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ABSTRACT

We describe a mechanism by which supermassive black holes (SMBHs) can form directly in
the nuclei of protogalaxies, without the need for ‘seed’ black holes left over from early star
formation. Self-gravitating gas in dark matter haloes can lose angular momentum rapidly via
runaway, global dynamical instabilities, the so-called ‘bars within bars’ mechanism. This leads
to the rapid build-up of a dense, self-gravitating core supported by gas pressure – surrounded
by a radiation pressure-dominated envelope – which gradually contracts and is compressed
further by subsequent infall. We show that these conditions lead to such high temperatures in
the central region that the gas cools catastrophically by thermal neutrino emission, leading to
the formation and rapid growth of a central black hole.

We estimate the initial mass and growth rate of the black hole for typical conditions in
metal-free haloes with T vir ∼ 104 K, which are the most likely to be susceptible to runaway
infall. The initial black hole should have a mass of �20 M�, but in principle could grow
at a super-Eddington rate until it reaches ∼104–106 M�. Rapid growth may be limited by
feedback from the accretion process and/or disruption of the mass supply by star formation
or halo mergers. Even if super-Eddington growth stops at ∼103–104 M�, this process would
give black holes ample time to attain quasar-size masses by a redshift of 6, and could also
provide the seeds for all SMBHs seen in the present Universe.

Key words: accretion, accretion discs – black hole physics – hydrodynamics – instabilities –
galaxies: formation – cosmology: theory.

1 I N T RO D U C T I O N

Several scenarios have been presented for the formation and growth
of supermassive black holes (SMBHs) in the nuclei of galaxies. One
possible route traces the black hole progenitors back to the first gen-
eration of stars. The first stars formed out of metal-free gas, with
the lack of an efficient cooling mechanism possibly leading to a
very top-heavy initial stellar mass function (Carr, Bond & Arnett
1984; Larson 1998). Numerical simulations of the fragmentation
of primordial clouds in standard cold dark matter (CDM) theories
suggest that Pop III stars were indeed very massive (Bromm, Coppi
& Larson 1999; Abel, Bryan & Norman 2000; Bromm, Coppi &
Larson 2002), and would have left behind black hole ‘seeds’ of any-
where from tens to several hundred solar masses. The main features
of a plausible scenario for the hierarchical assembly, growth and dy-
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namics of massive black holes from such seeds have been discussed
most recently by Volonteri, Haardt & Madau (2003), Volonteri et al.
(2005) and Volonteri & Rees (2005).

Another family of models for massive black hole formation is
based on the collapse of supermassive objects formed directly out of
dense gas (Haehnelt & Rees 1993; Umemura, Loeb & Turner 1993;
Loeb & Rasio 1994; Eisenstein & Loeb 1995; Bromm & Loeb 2003;
Koushiappas, Bullock & Dekel 2004). The main challenge for these
models is the disposal of angular momentum. Eisenstein & Loeb
(1995) and Koushiappas et al. (2004) investigated the formation of
black holes from low angular momentum material, either in haloes
with extremely low angular momentum (Eisenstein & Loeb 1995),
or by considering only the low angular momentum tail of material
in haloes with efficient gas cooling. But even in these models, as in
all the others, substantial angular momentum transport is required in
order for the gas to form a central massive object, which ultimately
collapses as a result of the post-Newtonian gravitational instabil-
ity. Various angular momentum transport mechanisms have been
invoked, including radiation drag against the cosmic microwave
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background (at very high redshifts: Umemura et al. 1993), viscos-
ity driven by magnetic fields or turbulence, Rossby waves (Colgate
et al. 2003) and self-gravitational instabilities.

The scenario we investigate here is related to the second family of
models, and focuses on the outcome of global dynamical instabilities
driven by self-gravity, the so-called ‘bars within bars’ mechanism
(Shlosman, Frank & Begelman 1989; Shlosman, Begelman & Frank
1990). Self-gravitating gas clouds become bar-unstable when the
level of rotational support surpasses a certain threshold. A bar can
transport angular momentum outwards on a dynamical time-scale
via gravitational and hydrodynamical torques, allowing the radius
to shrink. Provided that the gas is able to cool, this shrinkage leads
to even greater instability, on shorter time-scales, and the process
cascades. This mechanism is a very attractive candidate for collect-
ing gas in the centres of haloes, because it works on a dynamical
time and can operate over many decades of radius. In contrast to the
formation of a supermassive ‘star’, with high entropy throughout,
we show that the ‘bars within bars’ mechanism produces a ‘quasi-
star’ with a very low specific entropy near the centre. As a result, the
initial core collapse leading to black hole formation involves only a
few solar masses, rather than the thousands of solar masses usually
associated with direct collapse models. Despite this modest begin-
ning, accretion from the envelope surrounding the collapsed core
can build up a substantial black hole mass very rapidly – possibly
at a highly super-Eddington rate.

