from the LNRF, are described in § III. 

In § II, as a foundation for the LNRF description, we review properties of the Kerr 
metric and formulae for its particle orbits. While many of these results are known to 
those working in the field, many have not appeared in the literature; also we have 
used computer-assisted algebraic techniques, and other methods, to find equivalent 
formulae much simpler than many in the literature. These should prove useful to 
other investigators. 

In § IV we apply the formalism of locally nonrotating frames to the question of 
synchrotron radiation (here, scalar synchrotron radiation) from particles in orbits 
near a black hole. (See Teukolsky 1972 for a proof that electromagnetic and gravita- 
tional synchrotron radiation are qualitatively the same as the scalar case.) This type 
of mechanism has been proposed by Misner (1972a) as a possible explanation for the 
intensity of Weber’s observed radiation: a narrow synchrotron cone beamed in the 
galactic plane. We find that substantial beaming is possible only for particles in 
unstable, highly energetic orbits—orbits much more energetic than mere infall from 
infinity can produce. It is theoretically possible to extract energy from the rotating 
black hole itself (Penrose 1969; Christodoulou 1970). The LNRF methods give a 
clear picture of this energy extraction process, and make the process seem astro- 
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physically implausible. In particular, it seems unlikely that such extraction could 
realistically accelerate matter into a synchrotron-radiating orbit. These results make 
us pessimistic about the applicability of Misner’s interesting synchrotron concept to 
any realistic astrophysical model. 

In future papers, we will make use of methods described here to analyze more 
detailed and realistic processes near a rotating black hole. 

II. BASIC PROPERTIES OF THE KERR METRIC AND ITS ORBITS 

We choose units with G = c = 1. In Boyer-Lindquist coordinates the metric is 

ds2 = -(1 - 2Mrß)dt2 - (4Mar sin2 dß)dtdcp 

+ (X/A)¿/r2 + 2¿/02 4- (r2 -h a2 + 2Ma2r sin2 0/S) sin2 0d<p2, (2.1) 

or, in contravariant form (matrix inverse), 

(d_y _ _a_ /d_y _ 

\as7 “ sa \dt) 

1 / 0\2 
+ + 

AMar 

A — a2 sin2 0 
SA sin2 0 

m+m 

(rl 
(2.2) 

Here M is the mass of the black hole, a is its angular momentum per unit mass 
(0 < a < Af), and the functions A, S, ^4 are defined by 

A = r2 — 2Mr + a2 , 

S = r2 + a2 cos2 0 , 

A = (r2 4- a2)2 - tf2A sin2 0 . (2.3) 

For a = 0, equations (2.1) and (2.2) reduce to the Schwarzschild solution in curvature 
coordinates. 

It will be useful to express the metric (2.1) in the standard form valid for any 
stationary, axisymmetric, asymptotically flat spacetime—vacuum or nonvacuum— 

ds2 = —e2vdt2 4- e2ll/(d(p — œdt)2 4- e2ßidr2 4- e2ß2dß2 . (2.4) 

This standard metric becomes Kerr if 

e2v = 2)A/y4 , e2* = sin2 0^4/S , 

e2ßi = S/A, e2ß2 = S, œ = 2MarjA . (2.5) 

The event horizon (“one-way membrane”) is located at the outer root of the 
equation A = 0, 

r = r+ = M + (M2 — a2)112 (2.6) 

for all 0, (p. Over the range 0 < a < M, r+ varies from 2M to M. The static limit 
(outer boundary of the ergosphere) is at the outer root of (S — 2Mr) = 0, 

r = r0 = M + (M2 — a2 cos2 0)1/2 . (2.7) 

A physical observer—i.e., one who follows a timelike world line—must be dragged in 
the positive y direction if he is inside the static limit. Observers inside the static limit, 
i.e., in the ergosphere, have access to the “negative energy trajectories” which extract 
energy from the black hole (see § III). 

The general orbits of particles (or photons) in the Kerr geometry are described by 
three constants of motion (Carter 1968a). In terms of the covariant Boyer-Lindquist 
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components of the particle’s 4-momentum at some instant, these conserved quantities 
are 

E = —pt = total energy, 

L = pc, = component of angular momentum parallel to symmetry axis , 

Q = Pe2 + cos2 6[a2(p2 - pt
2) + p^lsin2 6]. (2.8) 

Here p is the rest mass of the particle (p = 0 for photons), which is a trivial fourth 
constant of the motion. Note that Ö = 0 is a necessary and sufficient condition for 
motion initially in the equatorial plane to remain in the equatorial plane for all time. 
Any orbit which crosses the equatorial plane has Q > 0. When a = 0, g + p^,2 is 
the square of the total angular momentum. By solving equation (2.8) for the p^s 
and thence the pß,s, one obtains equations governing the orbital trajectory, 

2^=±(Fr
)1/2, (2.9a) 

sS!= ±(Fe)l/2’ (2,9b) 

S ^ = -(aE - L/sin2 9) + aT/A , (2.9c) 
uA 

s ^ = -a(aE sin2 9 - L) + (r2 + a2)T/A . (2.9d) 

Here A is related to the particle’s proper time by A = rjp, and is an affine parameter 
in the case /x -> 0, and 

T= E(r2 + a2) - La, 

Vr = T2 - A[/x2r2 + (L — aE)2 + Q\, 

= Q — cos2 d[a2(p2 — E2) + L2/sin2 6]. (2.10) 

Without loss of generality one is free to take/x = 1 for particles and/x = 0 for photons, 
in equations (2.8), (2.9), (2.10). (For particles this merely renormalizes E, L, and Q 
to a “per unit rest mass” basis.) Vr and Ve are “effective potentials” governing 
particle motions in r and 0. Notice that Vr is a function of r only, Ve is a function of 
6 only, and consequently equations (2.9a) and (2.9b) form a decoupled pair. Also, it 
is not difficult to show (Wilkins 1972) that if E/p < 1 the orbit is bound (does not 
reach r = oo), while all orbits with E/p > 1 are unbound except for a “measure-zero” 
set of unstable orbits. 

The single most important class of orbits are the circular orbits in the equatorial 
plane. For a circular orbit at some radius r, dr/dX must vanish both instantaneously 
and at all subsequent times (orbit at a perpetual turning point). Equation (2.9a) then 
gives the conditions 

Fr(r) = 0, V/(r) = 0. 

