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ABSTRACT

The evolution of planets, stars, and even galaxies is driven, to a large extent, by dynamical
friction of gravitational origin. There is now a good understanding of the friction produced
by extended media, either collisionless or fluid-like. However, the physics of accretion or
protoplanetary discs, for instance, is described by slab-like geometries instead, compact in
one spatial direction. Here, we find, for the first time, the gravitational wake due to a massive
perturber moving through a slab-like medium, describing e.g. accretion discs with sharp
transitions. We show that dynamical friction in such environments can be substantially reduced
relatively to spatially extended profiles. Finally, we provide simple and accurate expressions
for the gravitational drag force felt by the perturber, in both the subsonic and supersonic
regime.
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1 IN T RO D U C T I O N

Drag forces of electromagnetic origin are ubiquitous in everyday life, and shape – to some extent – our own civilization. On large scales,
such as those of stars and galaxies, gravitational drag forces dominate the dynamics. When stars or planets move through a medium, a wake
of fluctuation in the medium density is left behind. Gravitational drag (also known as dynamical friction) is caused by the backreaction
of the wake on the moving object. Gravitational drag determines a number of features of astrophysical systems, for example planetary
migration within discs, the sinking of supermassive black holes to the centre of galaxies, or the motion of stars within galaxies on long
time-scales (Chandrasekhar 1943a, b, c; Ostriker 1999; Binney & Tremaine 2011).

Dynamical friction is well studied when the object moves in an infinite (collisionless or fluid-like) medium (Chandrasekhar 1943a;
Ostriker 1999; Sánchez-Salcedo & Brandenburg 1999; Kim & Kim 2007; Kim, Kim & Sanchez-Salcedo 2008). Most of the rigorous
treatments of dynamical friction in the literature – with a few exceptions such as Namouni (2011); Muto, Takeuchi & Ida 2011; and
Cantó et al. 2013 – consider as a set-up an infinite three-dimensional medium. Clearly, such idealization breaks down in thin accretion or
protoplanetary discs, where the geometry of the problem is more ‘slab-like’ (Novikov & Thorne 1973; Armitage 2011). In this context, Muto
et al. (2011) obtained estimates for the dynamical friction under the assumption of a steady state, and using a two-dimensional approximation
for the gaseous medium. However, as the authors point out, their simplified approach has some limitations, and a fully three-dimensional
treatment is needed (see Section 4 for further details). Also assuming a steady state, Cantó et al. (2013) computed the gravitational drag on a
hypersonic perturber moving in the mid-plane of a gaseous disc with Gaussian vertical density stratification. However, they did not studied
how (and if) this steady state is dynamically attained.

In this work we compute, for the first time, the gravitational wake produced and the time-dependent force felt by the massive perturber
moving in a three-dimensional medium with a slab-like geometry, subjected to either Dirichlet or Neumann conditions at the boundaries.
This set-up is a more faithful approximation to the physics of thin discs and we expect some of our main findings to carry over, at least at
the qualitative level, to more generic physical situations where boundaries play a role. For simplicity, in this work we consider an inviscid
medium and neglect the effects of direct collisions between the massive perturber and the gas.
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2 3 D G R AV I TAT I O NA L D R AG

The linearized equations for the perturbed density ρ ≡ ρ0[1 + α(r, t)] and velocity v ≡ cβ(r, t) of an adiabatic gaseous medium which is
under the influence of an external potential φext(r, t) are (Ostriker 1999)

1

c

∂

∂t
α + ∇ · β = 0 , (1)

1

c

∂

∂t
β + ∇α = − 1

c2
∇φext , (2)

with c the sound speed on the unperturbed medium, and α, |β| � 1. These equations can be combined to obtain the inhomogeneous wave
equation

∇2α − 1

c2

∂2α

∂t2
= − 1

c2
∇2φext . (3)

If the external influence is due to the gravitational interaction with a massive perturber of mass density ρext(r, t),

∇2φext = 4πGρext , (4)

where G is the gravitational constant. Equation (3) can be solved employing the method of Green’s function. The Green’s function G(r, t|r′
,

t
′
) of the differential operator in the left-hand side of equation (3) satisfies

∇2G − 1

c2

∂2G

∂t2
= −δ(3)(r − r ′)δ(t − t ′) . (5)

The problem of finding, at linear order, the perturbed density ρ(r, t) of an infinite three-dimensional gaseous medium, due to the
gravitational pull of a point-like mass M moving at velocity v, was solved by Ostriker (1999). The dynamical friction felt by the moving mass
was therein computed to be

F = (GM)2ρ0
c2 I (M, t) , (6)

I = − 4π

M2

[
1
2 log

(
1+M
1−M

) − M
]

, M < 1 (7)

I = − 4π

M2

[
1
2 log

(
1 − 1

M2

) + log
(

Mct
rmin

)]
, M > 1 (8)

with M ≡ v/c the Mach number, rmin the effective size of the perturber, and assuming that rmin < (M − 1)ct .1Notice that the dynamical
friction always opposes the perturber’s motion (i.e. F < 0).