The plan of the paper is as follows. In Section 2, we discuss the
criterion for global gravitational instability and apply it to the gas in
dark matter haloes with a realistic distribution of angular momen-
tum parameters. If more than a few tenths of the baryonic matter fall
towards the centre of the halo, then gravitational instability should
be very common. But even an infalling fraction of ∼10 per cent
can lead to an interesting number of unstable haloes. In Section 3,
we specialize to haloes with virial temperatures T vir � 104 K and
metal-free gas. The bars within bars scenario makes specific predic-
tions about the radial distribution of infalling gas and the associated
circular velocity, which goes from constant in the outer parts of the
inflow to quasi-Keplerian close-in. We first discuss the infall process
neglecting star formation, and then show how the process is modi-
fied (but not necessarily halted) if a fraction of the infalling gas at
each radius forms stars. The gravitational binding energy liberated
by infalling gas increases steadily with decreasing radius, until the
luminosity exceeds the Eddington limit, the infalling stalls and a
radiation pressure-supported ‘quasi-star’ forms (Section 4). The ra-
dius of the quasi-star is a few astronomical units, a scale that does
not change even as the quasi-star grows in mass.

We show that the quasi-star has a positive specific entropy gradi-
ent, and that gas pressure remains important in the core of the quasi-
star. The temperature of this core steadily increases as matter piles
on to the quasi-star (Section 5), eventually approaching 109 K, at
which point it undergoes catastrophic cooling and collapse by ther-
mal neutrino emission (Section 6). We argue that this leads to the
formation of a black hole of ∼10–20 M�, which may then grow at
rate that greatly exceeds the Eddington limit (Section 7). This rapid
growth could produce a black hole of several million solar masses,
although feedback and depletion of the mass supply could quench
the growth rate at an earlier stage. We discuss the co-evolution of
the black holes and their hosts and the global impact of the black
hole population in Section 8. We conclude by discussing the im-
plications of this model for the interpretation of high-z quasars, the
statistics of black hole masses in the local universe, and its relevance
to other astrophysical situations where black holes could grow at a
very rapid rate.

Unless otherwise stated, all results shown below refer to the cur-
rently favoured �CDM world model with �M = 0.3, �� = 0.7, h =
0.7, �b = 0.045, σ 8 = 0.93 and n = 1.

2 C O N D I T I O N S F O R RU NAWAY C O L L A P S E

We focus here mainly on the dynamical stability of the gas in haloes
with virial temperatures T vir � 104 K. Runaway collapse could also
occur in smaller haloes, provided that molecular hydrogen cool-
ing is efficient and gas can cool well below the virial temperature.
In the absence of molecular hydrogen, gas in haloes with T vir <

104 K would tend to remain less dense than the dark matter; tidal
forces would then prevent widespread collapse and fragmentation
at this stage. Since cooling and collapse of the gas is more likely
in large haloes, and the masses involved are larger, we henceforth
refer to haloes with virial temperatures T vir � 104 K, unless oth-
erwise stated. We stress nevertheless that runaway collapse is not
completely ruled out in smaller systems at early times, well before
the first generation of stars created a photodissociating background.

Bromm & Loeb (2003) show that if molecular hydrogen forma-
tion is suppressed in haloes with T vir > 104 K, the gas tends to
condense into massive clumps in the centre. The gaseous com-
ponent of these haloes can cool even in the absence of H2 via
neutral hydrogen atomic lines to ∼8000 K, and contract nearly
isothermally (Oh & Haiman 2002). These massive clumps do not
fragment as long as molecular hydrogen remains unimportant. One
way to hinder the formation of molecular hydrogen is the pres-
ence of a dissociating background (Haiman, Abel & Rees 2000;
Oh & Haiman 2002; Bromm & Loeb 2003; but see Machacek,
Bryan & Abel 2001). It is therefore possible that the formation
of seed black holes in massive haloes follows an earlier epoch of
star formation. We consider redshifts high enough that a large frac-
tion of gas is still unenriched by metals, or very lightly polluted,
so that metal line cooling is still unimportant (Santoro & Shull
2006).

We assume that the baryons preserve their specific angular mo-
mentum during collapse (Mo, Mao & White 1998), and settle into
a rotationally supported disc at the centre of the halo (Mo et al.
1998; Oh & Haiman 2002). Flattened systems can be subject to
dynamical and secular instabilities, even when embedded in exter-
nal haloes (Fall & Efstathiou 1980). Several instability criteria have
been investigated (e.g. Ostriker & Peebles 1973; Efstathiou, Lake &
Negroponte 1982; Christodoulou, Shlosman & Tohline 1995),
which determine the maximum rotational energy (or angular mo-
mentum) that a system can possess and still be stable against bar-like
instabilities. Christodoulou et al. (1995) propose a simple, but ro-
bust, criterion for stability which can be expressed as

α =
(

1

2
f

T
|W |

)1/2

< 0.34, (1)

where T is the rotational kinetic energy, W is the gravitational po-
tential energy and f is a parameter dependent on the geometry of
the system, with f = 1 for discs.