These equations can be solved simultaneously for E and L to give 

. r3/2 — 2Mr112 ± aM112 

E/P - r3/4(/.3/2 _ 2>Mr112 ± 2aM112)112 ’ 

TI ±Mll2(r2 + 2aMll2r112 + a2) 
LIP - r3/4(r3/2 _ 3^1/2 ± 2a.M112)112 * 

(2.11) 

(2.12) 

(2.13) 
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In these and all subsequent formulae, the upper sign refers to direct orbits (i.e., 
corotating with L > 0), while the lower sign refers to retrograde orbits (counter- 
rotating with L < 0). For an extreme-rotating black hole, a = M, equations (2.12) 
and (2.13) simplify somewhat, 

Eh* 
r ± Mll2r112 - M 

r3/4(ri/2 _f_ 2M112)112 ’ tor a — M i 

Lh¿ 
± M(r312 ± Mll2r + Mr112 + M312) 

r3/4(rl/2 _j_ 2^i/2)i/2 for a = M. 

(2.14) 

(2.15) 

The coordinate angular velocity of a circular orbit is 

O = dcp/dt = ±Mll2l(r312 ± aM112) . (2.16) 

Circular orbits do not exist for all values of r. The denominator of equations (2.12) 
and (2.13) is real only if 

r3/2 - 3Mr1/2 ± 2aM112 > 0 . (2.17) 

The limiting case of equality gives an orbit with infinite energy per unit rest mass, 
i.e., a photon orbit. This photon orbit is the innermost boundary of the circular orbits 
for particles; it occurs at the root of (2.17), 

r = rvh= 2M{\ + cos [| cos-1 ( +a/M)]} . (2.18) 

For ö = 0, rph = 3M, while for a = M, rvh = M (direct) or 4M (retrograde). 
For r > rph not all circular orbits are bound. An unbound circular orbit is one 

with Elfx > 1. Given an infinitesimal outward perturbation, a particle in such an orbit 
will escape to infinity on an asymptotically hyperbolic trajectory. The unbound 
circular orbits are circular in geometry but hyperbolic in energetics, and they are all 
unstable. Bound circular orbits exist for r > rmb, where rmb is the radius of the 
marginally bound (“parabolic”) circular orbit with Elu =1, 

rmh = 2M + a + 2M1/2(M + a)112 . (2.19) 

Note also that rmb is the minimum perihelion of all parabolic (Elfi = 1) orbits. In 
astrophysical problems, particle infall from infinity is very nearly parabolic, since the 
velocities of matter at infinity satisfy v « c. Any parabolic trajectory which penetrates 
tor < rmb must plunge directly into the black hole. For a = 0, rmb = 4M; for a = M, 
rmb = M (direct) or 5.83M (retrograde). 

Even the bound circular orbits are not all stable. Stability requires that Vr"(r) < 0, 
which yields the three equivalent conditions 

1 - (E/fi)2 > KM/r), 

r2 — 6Mr ± %aMll2r112 — 3a2 > 0, 

or 

r>rms, (2.20) 

where rms is the radius of the marginally stable orbit, 

rms = M{3 + Z2 + [(3 - Zx)(3 + Zx + 2Z2)]
1/2}, 

Zi = 1 + (1 - <z2/M2)1/3[(l + a/M)113 + (1 - a/M)113], 

Z2 = (3a2IM2 + Z,2)1'2 . (2.21) 

For a = 0, rms = 6M; for a = M, rms = M (direct) or 9M (retrograde). Figure 1 
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Fig. 1.—Radii of circular, equatorial orbits around a rotating black hole of mass M, as 
functions of the hole’s specific angular momentum a. Dashed and dotted curves (for direct 
and retrograde orbits) plot the Boyer-Lindquist coordinate radius of the innermost stable (ms), 
innermost bound (mb), and photon (ph) orbits. Solid curves indicate the event horizon (r+) 
and the equatorial boundary of the ergosphere (r0). 

shows the radii r+5 rQ{d = tt/2), 7^, rmb, and rms as functions of a for direct and 
retrograde orbits. 

Fora = = rph = rmb = rms = M, and it appears that the photon, marginally 
bound, and marginally stable orbits are coincident with the horizon. Appearances are 
deceptive! The horizon is a null hypersurface, and no timelike curves can lie in it. 
The confusion is due to the subtle nature of the Boyer-Lindquist coordinates at r = M 
for a = M. In fact the orbits at rpll, rmb, and rms are all outside the horizon and all 
distinct. Figure 2 illustrates the nature of the problem; it shows schematically the 
equatorial plane embedded in a Euclidean 3-space, for a¡M = 0.9, 0.99, 0.999, and 1. 
In the limit a -> M the orbits at rph, rmb, and rms remain separated in proper radial 
distance, but the entire section of the manifold r < rms becomes singularly projected 
into the Boyer-Lindquist coordinate location r = M. In the limit a-> M, the proper 
radial distance between rms and rmb goes to infinity, as does that between rms and r0. 
The proper distance between rmb and rph remains finite and nonzero, as does that 
between rph and r+. (The infinities are not physically important; an infalling particle 
follows a timelike curve, while the infinite distances are in a spacelike direction.) 

For astrophysical applications with a very close to M (see Bardeen 1970a), one 
often needs to know explicitly the limiting behavior of r+, rph, rmb, and rms. Let 
a = M(\ — 8); then 

r+ * M[l + (2S)1/2], rph * M[l + 2(f8)1'2], 

rmb x M[l + 2S1/2], rms * M[l + (4S)1'3]. (2.22) 

Using these formulae, one finds that the proper radial distance between and rph 

becomes %M\n 3, that between A*ph and rmb becomes Min [(1 + 21/2)/31/2], and that 
between rmb and rms becomes Min [27/6(21/2 — 1)S'1/6] in the limit 8->0. 
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Fig. 2—Embedding diagrams of the “plane” 0 = tt/2, t = constant, for rotating black 
holes with near-maximum angular momentum. Here a denotes the hole’s angular momentum 
in units of M. The Boyer-Lindquist radial coordinate r determines only the circumference of the 
“tube.” When a M, the orbits at rms, rmb, and rph all have the same circumference and co- 
ordinate radius, although—as the embedding diagram shows clearly—they are in fact distinct. 

The orbits at r = M are distinct energetically as well as geometrically. By taking 
appropriate limits of equations (2.12) and (2.13), one obtains 

3~112 , L/^^2M/31/2 at r = rms as M, 

E/fi -> 1 , L/p -> 2M at r = rmb as a -> m , 

E’Z/x —> oo , L/fM -> IME/fi at r = rph as a M. (2.23) 

A clearer picture of the relations among these various orbits, and among general 
orbits in the equatorial plane, will emerge in our consideration of locally nonrotating 
frames. 