3 G R AV I TAT I O NA L D R AG IN SL A B G E O M E T R I E S

Consider now a medium with a slab-like profile of constant density and extending to arbitrarily large spatial distances in the x and y directions,
but of compact support in the z direction, with thickness 2L for −L ≤ z ≤ L. The linear perturbation in the pressure is δp = (∂p/∂ρ)δρ =
c2ρ0α(r, t). Thus, the physically relevant set-up δp(z = −L, t) = δp(z = L, t) = 0 corresponds to Dirichlet conditions on α(r, t) at the
boundaries of the slab. For completeness, we provide results for Neumann conditions as well.

Define T ≡ t − t
′
and R ≡ (x − x

′
, y − y

′
). The solution of equation (5) satisfying Dirichlet boundary conditions is

G =
+∞∑
n=0

c

2πL

cos (mnD)

D
sin[mn(z + L)] sin[mn(z′ + L)]	(cT − R) , (9)

with D ≡ √
c2T 2 − R2 and mn ≡ nπ /(2L). Rewriting the sines and cosines as complex-exponential sums, and using the identity∑+∞

n=−∞ eimnχ = 4Lδ [χ mod(4L)], the last equation reads

G =
+∞∑

l=−∞

(−1)l	(cT − R)

4πD

[
δ
(
z − (−1)lz′ − 2lL + D

) + δ
(
z − (−1)lz′ − 2lL − D

)]
. (10)

1In fact, the gravitational drag force felt by a supersonic point-like mass is infinite. Thus, a cut-off rmin is needed (i.e. the perturber must have finite size).
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Using the properties of delta functions, this expression can be put in the form

G =
+∞∑

l=−∞

(−1)l

4π
√

(z − (−1)lz′ − 2lL)2 + R2
δ

(√
(z − (−1)lz′ − 2lL)2 + R2

c
− T

)
. (11)

The gravitational interaction between the medium and an external massive perturber is governed by Poisson’s equation (4). Thus, we
find the solution to equation (3) with Dirichlet boundary conditions:

α =
+∞∑

l=−∞

∫
d3r ′dt ′ (−1)lGρext(r ′, t ′)

c2
√

(z − (−1)lz′ − 2lL)2 + R2
δ

(√
(z − (−1)lz′ − 2lL)2 + R2

c
− T

)
. (12)

The index l has an important physical meaning: it is the number of ‘reflections’ that fluctuations have undergone at the boundaries. Therefore,
the density α is expanded in terms of the number of echoes of the Green’s function on the slab. This result is analogous to that of a signal
propagating along a four-dimensional brane in a five-dimensional Kaluza–Klein space–time, except that boundary conditions are of the
Neumann type for that problem (Barvinsky & Solodukhin 2003). Notice also that the l = 0 term in the expansion corresponds to direct
propagation, and describes the fluctuations not sensitive to the boundaries. Not surprisingly, this term describes exactly the solution for a
three-dimensional infinite medium (Ostriker 1999).

Now consider a particle of mass M moving with velocity v on a straight line through the medium, describing the trajectory r(t) = (x(t),
y(t), z(t)) = (vt, 0, 0), with v > 0. This perturbation is turned on at t = 0, with ρext = Mδ(x − vt)δ(y)δ(z)	(t).2 Under these conditions, the
perturbation in the medium density is

α = GM

c2

+∞∑
l=−∞

(−1)ηl

∫ +∞

−∞
dw 	(w + x)

δ
(
w + s + M

√
(z − 2lL)2 + w2 + y2

)
√

(z − 2lL)2 + w2 + y2
, (13)

with w ≡ x
′ − x, s ≡ x − vt, and η ≡ {1, 0} for Dirichlet and Neumann conditions, respectively.

3.1 Subsonic perturbers

Consider first perturbers with Mach number M < 1. The argument of the delta in equation (13) then vanishes for

w = wl ≡ −
s + M

√
s2 + (1 − M2)

[
y2 + (z − 2lL)2

]
1 − M2

.

Each l-term contribution to α(r, t) vanishes for −x > wl, or equivalently,

x2 + y2 + (z − 2lL)2 > c2t2 . (14)

This is a manifestation of the causality principle. The perturber is turned on at (t, x, y, z) = 0 and moves with v < c. The fluctuation, on the
other hand, propagates with a speed c. These two facts imply that at instant t, the maximum region of influence of the massive particle is the
region in the slab defined by x2 + y2 + z2 ≤ c2t2. This is the ‘region of influence’ of the l = 0 term. At fixed t, each l term has a different
region of influence. Larger l’s probe smaller regions since the fluctuation is busy travelling between the boundaries and is unable to probe
large x, y directions.