Numerical simulations have not yet clarified the detailed dynam-
ics of gaseous collapse in haloes, and we explore here three different
models for self-gravitating gas discs. We assume that the disc has
either constant circular velocity (Mestel discs: Mestel 1963) or con-
stant angular velocity (rigid body rotation), or that the gas settles
down into a classical exponential disc. We embed the gaseous discs
into a halo of mass Mh, virial radius Rvir, and virial temperature T vir,
described by a Navarro, Frenk & White (1997, hereafter NFW) dark
matter density profile, with a spin parameter λspin(≡ J h E1/2

h /GM5/2
h ,
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where Jh is the total angular momentum and Eh is the binding en-
ergy). We recall that, within the spherical collapse model, the mass
of a halo, at a given redshift of formation, scales with the virial
temperature as M h � 104�

−1/2
vir T −3/2

vir M�, where �vir is the virial
density in units of the critical density.

We determine the characteristics of the gaseous discs via a proce-
dure similar to that of Mo et al. (1998). We then apply the criterion
given by Christodoulou et al. (1995) in order to determine the stabil-
ity of the modelled systems. Stability depends on two parameters:
the halo spin parameter λspin and the fraction of baryonic matter
that ends up in the disc, f d = (�M/�b) (M disc/M h). The results
can be understood qualitatively by approximating the disc kinetic
energy as T disc ≈ 0.5 M disc V 2

c(Rdisc), where Rdisc is the scalelength
of the disc,1 which can be determined under the assumption that the
collapsing baryons conserve angular momentum. If we ignore the
contribution of the halo to the circular velocity, for the three cases
we find

Tdisc,Mestel ≈ π2 G M2
disc fd(�b/�M)

32 λ2
spin Rvir

, (2)

Tdisc,rigid ≈ 9 π2 G M2
disc fd(�b/�M)

40 λ2
spin Rvir

, (3)

Tdisc,exp ≈ G M2
disc

λspin Rvir fR
, (4)

where

fR ≈ 1 − 3 fd

(
�b

�M

)
+ 5.2 f 2

d

(
�b

�M

)2

(5)

(see Mo et al. 1998, for the exact expression). At fixed λspin and
f d, T disc,rigid > T disc,Mestel > T disc,exp. The total kinetic (T) and po-
tential (|W|) energies of the systems, including the contribution and
stabilizing effect of the NFW halo, increase with λspin due to the
halo contribution within Rdisc, which increases with λspin. The ra-
tio T/|W|, nevertheless, decreases, due to an increasingly dominant
halo contribution.

The stability results are summarized in Fig. 1, in which the max-
imum spin parameter λspin,max for which a disc is unstable is shown
as a function of the fraction of baryons forming the disc, i.e. for
every f d, discs are stable for λspin > λspin,max.

The distribution of spin parameters found in numerical simu-
lations is well fit by a lognormal distribution in λspin, with mean
λ̄spin = 0.05 and s.d. σ λ = 0.5:

p(λ) dλ = 1√
2πσλ

exp

[
− ln2(λ/λ̄)

2σ 2
λ

]
dλ

λ
. (6)

This function is a good fit to the N-body results of Warren et al.
(1992). Similar results were found in later investigations (e.g. Cole
& Lacey 1996; Bullock et al. 2001; van den Bosch et al. 2002).
With this assumption we can estimate the fraction of discs subject
to dynamical instability, as a function of f d, for each of the three
disc models (Fig. 1).

3 S T RU C T U R E A N D E VO L U T I O N

O F C O L L A P S I N G G A S

The unstable conditions described in Section 2 are expected to lead
to runaway infall, provided that the gas remains cooler than the

1 Note that both the Mestel disc and the rigid disc are defined only for R <

Rdisc (Mestel 1963).

Figure 1. Bottom panel: maximum spin parameter, λspin,max, for disc in-
stability as a function of the gas fraction ending up in the disc. Discs are
stable for λspin > λspin,max. Solid line: Mestel disc, dashed line: rigid disc,
dot–dashed line: exponential disc. Upper panel: fraction of unstable discs,
for each of the three disc models.

local virial temperature as it collapses. For the densities expected
in pre-galactic haloes, the cooling time to �104 K is much smaller
than the dynamical time; this ordering is preserved as the collapse
proceeds. At the initial disc radius, the gravitational potential due to
the gas is already appreciable compared to that of the dark matter.
As we will see below, collapse leads to a mean gas density profile
at least as steep as r−2, implying a virial temperature that remains
roughly constant or increases with decreasing r, whereas the dark
matter density is expected to increase only as ∝r−1 in the inner parts
of the halo (NFW). The relative dominance of gas self-gravity over
the dark matter potential thus increases as the gas collects towards
the centre, implying that the conditions for large-scale gravitational
instability intensify with decreasing radius. Conditions are therefore
ideal for the ‘bars within bars’ instability. We will henceforth neglect
the dark matter.