III. LOCALLY NONROTATING FRAMES 

For any stationary, axisymmetric, asymptotically flat spacetime (for which the 
metric can always be written in the standard form of eq. [2.4]), it is useful to introduce 
a set of local observers who, in some sense, “rotate with the geometry” (Bardeen 
19706). Each observer carries an orthonormal tetrad of 4-vectors, his locally Minkow- 
skian coordinate basis vectors. Rather than describe physical quantities (vectors, 
tensors, etc.) by their coordinate components at each point, one describes them by 
their projections on the orthonormal tetrad, i.e., their physically measured com- 
ponents in the local observer’s frame. The desideratum governing the choice of 
observers is that physical processes described in their frames appear “simple.” Physics 
is not simple in the Boyer-Lindquist coordinate frames because (i) the dragging of 
inertial frames becomes so severe that the t coordinate basis vector (d/dt) goes space- 
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like at the static limit r0, and (ii) the metric is nondiagonal, so raising and lowering 
tensor indices typically introduces algebraic complexity. 

For metrics in the standard form (2.4), there is a uniquely sensible choice of observers 
and tetrads, the locally nonrotating frames (LNRF) for which the observers’ world 
lines are r = constant, 0 = constant, <p = œ( + constant. Here w = -gjg^ is the 
tunction appearing m equation (2.5). The orthonormal tetrad carried by such an 
observer (the set of LNRF basis vectors) at the point t, r, 0, <p is given by 

2 Mar 8 
G4SA)1'2 ’ 

(3.1) 

Here the first expression for each basic vector is valid for any spacetime with the 
standard metric (2.4); the second expression specializes to the Kerr metric. The 
corresponding basis of one-forms (or covariant basis vectors) is 

e(t> = e'dt = (ZAIA)ll2dt, 

ew = euldr = (X/Ayudr, 

em = e^dO = 2,ll2d0, 

i nu 2Mar sin 0 . /AX1'2 . „ e = -coe*dt + e*d<p = -—^i/a dt + sm 0dq>. (3.2) 

From equations (3.1) and (3.2) one reads off directly the Boyer-Lindquist components 
e\i) and eß

{l) of the LNRF basis vectors, since 

ed) = e\i) and e(i> = eu
mdxH. (3.3) 

As matrices ||e‘‘(j)|| and ||e/i
<’>||, these components transform one back and forth 

between the LNRF frame and the Boyer-Lindquist coordinate frame. For example 
the standard transformation law for components of a tensor reads 

J(a)(b) £ (a)^ (b)Jßv ? Jßv = 6(a)(/,j . (3.4) 

The rotation one-forms, which allow one to read off the connection coefficients 
1 (axbxi) by to(aKi)) = r(a)(i,)(i)e

(l>, are given by 

“»«xr) = v,r exp {-iJ.1)e
m - r exp (ifi — v - ^1)e

<«>), 
w(iX9) = ~v,e exp ~ hJ.e exp (<fi - v — , 

“ex®) = exp (tfr — v — i¿1)e
(r> — -^oj e exp {xjj — v — , 

w(rx8) = Ti.e exp {-¡x2)e
<r> - ix2 r exp (-fti)e<w , 

w(rX<p) = -fr exp + p« r exp (4> - V - fxJeV , 

‘•»(ex®) = exp (—^í2)e<■‘p', + pu „ exp (i/t — v — ¡x2)e
a). (3.5) 

Here a comma denotes partial differentiation. (Note that w(oKi)) = -<ama).) 
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One indication of the simplicity of the LNRF is the simplicity of the Kerr geometry’s 
Riemann tensor when expressed in LNRF components. Define the four quantities 

0! = Mr(r2 — 3a2 cos2 0)/E3 , 02 = Ma cos 0(3r2 3a2 cos2 0)/S3 , 

S = 3a sin 6All2(r2 + a2)/A , z = Aa2 sin2 dl(r2 + a2)2 

(The quantities A, H, A are defined by eq. [2.3].) Then one obtains 

Rmvxtxv) — —R(rXdXrXe) — Ql 9 

R(tX<PXrXe) = — Ô2 > 
2 -j- z 

a2 cos2 0)/£3, 

itxrxtxr) — Rvxexvxe) ~ ~ Ql 1 — z 

RtXrXtXd) — R(<PXrX<PX0) “ *^02 » 

RtXrXQXr) = ^(i)(W>(0) ^ ^ôl > 

2 + Z 
R (tXrXQXe) = -Ó. 1 — z 

R itxextxe) = -R <<PXrX®Xr) Qi 
1 + 2z 
1 — z 

R itxexvxr) = -Q<< 
1 + 2z 
1 — z 

(3.6) 

(3.7) 

The other nonzero components follow directly from the symmetries of the Riemann 
tensor. Notice that 02 vanishes in the equatorial plane; also, that the dependence on 
z is always quite weak since 

0 < z < 0.043 

for all r, 0, a of interest (r+ < r < oo, 0 < 0 < tt, 0 < a < M). 
At any instant in time, the local frame of any physical observer differs from the 

LNRF at the observer’s location by a Lorentz transformation. One need only know 
the velocity of an observer relative to the LNRF, and the transformation formulae 
of special relativity, to obtain the Riemann tensor (or, similarly, any other physical 
quantity) in an arbitrary frame. 

To use the LNRF in the analysis of processes in Kerr orbits, we must investigate 
the nature of the Kerr orbits as seen from the LNRF, i.e., their distribution in velocity 
space. In general, the 4-velocity u has the LNRF components 

w(a) = w*Va), (3.8) 

where the uß come from equation (2.9), and the ^(a) from equation (3.2). The 3-velocity 
relative to the LNRF has components 

= 
ußeß

U) 

j = r,d,<p. (3.9) 

In particular, note that 
^) = ^-v(ü-w)5 (3.10) 

where Q. = u^/u1 as before. In the special case of circular, equatorial orbits, is 
the only nonvanishing velocity component, and is given by 

±M1,2(r2 + 2aMll2r112 + a2) 
A1/2(r3/2 ± aM112) 

(3.11a) 
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In the case a = M, equation (3.11a) further reduces to 

, _ ±Mv\rm ± Mll2r + Mr1'2 + M3/2) 
(,.1/2 ± Mll2)(r312 ± M312) 