Notice that not all l terms contribute to α at instant t. A given l mode only contributes from tl = (2|l| − 1)L/c onwards. Physically, this
is due to these terms being echoes, and requiring therefore a finite time to reach the slab boundaries. The only exception is the l = 0 term,
which contributes from t = 0 onwards.

In summary, a massive particle moving at subsonic speeds through a gaseous slab causes a fluctuation

α(r, t) = GM

c2

+∞∑
l=−∞

(−1)ηl	
[
c2t2 − x2 − y2 − (z − 2lL)2

]
√

s2 + (1 − M2)
[
y2 + (z − 2lL)2

] ,

in the medium density, where we used the property |A|δ[A(w − wl)] = δ(w − wl). A contour plot of the density profile is shown in Fig. 1, at
different instants. The perturber is moving at a subsonic speed with Mach number M = 0.5. The results for ct/L = 0.5 coincide exactly with
the ones obtained for non-compact geometries (Ostriker 1999), since the perturbation did not yet have time to reach the boundaries.

2The t = 0 instant can be thought as the time when the particle enters the gaseous medium. This consideration allows us to study how (and if) a stationary
regime is attained.
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Dynamical friction in slab geometries 5427

Figure 1. Density perturbation αc3t/(GM) in a gaseous slab, along z = 0, due to the gravitational interaction with a subsonic perturber with Mach number
M = 0.5, for ct/L = (0.5, 5, 11, 50) (left to right, top to bottom). The horizontal axis represents the coordinate x/(ct), and the vertical axis the coordinate y/(ct).
The contours represent curves of constant density. The observed ripples centred at the origin – which turn on at ct/L ≥ 1, but are only seen in z = 0 at ct/L ≥ 2
– are echoes of the original density fluctuation. Each ripple is associated with a different l term.

Let us now calculate the gravitational drag force felt by the moving particle. An infinitesimal element of the medium ρdxdydz at r acts
gravitationally on a particle of mass M (at position vt) through

dF(r, t) = dxdydz
GρM[

(x − vt)2 + y2 + z2
]3/2 (r − vt) . (15)

By symmetry, the net force felt by the particle points in the x direction. For times such that ct/L < 1, the only contributing term is the l = 0,
and the force reduces to

F = (GM)2ρ0

c2

∫
dz̄dx̄dȳ

	
[
1 − x̄2 − ȳ2 − z̄2

]
√

(x̄ − M)2 + (1 − M2)(ȳ2 + z̄2)

x̄ − M[
(x̄ − M)2 + ȳ2 + z̄2

]3/2 , (16)

for both Dirichlet and Neumann conditions, where we defined barred coordinates x̄i ≡ xi/(ct). This expression is clearly time independent,
and the integration gives equation (7). Thus (not surprisingly) for ct/L < 1 the perturbation did not yet probe the boundary and one recovers
well-known results (Ostriker 1999).

To find the force at late times ct/L � 1, we first break the expansion in even and odd l terms, and define l1 ≡ 2l and l2 ≡ 2l + 1, then,
the drag force reads

F � 2L

ct

(GM)2ρ0

c2

∑
|l1|≤int[ct/(4L)]

∫
dx̄dȳ

x̄ − M[
(x̄ − M)2 + ȳ2

]3/2

	
[
1 − x̄2 − ȳ2 − (

4L
ct

)2
l2
1

]
√

(x̄ − M)2 + (1 − M2)
[
ȳ2 + (

4L
ct

)2
l2
1

] − (l1 → l2) = 0 , (17)

with int(k) the integer part of k. Thus, we obtain the remarkable result that in slab geometries with Dirichlet boundary conditions there is no
drag force at late times.

The numerical results of the integration of equation (15) are shown in Fig. 2 for a fixed Mach number M = 0.5. The force is initially
the same as that in extended geometries, equation (7). However, after the fluctuations reach the boundary, such force changes.

It is amusing to see that for some time intervals the drag force acting on the perturber is positive. This can be traced back to the existence
of regions of negative density fluctuation α, which effectively act in a repulsive way on the particle, due to the deficit of matter in such region.
Positive drag (sometimes called slingshot effect) does not arise with Neumann conditions, nor for an infinite three-dimensional medium, but
nothing forbids it from appearing (and in fact it does, in slab geometries).