The collapse of a self-gravitating, isothermal gas cloud has been
analysed in both the non-rotating (Larson 1969; Penston 1969; Shu
1977) and rotating but inviscid (Saigo & Hanawa 1998, and refer-
ences therein) limits. In all cases, the outer part of the flow evolves
towards the density profile of a singular isothermal sphere, ρ ∝ r−2.
Mineshige & Umemura (1997), analysing the case of a shrinking,
self-gravitating accretion disc subject to an α-viscosity, found anal-
ogous behaviour, i.e. a surface density distribution 
 ∝ r−1 in the
outer regions. Using smoothed particle hydrodynamics simulations,
Englmaier & Shlosman (2004) show that a rotating, self-gravitating
gas cloud can decouple dynamically from a larger stellar bar, thus
verifying the basic ‘bars within bars’ picture. They find that the
shrinking gas bar develops a strong density gradient with radius,
and an angular pattern speed � ∝ a−1, where a is the semimajor
axis of the gaseous bar. These features are also consistent with an
r−2 radial density distribution.

The ρ ∝ r−2 behaviour can be understood as follows. Suppose
the initial mass and radius of the cloud are M0 and r0, respectively,
corresponding to a virial speed v0 = (GM0/r 0)1/2 ∼ 10v10 km s−1.
At large radii and early times, the evolutionary time-scale of the
flow is set by the free-fall time at r 0, t 0 ∼ r 0/v0. At smaller radii
the free-fall time is shorter, but matter is being fed into these radii
on the much longer time-scale t0. Therefore, the mass flux through
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these regions must be roughly constant and independent of radius,

Ṁ(r ) = Ṁ0 ∼ M0

t0
∼ v3

0

G
= 0.2 v3

10 M� yr−1. (7)

On average, the self-gravitating gas at every radius gets rid of its an-
gular momentum on the local free-fall time, t ff(r ) ∼ [GM(r )/r 3]−1/2,
where M(r) is the mass contained within a radius r. The mass flow
rate is therefore Ṁ0 ∼ M(r )/tff(r ) ∝ [M(r )/r ]3/2. Since Ṁ0 is
constant, we have M(r ) ∝ r and ρ ∝ r−2.

This behaviour can change if the collapsing gas fragments and
forms stars. A self-gravitating cluster of collisionless particles would
increase its velocity dispersion in response to the bar potential, thus
quenching the instability. Although the cooling time-scale of the
gas is shorter than the dynamical time, and therefore violates the
Gammie (2001) criterion for avoiding fragmentation, we do not
expect fragmentation to deplete a large fraction of the inflow. This is
because the circular speed in the potential of the self-gravitating gas
remains roughly constant at r < r 0, and corresponds to a temperature
that is close to the virial temperature of the halo. Since we consider
only haloes with T vir � 104 K, the gas never cools very far below
T vir and therefore does not form a very thin sheet (i.e. the Toomre
1964 parameter Q does not become extremely small). The Jeans
mass under such conditions is only a few times smaller than M(r),
suggesting that fragmentation will be inefficient. A corollary of this
argument is that the efficient collection of gas in the centre of a
halo might occur only for a relatively narrow range of T vir � 104 K,
and only under metal-free conditions where the formation of H2

is inhibited (these arguments were discussed at length by Bromm
& Loeb 2003), or for gas enriched below the critical metallicity
threshold for fragmentation (Santoro & Shull 2006).

As noted in many earlier works, the r−2 density profile cannot
persist all the way to the centre of the collapsing cloud (Shu 1977;
Mineshige & Umemura 1997; Saigo & Hanawa 1998). After a time
t, gas collecting at a rate Ṁ0 will dominate the potential out to a
radius r 1(t) ∼ (t/t 0) r 0. An r−2 density distribution, with M(r ) ∝ r ,
is not globally self-gravitating inside r1, and therefore cannot drive
the bars within bars instability. In non-rotating collapse (Shu 1977)
the accumulated gas behaves like a point mass and the density at
r < r 1 scales as ρ ∝ r−3/2, as in Bondi (1952) accretion. In inviscid
collapse of a rotating fluid (Saigo & Hanawa 1998), the centrifugal
barrier forces the density to be roughly constant at small radii.