Corresponding to the quantity y = (1 — [y '(c’>]2) ^12 is given by 

A1/2(r3/2 ± aM112) 
y - T^ir312 - 3Mr1/2 ± 2aMll2)ll2(r3 + a2r + 2Ma2)112 ’ 

or for a = M, 

Vol. 178 

(3.11b) 

(3.12a) 

(r312 ± M3l2)(r112 ± M112) 
y riii(rii2 ± 2M1¡2)1¡2(r3 + M2r + 2M3)112 ‘ (3.12b) 

For all a, increases (but not monotonically!) from zero at r = oo to 1 (the speed 
of light) at the circular photon orbit r = rph. Another interesting point is that 

= the velocity of the most tightly bound circular orbit, goes to \ (not I !) 
in the limit a-^> M. The point once again is that for a = M, the marginally stable 
orbit and the photon orbit are distinct. The marginally bound orbit, also distinct, has 

= _>2~112 for a-> M.ln fact, all stable, bound orbits around a rotating 

black hole—except “plunge” orbits irrevocably approaching the horizon—have |^| 
substantially bounded away from 1. Consequently, a Lorentz transformation from 
an LNRF to a stable, bound orbital frame never brings in factors greater than order 
unity. 

We now consider noncircular orbits in the equatorial plane (Q = arbitrary). 
For each possible orbit, and at every radius r, we ask an LNRF observer to measure 
the velocity of the orbit at the instant that it passes him. The velocity is represented by 
a point in the ^^-plane, somewhere inside the speed-of-light circle [^(r)]2 + 
|-y>(<2»]2 = 1. Thus, certain regions of the two-dimensional velocity space at radius r 
correspond to bound, stable orbits ; other regions to hyperbolic orbits which escape to 
infinity; other regions to “plunge” orbits which go down the hole. Figure 3 shows a 
typical sequence of velocity-space diagrams corresponding to a = 0.95M (a = M 
would be similar, but would collapse several different interesting radii to r = M). 
The following types of orbits are delineated in figure 3 : bound stable orbits which 
exist for r > ^ 1.94M (direct) or 8.86 (retrograde), denoted (B); plunge orbits 
originating at infinity, i.e., with E/fi, > 1, denoted (P); escape orbits which are the 
time reverse of (P) orbits, denoted (E) [since nothing can come out of the hole, some 
physical process near the hole is necessary to inject a particle into an (E) trajectory] ; 
hyperbolic orbits which originate at infinity, and are scattered back to infinity by the 
hole (H); captured plunge orbits, i.e., plunge orbits with E'Z/x < 1, denoted (C). Points 
on the border between regions (H) and (P) of velocity space correspond to unstable 
orbits, and the intersection of such a border with the line ^(r) = 0 marks an unstable, 
unbound circular orbit. 

Figure 3 also indicates the region of “negative energy states” first exploited by 
Penrose (1969). In the LNRF, a particle’s 4-momentum has the flat-space form 

p = Kr,y^): y = O - r'-r'y1'2 (3.13) 

and its conserved total energy (dot product of 4-momentum with the time-coordinate 
Killing vector) is 

E = -p:(dldt) = -pt = -p
ia)etia) 

= py(ev + œe^^) , (3.14) 
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a =.95 

Fig. 3.—Distribution in velocity space of equatorial orbits passing through various radii r, 
around a rotating black hole with a = 0.95M. Each circle is the “space” of equatorial, ordinary 
velocities [¿/(proper distance)/¿/(proper time)] as measured in the proper reference frame of a 
locally nonrotating observer. The velocity circles are labeled by the radius r of the observer. The 
center of each circle is zero velocity ; the edge is the speed of light ; the ^(r) direction corresponds 
to radial velocities, the direction to tangential velocities. A particle which passes the observer 
with its velocity in an E-region will escape to infinity. Similarly, P denotes plunge trajectories from 
infinity into the hole; C denotes “captured” plunges which could not have come from infinity; 
H denotes “hyperbolic” orbits from infinity and to infinity; B denotes bound, stable orbits which 
neither plunge nor escape. The shaded regions are the “negative energy” orbits (see text for 
details). Diagrams for other values of a (the hole’s specific angular momentum) are qualitatively 
similar. 

so that in the equatorial plane, 

E = fjLyA~ll2(rA112 + 
E is negative for 

r(r2 - 2Mr + a2)112 
^(<p) < _ 

2Ma 

(3.15) 

(3.16) 

that is, below a horizontal line in the velocity plane. Outside the ergosphere this line 
fails to intersect the velocity-space circle, and there are no negative energy states. 
At the event horizon the line is ^(<0) = 0. Negative energy trajectories are always 
captured plunges (C). 

In the Penrose energy-extraction process, a body breaks up into two or more 
fragments; if any fragments are injected into negative energy orbits, the sum of the 
total energy of the remaining fragments is greater than the total energy of the original 
body, since E is an additive conserved quantity. The extra energy comes from the 
rotational energy of the black hole (see Christodoulou 1970). Wheeler (1970) and 
others (see, e.g., Mashoon 1972) have speculated on the possibility that some natural 
astrophysical process, for example the breakup of a star by the tidal gravitational 
forces of the black hole, could result in the extraction of energy from the hole via the 
Penrose process. In the LNRF picture (fig. 3), the negative energy states and the (B) 
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orbits are always separated by a substantial velocity, even for a ä M and r x M. 
Thus, if a star is taken initially on a bound, stable orbit in the equatorial plane, there 
can be no energy extraction from its breakup unless hydrodynamical boosts of 
the speed of light occur. Similar results hold if the initial orbit is taken to be a plunge 
orbit of any reasonable sort, i.e., one no more bound than the most bound (B) orbit. 

Appendix A proves the general theorem which the LNRF picture makes plausible : 
If two trajectories differ in energy per unit rest mass by an amount of order unity, 
then their locally measured relative velocities differ by a substantial fraction of the 
speed of light. This result holds everywhere outside the event horizon (and even inside 
it, for that matter). The most bound plunge orbit that is astrophysically plausible has 
E/fx = 3"1/2 (minimum energy of a plunge orbit which results from the decay of a 
bound, stable orbit around any rotating black hole). Such an orbit is bounded away 
from the negative energy states by > 0.5c. Thus, energy extraction cannot be 
achieved unless hydrodynamical forces or superstrong radiation reactions can 
accelerate fragments to more than this speed during the infall. On dimensional grounds, 
such boosts seem to be excluded: Suppose a self-gravitating object of mass m and 
radius r falls into a black hole of mass M. The criterion for Roche breakup at radius R 
is dimensionally 

M/R3 - m/r3 . (3.17) 

After breakup, the object experiences tidal accelerations of magnitude ~r(M¡R3) ~ 
r(mlr 3) for a period of time ~(R3IM)112 ~ (r3/m)1/2, so the characteristic velocity of 
breakup is dimensionally 

'T-im/r)112, (3.18) 

which is « 1 for any infalling object except highly bound neutron stars. Since equation 
(3.17) can be rewritten as 

R/M = (rlm)(mlM)213 <1 if m « M and r ^ 10m , (3.19) 

for a neutron star falling into a substantially more massive black hole, the Roche limit 
is inside the event horizon. There will be no observable breakup at all. 