At late times we find a damped oscillatory behaviour well described by (see also Fig. 2)

F � (GM)2ρ0

c2

A
(ct/L)B

cos

(
2π

T
ct

L
+ ϕ

)
, (18)

MNRAS 489, 5424–5435 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/4/5424/5566344 by State U
niv N

Y at Stony Brook user on 01 O
ctober 2019



5428 R. Vicente, V. Cardoso and M. Zilhão
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Figure 2. Gravitational drag force Fc2/
(
(GM)2ρ0

)
felt by a particle moving at a subsonic Mach number M = 0.5 as function of ct/L (black dots). The results

are in agreement with the predicted early- and late-time behaviour of the force, as described by equations (16) and (17), respectively. Notice that the early-time
force (ct/L < 1) is independent of the boundary conditions, and, thus, is the same as for non-compact geometries; therefore it is described by well-known

results (Ostriker 1999) (purple dashed curve). At late times, the force oscillates with a period ∼ 4L/c exp

( M2.18

2(1 − M)0.32

)
, and decays as ∼L/(ct); the orange

dashed curve is the fit expression (18). In green, we show the (l = 0) contribution from the non-reflected wake.

0.0 0.2 0.4 0.6 0.8 1.0
- 50
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Figure 3. Comparison between the early- (equation 16) and late-time (Dirichlet: equation 17; Neumann: equation 19) drag force Fc2/
(
(GM)2ρ0

)
as function

of the Mach number M. In the subsonic regime, the dynamical friction due to a three-dimensional slab medium with Dirichlet (Neumann) conditions is always
smaller (larger) in magnitude than the one due to an infinite three-dimensional medium.

where A, B, T , and ϕ are functions of M. The power B is ∼0.6(±0.2) for M ≤ 0.3, and ∼1(±0.2) for M > 0.3. The period of oscillation
follows the law

T � 4L/c exp

( M2.18

2(1 − M)0.32

)
.

If Neumann conditions were used instead, our numerical results show that, at late times ct/L � 1, the moving particle feels a steady drag
force well described by

F � −7.864
(GM)2ρ0

c2

M
(1 − M)3/5

. (19)

The dependence of the early- and late-time drag force on the Mach number of the perturber is shown in Fig. 3. In the subsonic regime, the
dynamical friction due to a three-dimensional slab medium with Dirichlet (Neumann) conditions is always smaller (larger) in magnitude than
the one due to an infinite three-dimensional medium. We note that there is a well-known divergence of the drag force at M = 1; this is due
to shock waves, which cannot be treated with our linear perturbation approach.
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Figure 4. Density perturbation αc3t/(GM) in a gaseous slab, along z = 0, due to the gravitational interaction with a supersonic perturber with Mach number
M = 2, for ct/L = 0.5, 5, 11, 50 (left to right, up to down). The horizontal axis represents the coordinate x/(ct), and the vertical axis the coordinate y/(ct). The
contours represent curves of uniform density. The observed ripples are echoes of the original density fluctuation. Each ripple is associated with an l term. At
linear order approximation, there is an infinite-density shock wave with conic shape (l = 0), and shock wave echoes (other l terms) located inside the conic
surface.

3.2 Supersonic perturber

For supersonic-moving perturbers, M > 1, the argument of the delta function in equation (13) has roots only if

s ≤ −
√(

M2 − 1
) [

y2 + (z − 2lL)2
]
. (20)

In that case, those roots are

wl,∓ ≡ 1

M2 − 1

[
s ∓ M

√
s2 − (M2 − 1)

[
y2 + (z − 2lL)2

]]
.

With some algebra one can show that equation (13) gives

α(r, t) = GM

c2

+∞∑
l=−∞

(−1)ηl√
s2 − (M2 − 1)

[
y2 + (z − 2lL)2

]
(

	
[
c2t2 − x2 − y2 − (z − 2lL)2

] + 2	

[
c2t2

(
1 − 1

M2

)
− y2 − (z − 2lL)2

]

×	
[
x −

√
c2t2 − y2 − (z − 2lL)2

]
	

[
Mct − x −

√(
M2 − 1

) [
y2 + (z − 2lL)2

]])
,

(21)

where we are considering the Heaviside function to vanish when evaluated over non-real numbers.
The perturbation in the gas density, along the z = 0 plane, caused by a supersonic particle with M = 2 is shown in Fig. 4 at different

instants. As expected, for early times ct/L < 1, all the results are identical to those in infinite media (Ostriker 1999).3

In the subsonic regime the density perturbation was infinite only at the particle location, and surfaces of constant density in the
neighbourhood of this point were concentric oblate spheroids centred at it, with short-axis along the x direction. Thus, coincidentally, the
front–back symmetry of the medium density about the particle suppressed the contribution of this region to the drag force, assuring its
finiteness (Ostriker 1999; Rephaeli & Salpeter 1980). Obviously, this is not the case in the supersonic regime. In fact, it can be shown that the
drag force felt by a supersonic point-like particle is infinite. Thus, a regularization procedure needs to be introduced. We follow the standard,
physically motivated, procedure of describing actual sources via an effective size rmin. This produces a cut-off in the force integral, describing
the effective size of the particle, and assuring that the drag remains finite.