Our model involves effective transport of angular momentum,
and in this respect is closer to the case considered by Mineshige &
Umemura (1997). Assuming an α-viscosity with fixed α, they find
that the surface density profile in the inner region steepens to 
 ∝
r−5/3, corresponding to a steep mean density distribution ρ ∝ r−8/3.
The corresponding inflow rate scales as Ṁ ∝ r 1/3, and the inflow
speed, v ∝ r , falls far below the free-fall speed (∝ r−1/3). We also
expect self-similar settling of gas at a mean speed v(r ) ∼ r/t 

v0 for r 
 r 1. If we assume that angular momentum transfer is
governed by global self-gravitational instabilities, instead of an α-
viscosity, then the gas must adopt a configuration where these insta-
bilities are nearly quenched in order to transfer angular momentum
on a time-scale much longer than the dynamical time.

The conditions for global instability depend on the details of the
gravitational potential as well as the radial distributions of den-
sity, pressure and angular momentum. Because of the rapid cool-
ing, gas pressure is negligible and we expect the system to remain
strongly unstable at all radii where it is substantially self-gravitating
(Shlosman et al. 1989). The only way to suppress the instability, it
seems, is for the density distribution to become sufficiently cen-
trally concentrated that a large fraction of the gravitational poten-

tial at each r is generated by the gas at much smaller radii. This
requires the mean surface density distribution to steepen to 
 ∝
r−2, corresponding to a mean density ρ ∝ r−3, so that there are
roughly equal amounts of mass per decade of radius. Note that this is
slightly steeper than the density distribution obtained by Mineshige
& Umemura (1997).

The above argument assumes that angular momentum continues
to be transported by global gravitational instabilities, and that frag-
mentation continues to be unimportant. The latter assumption is
much less secure at r < r 1 than it is further out. If the gas remains
isothermal at ∼104 K, the Toomre Q-parameter would decrease
∝r 1/2 and the inflowing gas would form a thin disc. Thus, frag-
mentation could seriously hamper the bars within bars instability at
r < r 1. If fragmentation is highly efficient, then the inflowing gas
might simply lay down an isothermal stellar potential with a con-
stant velocity dispersion ∼v0. Little gas would be deposited inside
r 1(t).

It seems unlikely, however, that the outcome is this extreme.
Fragmentation should not deplete the gas density much below the
threshold for local gravitational instability, Q ∼ 1. Gas with the
corresponding density, and a sound speed ∼v0, would continue to
accrete at a rate αṀ0, where α is a viscosity parameter (Shlosman
et al. 1990). Even where fragmentation is suppressed, local non-
axisymmetric gravitational instabilities could continue to drive an-
gular momentum transport with an effectiveα ∼ O(1). Other sources
of angular momentum transport probably operate as well, such as
turbulence stirred up by the fragmentation and star formation itself.
Therefore, although we are not able to predict exactly how much
gas makes it all the way to the central region of the halo, we are
probably justified in parametrizing the surviving mass flux as αṀ0,
with α assumed to be ∼O(1).

4 C R E AT I O N A N D G ROW T H

O F A ‘ QUA S I - S TA R ’

Disc accretion persists as long as the infalling gas is able to radiate
away the liberated binding energy. Given an accumulated mass of
M∗(t) ∼ αṀ0t at r 
 r 1, we find that the luminosity generated
outside a radius r is given by

L(r , t) ∼ αṀ0
G M∗

r
∼ α2 v5

0

G

[
r

r1(t)

]−1

. (8)

Within a certain radius this radiation is trapped, the pressure builds
up and the gas inflates into a pressure-supported cloud, which we
dub a ‘quasi-star’. Since rotational support no longer dominates, we
assume that the self-gravitational instabilities are finally quenched.
The condition for radiation trapping is given by

L(r , t) > LEdd(t)

(
1 + pgas

prad

)−1

, (9)

where LEdd(t) ∼ 4παcG Ṁ0t/κ is the Eddington limit, given the
appropriate opacity κ , for the accumulated mass M ∗(t). pgas and
prad are the gas and radiation pressure, respectively, in the quasi-star.
Once the quasi-star mass exceeds a few solar masses (i.e. very early
in its growth, since the mass is growing at ∼0.2 αv3

10 M� yr−1), the
mean local thermodynamic equilibrium (LTE) radiation pressure
exceeds the gas pressure; we will henceforth assume p rad � pgas.
The interior of the quasi-star is hot enough to ionize hydrogen,
allowing us to assume that the opacity is dominated by electron
scattering. Substituting r 1(t) ∼ (t/t 0) r 0, we find that the radius of

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 370, 289–298

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/370/1/289/1026607 by Instituto Superior Tecnico user on 04 August 2020