As for the superstrong radiation reactions, we can only note that all calculations to 
date (e.g., Davis et al. 1971,1972) show that energies radiated from plunge trajectories 
are typically 

^rad ~ m(mlM) « m , (3.20) 

so that reaction boosts are of the order of 

^ ~ (mIM)112 « 1 . (3.21) 

In the next section we consider the scalar wave equation in the Kerr background 
and find no evidence of any breakdown in the estimate (3.20) for astrophysically 
plausible processes. 

IV. THE SCALAR WAVE EQUATION AND SCALAR SYNCHROTRON RADIATION 

The equation governing a scalar test field in the Kerr background is 

□ O = (-grll2[(-gYl2g^JtV = 4ttT, (4.1) 

where T is the density of scalar charge per proper volume as measured in the rest 
frame of the charge and g = det (guv). A comma denotes partial (not covariant) 
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differentiation. In Boyer-Lindquist coordinates (—g)1/2 = 2 sin 6, and the metric 
is given by equation (2.2); equation (4.1) becomes 

d A d 
TT A — + 
dr dr 

1 
sin 6 

a a / 1 a2\ a2 

86 Sm 86 + \sin2 6 AJ 8<p2 

4Mar c2 

A 8<pdt 
(r2 + a2)2 

A 
a2 sin2 6 <t = 4772 r. (4.2) 

Carter (1968Z)) first demonstrated the separability of equation (4.1), and the explicit 
separation of equation (4.2) has been given by Brill et al (1972). The solutions have the 
form 

<D I [Rlmœ Im J 
(r)Smi(—a2a)2, cos 6)eim(pe~i(at] (4.3) 

Here Smi( — a2co2, cos 6) is the standard oblate spheroidal harmonic satisfying 

Í—- \sin 6 dd 
sin^ + + a2o>2 cos2 9 

m2 \ 
sin2 6/ 

(4.4) 

where Xml is the eigenvalue of We write Smi(6) for Sm
l(-a2œ2, cos 6) and take the 

normalization 

/» + 1 /»27I 
¿/(cos Ö) 

j-l Jo 
d<p\Sm

l(6)ei im(p\2 (4.5) 

Substituting equations (4.3)-(4.5) into (4.2), one finds that the radial function RZmco 

satisfies 

d_ K d_ < a2m2 — 4Marmo> + (r2 + a2)2<A>2 

dr dr + A Ki - a2oi2 ^ma)(^) 

/» + 00 J 1 ^2^ 
= J ¿/(cos 9) J dyle^e~^S^XAttZT)} . (4.6) 

Although T7 is a scalar charge density, not a tensor gravitational source, one often 
seeks insight into gravitational-wave processes by taking T to be the trace of the stress- 
energy tensor; i.e., one sets the fictitious scalar charge of a point particle equal in 
magnitude to its mass If the particle follows a world line zM(r), one has 

r = J - Z\r)] for i = r, 6, <p, (4.7) 

where u* = dt/dr. For a particle in an equatorial, circular orbit of radius with 
angular velocity dy/dt = Q, this becomes 

4772r = 2 (477ft/M
i)S(r - rp)S

mi(d)Sm
l(0)e~imateim<p. (4.8) 

Thus, the Fourier-transformed source (right-hand side of eq. [4.6]) has nonvanishing 
cü-components only for œ = mQ,, m = 0, ±1, ± 2,.... Further, if by convention we 
take the real part of ® to be the physical field, then we can restrict attention to 
oj > 0 without loss of generality, so that only positive ra’s contribute if Ü > 0, and 
negative if £* < 0. With this convention, the sum in equation (4.8) ranges from ra = 0 
to m = sgn (D)oo, and a factor 2 must be inserted on the right-hand side of (4.8) for 
m ^ 0. 
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Equation (4.6) can be simplified to an effective-potential equation by the introduction 
of a new coordinate r* such that 

dr* I dr = r2IA . (4.9) 

Explicitly, 

or for a — M, 

r* = r + 2Mln (r - M) - M2l(r - M). (4.10b) 

[Recall that r± = M ± (M2 — a2)112.] If we put 

=: fRlmoo ? (4»Ha) 

then equations (4.6) and (4.8) become 

ÿ-2 + W(r)t = ^ ^(O^* - r*), (4.1 lb) 

where 5^(0) = Smi(—a2m2£l2y 0) and W(r) is the effective potential 

W(r) = m2 (r2 + a2)Cl - a 

r2 

2 

2aQ.m2 + a2Q.2m2 + “H (4.12) 

Our boundary conditions for equation (4.11) agree with those of Misner (1972¿), 
and we will not discuss them here, except for a brief summary in Appendix B. Misner 
and others use a slightly different r* coordinate, r*n defined by 

dr*n¡dr = (r2 + ß2)/A 

instead of equation (4.9). This r*n has the conceptual advantage that t ± r*n are null 
coordinates, but the practical disadvantage that it makes equation (4.12) and sub- 
sequent equations somewhat more complicated. 