3Interestingly, the late-time results for the perturbed density profile in a three-dimensional slab with Neumann conditions mimic those obtained in a truly
two-dimensional setting (where the gravitational force falls with ∼1/r, instead of the usual ∼1/r2), in both subsonic and supersonic regimes.
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Figure 5. Time dependence of the gravitational drag force acting on a supersonic particle with Mach number M = 2, and size rmin/L = 10−2 (black dots).
At early times ct/L < 1, the dots are in agreement with the drag formula of equation (8) for non-compact mediums (purple dashed curve). At late times ct/L �
1, our results are well described by equation (22). In green, we show the (l = 0) contribution from the non-reflected wake.

Figure 6. Late-time drag force for supersonic particles with finite size rmin/L = 10−2 (black dots). The results are well approximated by the fit expression (22)
for M > 2 (orange dashed curve).

Fig. 5 shows the time dependence of the drag force, for a fixed Mach number M = 2 and rmin = 10−2L. At early times ct/L < 1 we find
a drag force identical to that computed in infinite three-dimensional gaseous media (Ostriker 1999).

Surprisingly, at late times ct/L � 1 the gravitational drag felt by a particle moving supersonically through a slab with Dirichlet conditions
is time independent. In fact, our numerical results show (see Fig. 6) that this late-time drag force is well described by

F � − (GM)2ρ0

c2

(
D + 4π

M2
log (L/rmin)

)
, (22)

with D ≡ (21.17M0.83 − 22.05)/M2.58, for Mach number M > 2. The magnitude of the drag force increases when the size of the particle
decreases, but it is a very mild, logarithmic, dependence. For fixed M, the second term in the equation above is dominant for a sufficiently
small perturber L/rmin � 1.

With Neumann conditions, our numerical results show that, at late times ct/L � 1, the drag force is well described by

F � − (GM)2ρ0

c2

[
J + 4π

M2
log

(
M ct

L

L

rmin

)]
, (23)

where J ∼ 1 is a function of M. This is the same late-time (ct/rmin � 1) behaviour of the drag force felt by a particle moving at supersonic
speed through a non-compact three-dimensional medium:

F � − 4π

M2

(GM)2ρ0

c2
log

(
M ct

rmin

)
, (24)
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which was obtained by Ostriker (1999) (see equation 8). Thus, interestingly, in a slab with Neumann boundary conditions, both the early-
and late-time drag force have the same behaviour as in non-compact geometries.

As it happened in the subsonic regime, the gravitational drag felt by a particle moving at supersonic speed through a three-dimensional
slab medium with Dirichlet (Neumann) conditions is always smaller (larger) in magnitude than the one it would feel if moving through an
infinite three-dimensional medium.

4 C O N C L U S I O N S A N D O U T L O O K

In this work we computed, for the first time, the gravitational drag force felt by a massive particle moving in a straight line through a
three-dimensional slab-like medium, taking into account reflections of the wake on the boundaries. Our results show that the late-time drag
force is strongly dependent on the boundary conditions of the slab. Nevertheless, the physically relevant slab-like set-ups satisfy Dirichlet
conditions (on α) at the boundaries. In those set-ups, the drag force can be substantially reduced relatively to extended media. However, since
the reflections of the medium wake play an important role in our study, it is important to understand if these reflections are also present in
a (realistic) vertically stratified open medium. Otherwise, the conclusions obtained with this simple set-up could not be extrapolated to more
realistic astrophysical set-ups. In the appendix, we show that, indeed, wake reflections are also present in open media, provided that their density
falls off sufficiently fast in the vertical direction. To do that we use a medium constituted by a homogeneous slab part and a stratified edge.
Note, however, that this is meant to be a toy model; in real astrophysical discs, often one cannot distinguish between a bulk and an edge part.

We should highlight that Namouni (2011) also studied the time-dependent dynamical friction on compact homogeneous media. In
particular, the effect of wake reflections on the boundaries was investigated. However, only one wake reflection was considered, and, though
not explicitly stated, Neumann boundary conditions were used. As we explained before, and show in the appendix, the (physically) realistic
boundary conditions are of Dirichlet type. Thus, an important conclusion was missed that, generically, wake reflections tend to suppress
gravitational drag.