Formation of black holes by direct collapse 293

the quasi-star is time independent, and is given by

r∗ ∼ ακv3
0

4πGc
= 1.6 × 1013αv3

10 cm. (10)

Thus, the quasi-star that is going to give rise to a SMBH has a radius
of 1 au, for αv3

10 ∼ 1.
Conditions in the interior of the quasi-star are extremely sensitive

to the mass inflow rate, which we express through its dependence on
α and v0. Denoting the quasi-stellar mass by M ∗ = m∗ M� ∝ t , we
find the mean density ρ ∗ ∼ 10−7α−3v−9

10 m∗ g cm−3, mean pressure
p∗ ∼ 106α−4v−12

10 m2
∗ erg cm−3, and mean temperature (in LTE) T∗

∼ 1.5 × 105α−1v−3
10 m1/2

∗ K. These estimates justify our assumptions
that p rad � pgas for m∗ > a few, and that the opacity is dominated
by electron scattering.

5 I N T E R I O R S T RU C T U R E A N D E VO L U T I O N

O F T H E QUA S I - S TA R

The characteristic specific entropy of the matter joining the quasi-
star increases with time, s ∗ ≡ p∗/ρ4/3

∗ ∝ M2/3
∗ ∝ t2/3. Since hydro-

static equilibrium demands p ∝ ρ2r 2 ∝ ρ4/3 M(r )2/3 in the quasi-
stellar interior, where M(r) is the mass contained within a radius r,
we conclude that each layer of matter added to the quasi-star ap-
proximately conserves its specific entropy as the quasi-star grows.
The positive entropy gradient, s(r ) ∝ M(r )2/3 ∝ r 2/3, stabilizes the
quasi-star against convection, which would otherwise tend to ho-
mogenize the entropy. This implies that each layer of the stellar
interior is compressed by overlying material until the radiative dif-
fusion time across the layer, t diff(r ) ∼ ρκr 2/c, is roughly equal to
the age of the quasi-star.

The interior structure of the quasi-star is therefore character-
ized by a density profile ρ ∼ ρ ∗(r/r ∗)−2, pressure profile p ∼
p∗(r/r ∗)−2, and temperature profile T ∼ T ∗(r/r ∗)−1/2.

These scalings apply as long as radiation pressure exceeds gas
pressure. However, the decreasing specific entropy towards the cen-
tre implies that the ratio of radiation pressure to gas pressure de-
creases with decreasing r,

prad

pgas
∼ m1/2

∗

(
r
r∗

)1/2

, (11)

implying that pgas ∼ p rad at small enough radii. The gas pressure-
dominated core comprises the earliest material laid down during
the growth of the quasi-star. It has a radius r c ∼ r ∗ m−1

∗ ∼ 1.5 ×
1013αv3

10m−1
∗ cm, temperature T c ∼ 1.5 × 105α−1v−3

10 m∗ K, and
density ρ c ∼ 10−7α−3v−9

10 m3
∗ g cm−3. The core mass is independent

of M ∗, α and v10, and is roughly 1 M�.
Nuclear burning commences when the core temperature reaches

T c ∼ 106–107 K, for a quasi-star mass m∗ ∼ (10–100)αv3
10. At

this point the core density is not that dissimilar to densities in-
side main sequence stars, so the burning time-scales are likely to
be similar as well. The evolution time-scale due to infall is much
shorter, tev = M∗/Ṁ0 ∼ 5α−1v−3

10 m∗ yr, so we do not expect nuclear
burning to progress very far until the core temperature approaches
∼108 K, for m∗ ∼ 103 αv3

10. At this point the gravitational binding
energy of the quasi-star is ∼1013α−1v−3

10 m∗ erg g−1 while the avail-
able nuclear binding energy is � 6 × 1018m−1

∗ erg g−1, if burning
is confined to the core. In order for the nuclear energy release to
overpower the gravitational binding energy of the quasi-star as a
whole, the mass must satisfy m∗ < 700 α1/2v

3/2
10 . Thus, by the time

that nuclear reactions are able to run to completion, the available
energy is probably insufficient to seriously affect the outer layers of
the quasi-star.

It is the ultrahigh infalling rate, squeezing the core and raising
its temperature beyond the thermostatic set points of thermonu-
clear reactions, which distinguishes the evolution of the quasi-star
from that of a normal Pop III star. At best, nuclear burning can
provide a brief hiatus in the contraction of the core, which ulti-
mately reaches temperatures �109 K where neutrino losses become
important.