Locally nonrotating frames give insight into the physical content of the separated 
wave equation (4.11). We eliminate Q in favor of ^ the LNRF linear velocity of the 
orbiting particle as measured in a LNRF (in previous sections 7^ was denoted ir^(p)). 
It is useful to define a function ^(r), the linear velocity of the frame rigidly rotating 
with angular velocity Q, 

-Tir ) = [(r3 + a2r + 2Ma2)Cl - 2Ma]. (4.13) 

Thus, the particle’s velocity is i ' = Then equation (4.12) takes the simple form 

W(r) = 
-A 

'ml — m2^l — - 
1 - 'Tir)* 

+ a2/r2 + 2Ma2lr 
+ 

2(Mr - a2) 
(4.14) 

It is shown in Appendix C that Ami > m2 for all physical cases. Since ^(rp) < 1 and 
Mr > a2 outside the horizon, W(rp) = 0(m2) < 0. Thus, in the WKB limit of large 
barrier (large m), the field dies out exponentially as one moves radially away from the 
particle. Since 'f"(r) x rQ-> co for large r, JT(r) becomes positive at some point 
r1 > rp, and traveling waves propagate from there to infinity. Similarly, W(r) becomes 
positive at some point r2, r+ < r2 < rP9 so traveling waves exist for r < r2. 
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We are now in a position to discuss the interesting question of “beamed radiation” 
which was first raised by Misner (1972a). Two prerequisites for beamed radiation 
(i.e., radiation emitted into a solid angle much smaller than 4tt) are (i) that the source 
itself contain high multipoles (/, m » 1) and (ii) that the field coupled to these multi- 
poles radiate to infinity in a relatively unimpeded manner. For a point source, con- 
dition (i) is satisfied, so (ii) becomes the essential condition to check. The WKB 
barrier factor which separates the source from its wave zone is 

exp -P l-W(r)]ll2dr 
^r2 

= exp (-B). (4.15) 

The question is: with / » 1, can B be made small? We will see below that the most 
favorable case (the case of smallest B) is m = /. Appendix C derives the result 

l2 < \n < /(/ + 1) ; 

so the effective potential (4.14) for m = / is, with fractional errors of 0(1//), 

1 - 'T(r)2 

W(r) ~ ,4 A j + a2/r2 + 2Ma2lr3 for l = m y> \ . 

The corresponding barrier-penetration factor for m = / is 

(1 - -r(r)2)1'2 

B ~ l 
r 

dr 

(4.16) 

(4.17) 

(4.18) 
r2 (1 + a2/r2 + 2Ma2/r3)1/2(r2 - 2Mr + a2)112 

This barrier factor can be cast in a simple form by noticing that in the Kerr geometry, 
the proper circumferential radius Rc and proper radial distance R„ are given by 

rc = e* = (P + a2 + 2Ma2lr) 1/2 dRJdr = (/•2/A)1'2 . 

So 

B 
¡•r = r1 

Jr = r2 

- r{rf)ll2dRp . 

(4.19) 

(4.20) 

Large values of / will contribute to the radiation field only if the integral in (4.20) is 
«1. This requires two conditions: First, 

1 - 'H/p)2 « 1 ; (4.21) 

i.e., the particle orbit must be highly relativistic as seen in the LNRF. Second, |^(a*)| 
must increase monotonically as r increases from rp to r^ [If it decreases initially, then 
B cannot be made arbitrarily small even as 1.] The fact that in the Kerr 
geometry, by contrast to flat space, the function \i^(r)\ can decrease with increasing r 
is closely related to the existence of circular photon orbits. At radius r the direction 
cosine relative to the ^-direction in the LNRF for a photon trajectory with energy E 
and axial angular momentum L is 

,(«!>) 

(E/L - aj)e* nr) 
(4.22) 

The quantity ^(r) here is identical with that of equation (4.13) if Q = E/L. Since 
|^(r)| increases outward at r = rl9 with |^’(r1)| = 1, the photon trajectory that is 
tangential there is at an inner turning point. Conversely, since |7^(r)| decreases out- 
ward at r = r2, the tangential photon trajectory is at an outer turning point. The 
photon orbit is circular at r = r1 = r2, if |^(^)| is independent of r to first order 
near r = Thus if rp is inside the circular photon orbit, high multipoles will not 
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radiate to infinity even for |^| -> 1. (In physical terms this is because, inside rph, the 
radiation is beamed “down the hole.”) 

There are no nonplunge geodesic orbits inside rp^ in any case; but our results are 
equally valid for accelerated circular trajectories inside rph, and for radiation emitted 
at pericenter by noncircular orbits and by accelerated trajectories in general. We can 
prove that no bound orbit satisfies |^| -> 1 outside of rph as follows: 

1 > E/ijl = -e\a)u™ = (1 - 'r2yl'2(ev + œe*^) . (4.23) 

Since the last term in parentheses has no root outside rph, is bounded away from 1. 
Our conclusion is that high multipole radiation is suppressed exponentially with 
increasing / for all astrophysically relevant equatorial orbits. There is no reason to 
believe that nonequatorial or noncircular orbits would be any more favorable than 
our arbitrarily accelerated circular trajectories. 

Of course, there can be some finite beaming in the radiation by multipoles below the 
exponential cutoff. The characteristic / of the cutoff is that / for which R ^ 1. The 
most interesting cases are rp = rms and rp = rmb in the limit a-^M^ l = my> 
In these cases equation (4.20) can be evaluated in terms of elementary functions with 
the results 

or /cutoff ~ 8; and 

0.120/, r -> rms, 

B # 0.078/, r -> rmb , 

(4.24a) 

(4.24b) 

or /cutoff — 12. In other cases, equation (4.20) (or [4.14] if m < /) can be integrated 
numerically. Figure 4 shows representative results with a = M for various ratios m//, 
for various geodesic circular orbits and circular accelerated trajectories chosen to be 
tangent to marginally bound (“parabolic”) orbits at pericenter. One sees that / = m 
is the case most favorable to propagation, and that the analytic results (4.24) corre- 
spond to the most favorable orbits. We have obtained similar results for various 
values of a, 0 < a < M\ the case a = M is the most favorable to high multipoles. 

Momentarily setting aside the question of astrophysical plausibility, it is interesting 
to see just how /cutoff^ 00 as ^ 1. Choose the origin for proper radial distance to 
be Rp = 0 at r = rp, and expand ^(r) in a Taylor series 

Thus 

'T(r) = TT 

[I - ^(r)2]1/2 ^ 
1/2 

(4.25) 

(4.26) 

when y = (1 — 'f'2)-1'2 » 1. The first-order term in equation (4.26) is sufficient to 
represent (1 — i^2)112 accurately over the whole range of integration of equation 
(4.20) if ay » 1. For most accelerated (nongeodesic) trajectories a is nonzero in the 
limit y oo and one obtains 

<4-27> 

or /cutoff — 3ay3. For geodesic orbits with y » 1 (orbits just outside the circular photon 
orbit), ay « 1 and the second-order term is large relative to the first-order term over 
almost all of the range of integration. Therefore, in the latter case, 

B - ^2 jo ^ - X2yl2dX = I fÍf (4-28) 

and /cutoff — 47T'1ßll2y2. In other words, there is a qualitative difference between 
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Bound Circular Orbits 