It is worth pointing out that estimates for the steady-gravitational drag felt by a perturber moving in a straight line through a very thin disc,
using a two-dimensional approximation to describe the disc, were made previously (Muto et al. 2011). This approximation is very good at
describing the contribution to gravitational drag coming from fluctuations far from the perturber, which have already felt the slab boundaries.
In such set-ups, the dominant contribution to the subsonic motion drag comes from far regions, and the approximation is expected to hold
in that regime (Muto et al. 2011). For an inviscid medium, the gravitational drag was estimated to be suppressed with 1/t. This is in very
good agreement with our own results (see equation 18). However, the approximation in Muto et al. (2011) fails at describing the contribution
to the drag from the near region, which is the dominant one in supersonic motion. Nevertheless, though not succeeding in obtaining the
correct dependence on L/rmin, they estimate the supersonic late-time drag to be steady and proportional to 1/M2, which is in agreement with
our results for L/rmin � 1 (see equation 22). In that case (sufficiently small perturber), we recover the well-known estimates for the steady
supersonic drag force in a three-dimensional medium with effective size L, both in collisional media (Dokuchaev 1964; Ruderman & Spiegel
1971; Rephaeli & Salpeter 1980; Cantó et al. 2013) and collisionless media (Binney & Tremaine 1987).4 Again, this is related to the fact that,
for supersonic motion, the dominant contribution to the drag force comes from the near region. So, one does not expect the wake reflections
to play an important role in the drag; all the more so for a very small particle.

We expect our results to be important to the study of the physics of accretion and protoplanetary discs. There is a substantial body
of theoretical and numerical studies on the disc–planet gravitational interaction (Goldreich & Tremaine 1979, 1980; Ward 1986; Tanaka,
Takeuchi & Ward 2002; Muto et al. 2011; Stone, Arzamasskiy & Zhu 2018). However, in most of them two oversimplifications are used:
(i) the discs are assumed to be very thin, and a two-dimensional approximation is used to treat the medium; (ii) the gravitational wake
is assumed to be completely dissipated at the boundaries, without any reflection. A full three-dimensional treatment of the gravitational
interaction between a planet and a disc, not assuming (i), but maintaining assumption (ii) finds the following (Tanaka et al. 2002): the
migration time of an Earth-sized planet at 5au is of the order of 106 yr, which is two or three times longer than previously obtained results
using the two-dimensional approximation (Hayashi, Nakazawa & Nakagawa 1985). Their result is very relevant: since the formation time of
a giant planet at 5au is of the order of 106 yr (Tanaka & Ida 1999), the planetary migration must happen in a longer, or, at least, comparable
time-scale to explain the existence of giant planets. In that same work, they also suggested that the reflection of the gravitational wake on the
disc edges, which they neglected, could weaken even more the disc–planet interaction, and increase the planet migration time. Our results
clearly support their intuition in the case of subsonic motion, where the drag force is strongly suppressed (see Fig. 2). For supersonic motion,
the l = 0 term, which is not sensitive to the boundaries, accounts for most of the late-time gravitational drag. Thus, even though the drag force
is also suppressed in the case of supersonic motion, we do not expect the effect of wake reflections to be as striking as in the subsonic case.

One can argue that all the results derived here assume linear motion and cannot, formally, be applied in set-ups involving circular motion.
Despite this being true, Kim & Kim (2007) obtained the remarkable result that the drag force formulae derived for linear motion in extended
media by Ostriker (1999) give reasonably good estimates for the drag felt by circular-orbit perturbers. We expect the same thing to happen
here, at least qualitatively. In fact, the approach of Kim & Kim (2007) and Kim et al. (2008) to extend the drag formulae derived by Ostriker
(1999) from linear motion to circular-orbit and binary motion, respectively, can, in principle, be applied in a straightforward way to extend
our results to those same motions.

4In the case of collisionless media, there is no notion of sound speed. Nevertheless, the analogous regime to the supersonic motion is when the perturber has a
velocity much larger than the particle dispersion velocity of the medium (Ostriker 1999).
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The unbounded-medium approximation derived by Kim & Kim (2007) was used recently to estimate the impact of dynamical friction
in thin accretion discs on gravitational-wave observables (Barausse, Cardoso & Pani 2014). It was concluded that dynamical friction may
indeed be important and lead to degradation of gravitational-wave templates for detection. Notice that in a physically realistic set-up, the
accretion disc height is L ∼ rc/vK, where r is the distance from the disc centre, and vK ≡ (GM/r)1/2 is the local Keplerian velocity at which
the perturber is moving in its circular-orbit motion. In general, both c and L are functions of r. Nevertheless, Barausse et al. (2014) assume
that the relative velocity of the perturber with respect to the disc is M � vK/c ∼ r/L, and, so, for a thin accretion disc r/L � 1, the motion
is supersonic. So, from what we discussed above, the dominant contribution to the drag force comes from the region near the perturber. Thus,
even though our toy model neglects variations of c and L, we still expect it to describe appropriately the present set-up. Moreover, the sound
traveltime to the disc edges is of the same order of the orbital-motion period (i.e. c/L ∼ vK/r). Thus, the finiteness effects of the disc may be
relevant for the gravitational drag force in thin accretion discs, and can, possibly, change the conclusion of Barausse et al. (2014).
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Cantó J., Esquivel A., Sánchez-Salcedo F. J., Raga A. C., 2013, ApJ, 762, 21
Chandrasekhar S., 1943a, ApJ, 97, 255
Chandrasekhar S., 1943b, ApJ, 97, 263
Chandrasekhar S., 1943c, ApJ, 98, 54
Dokuchaev V. P., 1964, SvA, 8, 23
Goldreich P., Tremaine S., 1979, ApJ, 233, 857
Goldreich P., Tremaine S., 1980, ApJ, 241, 425
Hayashi C., Nakazawa K., Nakagawa Y., 1985, in Black D. C., Matthews M. S., eds, Protostars and Planets II. University of Arizona Press, Tucson, AZ, p.