6 C O R E C O L L A P S E A N D I N I T I A L G ROW T H

O F B L AC K H O L E

Continued compression by infalling matter prevents the core from
losing energy radiatively and collapsing or becoming degenerate.
At sufficiently high temperatures, however, neutrino losses lead to
core collapse and the formation of a black hole. At T c � 109 K,
the dominant neutrino loss mechanism is the Urca process, which is
∼300 times faster than photoneutrino production (Itoh et al. 1989;
Qian & Woosley 1996; Dutta et al. 2004; see also Koers & Wijers
2005 for a summary of principal rates). At higher temperatures,
pair annihilation becomes competitive with the Urca process, but
becauseρ ∝ T 3 in the core, both mechanisms scale similarly with T c.
Therefore, we may approximate the core cooling rate by Q c ∼ 3 ×
1015(T c/109 K)9 erg s−1 cm−3 and the cooling time-scale by t cool ∼
4pc/Q c. Setting this equal to tev, we find that the core collapses
when m∗ ∼ 3600αv3

10 and T c ∼ 5 × 108 K.
Details of the collapse depend on the angular momentum in the

core as well as the precise core mass at the time of collapse. If an-
gular momentum is initially unimportant, the core should collapse
at roughly constant temperature. As the specific entropy decreases
due to cooling, gas pressure begins to exceed radiation pressure and
neutrino losses are dominated by the Urca process. Because the core
mass is rather low, collapse could get hung up by electron degen-
eracy pressure, but infalling matter from the quasi-star envelope –
which continues to cool via neutrino losses – would quickly drive
the mass over the Chandrasekhar limit. Continued infall similarly
circumvents neutron degeneracy, with the result that a black hole
of a several solar masses forms in a few times the core free-fall
time.

If the angular momentum of the core and surrounding material
is too large to permit direct collapse to a black hole, then neutrino
cooling will lead to a rotationally supported disc. As material joins
the disc, self-gravity will trigger a new round of ‘bars within bars’
instability, which will generate additional entropy (enhancing neu-
trino cooling) as well as facilitating collapse by removing angular
momentum.

The amount of matter that falls promptly into the black hole de-
pends on the distribution of angular momentum in the ρ ∝ r−2 enve-
lope of the quasi-star. The black hole will immediately swallow all
the matter in the quasi-stellar envelope with a specific angular mo-
mentum j = �r 2 � GMBH/c. At one extreme, the specific angular
momentum at each radius could be a fixed fraction of the Keple-
rian value, implying j(M) ∝ M as a function of the enclosed mass
M(r). In this case, the black hole does not grow immediately much
beyond its initial mass. At the opposite extreme, the internal redis-
tribution of angular momentum within the quasi-star could have led
to solid body rotation, implying that j ∝ M2. In the latter case, the
black hole mass could quickly swallow a fraction ∼(GM∗/r ∗c2)1/2

of the mass of the envelope, assuming that the rotation rate reaches
approximately the Keplerian value at r∗. However, this amounts to
only about 20αv3

10 M�; therefore the prompt black hole mass is
unlikely to exceed several tens of solar masses.
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7 S U B S E QU E N T B L AC K H O L E G ROW T H

After the initial collapse and prompt accretion phase, the growth
of the black hole is regulated by angular momentum transport. The
envelope continues to accumulate mass from infall, and the bind-
ing energy per unit mass increases with time, v∗(t)2 ∼ GM∗(t)/r ∗,
where r∗ initially remains constant. The gravitational sphere of in-
fluence of the black hole has a radius r BH ∼ GMBH(t)/v∗(t)2 ∼
(M BH/M ∗)r ∗. If angular momentum were unimportant, then the
black hole would grow at the Bondi rate, ṀBondi ∼ v3

∗/G, and would
swallow the quasi-star in a free-fall time. Thereafter it would grow
at the infall rate, αṀ0.

Since angular momentum is important, a fraction of the binding
energy released close to the black hole, εṀBHc2, where ε ∼ 0.1 is the
accretion efficiency, is transported outwards by the torque. If it is not
radiated away from close to the hole – by neutrino losses, since there
is no free surface from which a wind can emerge – this energy must
react back on the inflow, slowing down the accretion. Let us assume
that neutrino losses are negligible. Initially, the region affected by the
feedback energy is confined to the interior of the quasi-star. The total
energy liberated by the time the black hole reaches mass M BH, E BH

∼ εM BHc2, affects the density profile inside the quasi-star out to a
radius ra ∼ E BH/(ρ ∗r 2

∗v
2
∗). Note that the liberated energy is trapped

inside the quasi-star, rather than flowing through it in a quasi-steady
state, because the radiative diffusion time-scale at every radius is
comparable to the age of the quasi-star and the growth time of the
black hole (Section 5).