"Parabolic" Orbits at Pericenter 

Pic. 4.—The barrier factor B for (scalar) synchrotron-type radiation from stable orbits 
around an extreme-rotating black hole. In the WKB approximation (valid for high multipoles 

>y ; ’ P?wer radiated in a given l, m multipole is proportional to the exponential cutoff exp (-2B). Since Bjlis seen to be bounded away from zero, modes of high / are always suppressed 
The upper graph applies to stable, circular, geodesic orbits. The lower graph is computed for 
accelerated circular trajectories which are tangent to (and have the velocity of) marginally bound 

parabolic orbits at pencenter. We exclude extreme unbound orbits on the grounds of astro- 
physical implausibihty (see text for details). 

geodesic orbits and accelerated trajectories with the same LNRF velocity: the acceler- 
ated trajectories are more efficient sources of high-multipole radiation. In the Schwarzs- 
child metric /? = 1 at the circular photon orbit, while in the extreme (a ~ M) Kerr 
metric ß = 12 at the direct circular photon orbit (rp ~ rph ~ M[\ + 2(|8)1/21) and 
ß = 64 at the retrograde circular photon orbit (rp ~ rpb = AM). 

The locally nonrotating frame can also be used to interpret the radiation in the 
wave zone, r > rx. As measured by an observer at rest in the LNRF at radius r the 
scalar field oscillates with a proper frequency 

Û = (a-co)e-v. (4.29) 

A photon with energy E and axial angular momentum L has a locally measured 
energy (frequency) in the LNRF 

Pm = e~v{E - coL). (4.30) 
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In particular, the frequency of a photon emitted tangent to the velocity-of-light circle 
at r = r1? for which EjL = Q changes in the same way with radius as the frequency 
of the scalar synchrotron radiation. 

v. CONCLUSION 

Physical processes near a rotating black hole often reveal their underlying nature 
most clearly when they are examined in the locally nonrotating frames. In the case of 
rotational energy extraction, the LNRF picture points out the severe hydrodynamical 
constraints: energy extraction requires boosts of ~0.5c in “short” hydrodynamical 
times. In the case of synchrotron radiation, the LNRF picture indicates that such 
beamed radiation is possible only from astrophysically implausible (unbound, unstable) 
orbits. The simplicity of the Riemann tensor in the LNRF picture points toward a 
number of future hydrodynamical applications. The physics of rotating black holes is 
sufficiently rich and varied as to require a variety of techniques, among which the 
LNRF picture is, we think, an important one. 

We thank Paul Chrzanowski, Charles W. Misner, and Larry Smarr for valuable 
discussions and for making unpublished work available to us. We thank Kip S. Thorne 
for advice on preparing the manuscript. 

APPENDIX A 

BOUNDS ON ENERGIES AND RELATIVE VELOCITIES 
OF PARTICLE ORBITS 

Consider a particle of rest mass /x and conserved energy E = —p^u where p is 
the 4-momentum and %t is the time Killing vector. Not all values of E/fi are possible 
for trajectories through a given point in spacetime. For example, particles at radial 
infinity must have E/fju > 1. We first ask, what is the bound on E^ for a general point ? 

Pick an orthonormal frame at the point. The 4-velocity of a particle has components 
u = (y, yv) with v a 3-vector and y = (1 — u2)_1/2; the time Killing vector has com- 
ponents = (£0, Ç), with Ç a 3-vector. The particle’s ratio of energy to rest mass is 
given by 

E/fi = -u-^t = y(£0 - 0-Ç), (Al) 

where the dot denotes the scalar product in the local Euclidean 3-space. Evidently, a 
necessary (but not a sufficient) condition for an extremum (hence a bound) on E/fi is 

v.%=±vi, (A2) 

where v — \v\, £ = |Ç|. Now we distinguish two cases: If ^ is spacelike (e.g., in the 
ergosphere of the Kerr geometry), then we have fo < f; and inspection of equation 
(Al) shows that all values of Elfi are possible, 

—00 < Elfi < +00 for %t spacelike . (A3) 

The infinite limits correspond tov->\ with the two signs of equation (A2). If, instead, 
Çî is timelike (e.g., at radial infinity), so that then the right-hand side of 
equation (Al) is always positive, and there is a nontrivial lower bound on Elfi. 
Rewriting equation (Al) and using equation (A2) with the upper sign, we obtain 

(i2 + E2lfi2)v2 - 2tt0v + (£o2 - E2lfi2) = 0. (A4) 
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The extremum in is obtained by setting the discriminant of this equation, a 
quadratic in v, equal to zero; this gives 

o = (EifxmEiti2 - e + fo2]. (as) 

The root E^jl = 0 is spurious, and the lower bound on E/fx is 

(Elfx)* = (A6) 

We see that the allowed range of Ejfx at a point depends only on the norm of the time 
Killing vector at that point, 

^ £//* < +00 for timelike . (A7) 

Finally note that the two cases (A3) and (A7) imply as a general condition, 

(^)2 + Çi.Çi>0. (A8) 

Now turn to a different problem: If two orbits through a point have different ratios 
of energy to rest mass, E1Jfx1 and E2I^ they have different 4-velocities and therefore 
a nonzero relative 3-velocity, \w\ (velocity of one particle seen by an observer comoving 
with the other particle). What is a bound on |w| ? 

At the point of interest, choose the orthonormal frame which gives the orbits equal 
and opposite 3-velocities v, so that the tangent 4-velocities have components 

«i = (y, -yv), «2 = (y, +yv). (A9) 

The magnitude i? of v is related to the relative velocity |w| by the velocity addition 
formula, 

\w\ = 2t>/(l + v2). (A10) 

By analogy with equation (Al) we have 

£i//¿1 = yfo + y*>-? , E2lfX2 = yÇ0 - yv% . (All) 

Defining an angle rj by = vgcosrj, and solving equation (All) for £0
2 and £2, 

we obtain 

fo2 = (£i//¿i + E2¡lx2)2¡{4y2), (A 12a) 

e = (^ - EJfx2)21(4y2v2 cos2 7]). (A 12b) 

Subtraction of (A 12b) from (A 12a) yields 

(EJfx, - E2lfx2)2 = [(EJfx, + E2lfx2)2 + 4y2^]i;2 cos2 rj 

< [(EJfx, + E2ltx2)2 + 4y%-St]v2 . (A 13) 

This inequality can be solved for v; the result is 

v2 >  Eilfxi. - E2I[x2  12 

(E,2/^2 + ^.^)1/2 + (E2
2Iix2

2 + Sr%t)ll2_ * 
(A 14) 

By equation (A8), the quantities appearing inside the square roots are guaranteed to 
be positive. 