1100
Kim H., Kim W.-T., 2007, ApJ, 665, 432
Kim H., Kim W.-T., Sanchez-Salcedo F. J., 2008, ApJ, 679, L33
Kumar P., 1993, in Brown T. M., ed., ASP Conf. Ser.Vol. 42, GONG 1992: Seismic Investigation of the Sun and Stars. Astron. Soc. Pac., San Francisco, p. 15
Lamb H., 1945, Hydrodynamics. Cambridge Univ. Press, Cambridge
Muto T., Takeuchi T., Ida S., 2011, ApJ, 737, 37
Namouni F., 2011, Ap&SS, 331, 575
Novikov I. D., Thorne K. S., 1973, in DeWitt C., DeWitt B. S., eds, Proceedings, Ecole d’Ete de Physique Theorique: Les Astres Occlus: Les Houches, France,

August, 1972. Gordon and Breach, New York, NY, p. 343
Ostriker E. C., 1999, ApJ, 513, 252
Rephaeli Y., Salpeter E. E., 1980, ApJ, 240, 20
Ruderman M. A., Spiegel E. A., 1971, ApJ, 165, 1
Sánchez-Salcedo F. J., Brandenburg A., 1999, ApJ, 522, L35
Shakura N. I., Sunyaev R. A., 1973, Astron. Astrophys., 24, 337
Stone J. M., Arzamasskiy L., Zhu Z., 2018, MNRAS, 475, 3201
Tanaka H., Ida S., 1999, Icarus, 139, 350
Tanaka H., Takeuchi T., Ward W. R., 2002, ApJ, 565, 1257
Ward W. R., 1986, Icarus, 67, 164

APPENDIX: WA KE REFLECTIONS IN OPE N MEDI A

Here, we show that the wake reflections observed in this work are not specific to unphysical slab media with Dirichlet boundary conditions.
Instead, they are also present in realistic vertically stratified (open) media, provided that their density falls sufficiently fast to zero. Moreover,
we show that (as far as wake reflections is concerned) these stratified set-ups are well modelled by a slab with Dirichlet conditions at the
(cut-off) boundaries.
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Figure A1. Time evolution of a wave packet with initial conditions ᾱ(z, 0) = e
− 1

2

(
z+20

4

)2

and ∂t ᾱ(z, 0) = −c ∂zᾱ(z, 0) by equation (A2). Blue: wave packet
propagating in the stratified set-up (A6) (also represented in the figure), with radiation boundary conditions; Purple: wave packet propagating in a homogeneous
medium with Dirichlet conditions at z = h; Above: initial (incident) wave packets propagating from left to right; Below: reflected wave packets propagating
from right to left. The parameters used were c = 15, ρ0(0) = 10, and h = 1.

Let us start by considering a vertically stratified isothermal gaseous medium with unperturbed density ρ0(z). Here, we focus on the z

direction dynamics. Thus, the linearized equation describing the relative perturbed density is

∂2

∂z2
α − 1

c2

∂2

∂t2
α +

(
∂

∂z
log ρ0

)
∂

∂z
α = 0 . (A1)

Defining ᾱ ≡ α(z, t)e−k(z) with

k ≡ −1

2
log

(
ρ0(z)

ρ0(0)

)
,

equation (A1) gives

∂2

∂z2
ᾱ − 1

c2

∂2

∂t2
ᾱ +

[
k′′ − (

k′)2
]
ᾱ = 0 , (A2)

where k
′
denotes the derivative of k with respect to z. Now, one can write ᾱ as the Fourier integral

ᾱ =
∫

dω ᾱω(z)e−iωt , (A3)

which after substitution in equation (A2) gives

∂2

∂z2
ᾱω + qω(z)ᾱω = 0 , (A4)
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with

qω ≡
(ω

c

)2
+ k′′ − (

k′)2
. (A5)

By looking at the sign of qω, one can identify the regions where ω-mode fluctuations of the medium density propagate, and the ones where
they evanesce: propagation happens in regions with positive qω, and evanescence in regions with negative qω (Kumar 1993).

As an example, consider the unperturbed density profile5

ρ0 = ρ0(0)
[
1 + (e−z/h − 1)	(z)

]
, (A6)

with h the effective width of the medium’s edge, and 	(z) the Heaviside step function. This density profile gives

qω =
(ω

c

)2
− 	(z)

(
1

2h

)2

. (A7)

We see that every ω mode can propagate in z < 0, whereas only the |ω| > c/(2h) modes can propagate in z > 0. In other words, an ω mode
coming from z < 0, and propagating in the positive z direction, gets totally reflected at z = 0, iff |ω| ≤ c/(2h); otherwise, the ω mode is
partially reflected and partially transmitted. The frequency ω = c/(2h) is often called cut-off frequency (Lamb 1945).

The gravitational wake produced by a moving perturber can be modelled by a real wave packet with spatial width δz ∼ 2L, where 2L is
the effective thickness of the medium. Thus, the Fourier transform in space of this gravitational wake is centred at ω/c = 0, and has width
δω/c ∼ 1/(2δz) ∼ 1/(4L).6 So, the typical frequency content of a gravitational wake produced in slab-like media has δω ∼ c/(4L). Thus, if
h � 2L, the wake is totally reflected at z = 0. In that case, concerning the wake reflections, this stratified medium is well modelled by a
homogeneous medium (z < h) with Dirichlet conditions at the z = h (cut-off) boundary.7

Fig. A1 shows the results for the time evolutions of a wave packet propagating in the stratified set-up (A6), with (open) radiation
boundary conditions; and, a wave packet propagating in a homogeneous medium with Dirichlet conditions at z = h. These results are in
accordance with the predictions above.

Finally, let us consider an additional example. For a disc edge in isothermal equilibrium, the unperturbed density is (Shakura & Sunyaev
1973)

ρ0 = ρ0(0)
[
1 +

(
e− 1

2 ( z
h )2 − 1

)
	(z)

]
. (A8)

This profile gives

qω =
(ω

c

)2
− 	(z)

(
z2

4h4
− 1

2h2

)
. (A9)

We see that each ω mode can only propagate in the region

z < zω ≡ h

√
2 +

(
2hω

c

)2

,

being evanescent elsewhere. Moreover, since the typical frequency content of a gravitational wake produced in slab-like media has δω ∼
c/(4L); if the edges are sufficiently thin (h � 2L), then zω ∼ √

2h, for all frequencies composing the wave packet. In other words, the whole
packet is totally reflected at z = √

2 h. Thus, again, concerning the wake reflections, this stratified medium is well modelled by a homogeneous
medium (z < h) with Dirichlet conditions at the z = h (cut-off) boundary.8

Fig. A2 shows the results for the time-evolutions of a wave packet propagating in the stratified set-up (A8), with (open) radiation
boundary conditions, and a wave packet propagating in a homogeneous medium with Dirichlet conditions at z = h. These results are again
in accordance with the predictions above.

As a final note, we point out that, in this appendix, we also show that the boundary conditions that a physically realistic slab medium
satisfies are the Dirichlet (reflection with inversion) ones. Had we used Neumann (reflection without inversion) conditions for the time
evolutions, the reflected wave packets would be inverted with respect to the wave packets reflected by the (realistic) stratified media.

5We note that, throughout this appendix, the slab edge spans z > 0; this contrasts with the treatment in the main text where the boundary was at z = L.
6This can be seen through an uncertainty principle for Fourier transformations, assuming a Gaussian-like wave packet.
7Although there is no propagation at z > 0, the stratified edge introduces a phase shift in the wave packet. Thus, in order to take this effect into account, we
choose z = h as the cut-off boundary, instead of z = 0.
8As in the last example, we chose z = h as the cut-off boundary, instead of z = √

2h, in order to model the correct phase shift introduced by the reflection in
the stratified medium.
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Figure A2. Time-evolution of a wave packet with initial conditions ᾱ(z, 0) = e
− 1

2

(
z+20

4

)2

and ∂t ᾱ(z, 0) = −c ∂zᾱ(z, 0) by equation (A2). Blue: wave packet
propagating in the stratified set-up (A8) (also represented in the figure), with radiation boundary conditions; Purple: wave packet propagating in a homogeneous
medium with Dirichlet conditions at z = h. Above: initial (incident) wave packets propagating from left to right; Below: reflected wave packets propagating
from right to left. The parameters used were c = 15, ρ0(0) = 10, and h = 2.
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