To apply equation (A 14) to the question of energy extraction in the Kerr geometry, 
we note that for all 0,99, and r > r+, < 1. If we take = 3"1/2 (the minimum 
energy of a plunge orbit which can result from the decay of a bound, stable orbit 
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around any rotating black hole) and ^ = 0 (the boundary of the negative energy 
region), we obtain 

v>2-3112; (A 15a) 

or by equation (A 10), 

M ^ i- (A 15b) 

Hence, this class of all physically plausible plunge orbits is always separated from 
the negative energy region by at least half the speed of light. To achieve energy 
extraction, hydrodynamical forces or superstrong radiation reactions would have 
to accelerate particle fragments to more than half the speed of light in the “short” 
characteristic time of the plunge (see eq. [3.17] and the discussion following it). 

APPENDIX B 

BOUNDARY CONDITIONS FOR EQUATION (4.11) 

At r* +00 the asymptotic solutions are 

xfj = e-iut^imcpsm^Q^ik+r* ? 

where k+ = [JF(r* = +oo)]1/2 = œ (positive square root). By convention we may 
take co as positive (see discussion following eq. [4.8]), so the correct solution, 
corresponding to outgoing waves, is the upper sign. 

On the horizon, r* ^ —oo, the discussion is not quite so simple. The asymptotic 
solutions are 

0 = e-
i(ûte+im(PSm

l(0)e±ik-r*, (B2) 

with k- = [IT(r* = —oo)]1/2 (positive square root). Again by convention co > 0. 
The correct boundary condition is not that the wave appear ingoing in the coordinate 
frame (i.e., not necessarily the lower sign in eq. [B2]). Rather, the wave must be 
physically ingoing in the frame of a physical observer. Since all physical observers are 
related by Lorentz transformations, they will all agree on the boundary condition, and 
we can calculate with any convenient observer. Take an observer at constant r just 
outside the horizon. Since he is within the ergosphere, he is dragged in the positive <p 
direction with some angular velocity dcpjdt = Qd > 0. This observer sees the local 
t9 r dependence of ^ (eq. [B2]) as 

ÿ ~ e-i(co-mnd)te±ik_r* ' (B3) 

Hence, for physically ingoing waves one must choose the sign (±ik-) opposite to 
the sign of (co — mQ.d). On the horizon Dd->o>+ = al(2Mr+) for all observers. 
Hence the correct sign in equation (B2) is 

if m < 0, lower sign (—) ; 

if m > 0 , lower sign (—) if > m<o+ , upper sign (+) if 0 < < m<o+ . 

In the last case the waves are apparently outgoing in the coordinate picture, and in 
fact they extract rotational energy from the rotating black hole, even though they are 
physically ingoing in the local frame of any physical observer. This kind of wave is 
generated by a particle in any direct, stable circular orbit for a = M9 and also holds 
for small a if the particle orbit is sufficiently far out. 
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However, even for a £ M the highly relativistic orbits at r ~ rph cannot extract 
energy from the black hole. When S = (1 — ajM) « 1 and r = M[\ + 2(f S)1/2], then 

Q - co+ ä ¿ (1 - 31,2/2)(2S)1/2 > 0 , (B4) 

so the particle loses energy to the black hole. 
For an alternative and more rigorous discussion, the reader is referred to Misner 

(19726). 

APPENDIX C 

BOUNDS ON EIGENVALUES OF SPHEROIDAL HARMONICS 

Define the following differential operator L on the closed interval [—1,1]: 

L= "¿(1 ~x2)^ + S(x)’ (C1> 

where 

g{x) = |c2|(l - x2) + j——s > 0 . (C2) 

Then the oblate spheroidal harmonics *Sm
/(c

2, x), where c2 < 0, are eigenfunctions 
of L which are regular at x = ± 1 : 

(C3) 

Here m is fixed and l = m,m + 1, In the text, we use x = cos 6, c2 = —a2a)2, 
and Xmi = ami — \c2\. We use <xml in this Appendix to make L a positive operator so 
that various theorems are directly applicable. In this Appendix, all functions u on 
which L acts will be normalized as follows : 

J u2dx = 1 . (C4) 

[This differs from the normalization of Smi in the rest of the paper by a factor of 2tt, and 
from the normalization used by Flammer (1957): Sphere) = Amn"

1/2Smn(Flammer). 
Flammer (1957) tabulates the conventions used by various authors.] 

Let w be a trial function for equation (C3). As Friedman (1956) shows, an upper 
bound p for the lowest eigenvalue, amm, is given by 

while a lower bound is 

uLudx, 

P - 
[i: 

(Lu)2dx 

(C5) 

(C6) 

Taking as a trial function the associated Legendre function u = Pm, and using the 
identity 

xPm
l{x) 

l — m + \ 
21 + 1 

Pmi + i(x) + 
l + m 
If+l 

(C7) 
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to perform the integrals, we find 

/(/ + i) 
2/ + 3 

1 + 2 
\2l + 5j 

1/2 
< \i < /(/ + 1) “ 

2/ + 3 
(C8) 

The right-hand side of this inequality gives the upper bound quoted in § IV, 

Xu < /(/ + 1). (C9) 

Since \c\2 = a2m2£l2, and i^2 < 1 implies a2Q.2 < i, the left-hand side of inequality 
(C8) gives 

Amm > m2. (CIO) 

The eigenvalues of the Sturm-Liouville operator (Cl) increase monotonically with /, 
hence inequality (CIO) gives 

Xmi > m2. (Cll) 

Inequalities (CIO) and (Cll) are the lower bounds used in § IV. 
The upper bound (C9) holds for / / m as well, since from the theory of Sturm- 

Liouville equations (e.g., Courant and Hilbert 1953), if we increase g(x) to a new 
function g'(x), then the new eigenvalues aml = X'ml + \c\2 are all greater than the 
old ones. Choose 

£'(*) = M2 + ■ (Cl2) 

Then 

Am¡ < X’ml = /(/ + 1) . (Cl 3) 

An alternative lower bound can be derived by choosing 

g'(x) = Í g(x) ■ (Cl4) 

Then 
Ami > A'mi = /(/ + 1) - |c|2 > /(/ + 1) - im2 . (Cl5) 

This inequality is stronger than the bound (Cll) when m2 < jl(l + 1). 
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