When ra reaches r∗, the liberated energy equals the binding en-
ergy of the quasi-star and the latter begins to expand. This happens
very early in the angular momentum-dominated growth phase, when
the black hole mass has increased by an amount �M BH ∼ GM2

∗/
εc2r ∗ � O(M BH). To show this, we estimate the rate at which
the black hole swallows matter from the quasi-star envelope. The
rate at which mass is supplied to the sphere of influence of the
black hole can be taken to be proportional to the Bondi rate,
Ṁsup ∼ 4παBHρ(rBH)v∗(t)r 2

BH, where ρ(r BH) is the density eval-
uated at the black hole radius of influence and αBH < 1 is a pa-
rameter that describes the inefficiency of mass capture, e.g. due to
a finite rate of angular momentum transport (αBH need not be the
same as α). We expect the pressure and density distributions to be
rather flat between rBH and ra because of the extra energy injec-
tion, and therefore use v∗ to estimate both rBH and the free-fall
speed at the radius of influence. We also take ρ(r BH) ∼ ρ(ra) ∼
ρ ∗(r ∗/ra)2. Note, however, that even if the density increases ∝ r−β

at r < ra, our prescription gives a lower limit to Ṁsup provided that
β < 14/5.

The rate at which matter actually reaches the black hole is sup-
pressed by a further factor, due to the back reaction of the energy
flux inside the radius of influence (Gruzinov 1998; Blandford &
Begelman 1999; Narayan, Igumenshchev & Abramowicz 2000;
Quataert & Gruzinov 2000). In the absence of a wind that removes
energy and/or angular momentum, the accretion rate is reduced to
ṀBH ∼ ε−1(v∗/c)2 Ṁsup (Blandford & Begelman 1999, 2004). We
then find that the accretion rate is

ṀBH ∼ 3
αBH

ε3

c3

G

(
v∗
c

)9

. (12)

Since v∗ ∝ M1/2
∗ , ṀBH ∝ M9/2

∗ is a steeply increasing function
of M∗. Comparing it to the inflow rate on to the quasi-star, we find
that the feedback energy equals the binding energy of the quasi-
star before the black hole mass has doubled. Thus Bondi accretion,
even modified by feedback and a finite rate of angular momentum

transport, should quickly bring the quasi-star to the point where its
evolution is driven by feedback from the black hole.

The feedback flux does not blow apart the quasi-star, since
this would stop the growth of the black hole and therefore the
feedback. Instead the quasi-star expands gradually, allowing the
black hole accretion rate to adjust so that the feedback energy flux
equals the Eddington limit for the instantaneous quasi-star mass,
ṀBH ∼ 2×10−3(ε/0.1)−1(m∗/105) M� yr−1. The feedback energy
flux exceeds the Eddington limit for the black hole by a factor of
M ∗/M BH; thus, the black hole grows at a super-Eddington rate as
long as M ∗ > M BH. This configuration requires most of the feed-
back flux to be carried by convective motions inside the quasi-star,
since the enclosed mass at r BH < r < r ∗ is a steeply increasing
function of radius. However, one can show that the required con-
vective velocity, while larger than the mean inflow speed, is much
smaller than the local free-fall speed at all r. If the quasi-star mass
continues to increase at the constant rate αṀ0, then the black hole
mass evolves according to

MBH(t) ∼ 4 × 105αv3
10

(
ε

0.1

)−1 (
t

107 yr

)2

M�, (13)

i.e. M BH ∝ M2
∗.

To determine the evolution of the structure of the quasi-star in
response to feedback, we estimate ṀBH using the modified Bondi
rate discussed above. If we assume the density to be roughly uniform
within the quasi-star (outside rBH), we have

ṀBH ∼ 3αBH
c3

εG

(
MBH

M∗

)2 (
v∗
c

)4

. (14)

Equating this to the Eddington-limited rate (assuming electron scat-
tering opacity) and using equation (13) and the assumed infall rate
on to the quasi-star, we obtain

r∗ ∼ 2 × 1015α−1v−3
10

(
αBH

0.01

)1/2(
ε

0.1

)−1(
m∗
105

)3/2

cm. (15)

Neutrino losses are rapidly quenched by the expansion of the
quasi-star. Radiation pressure dominates throughout the envelope,
and the temperature (in LTE) decreases linearly with time (and
with M∗), T ∗ ∼ 4 × 105(αBH/0.01)−1/2αv3

10(ε/0.1) (m∗/105)−1 K.
Within the radius of influence of the black hole, the pressure varies
∝ r−3/2 (not ∝ r−5/2, as in ordinary Bondi accretion, because of the
feedback), and T ∝ r−3/8 can exceed T ∗ by a factor of as large as
(εc2/v2

∗) ∼ 40 (αBH/0.01)3/16(αv3
10)−3/8(m∗/105)3/16, close to the

black hole. Such temperatures are inadequate to produce a signifi-
cant neutrino flux when the black hole grows much beyond its initial
mass.

The effective temperature of the photosphere of the quasi-star is
also expected to decrease, implying that the quasi-star is unlikely
to be a significant source of hard ultraviolet radiation when it has
grown beyond ∼104 M�. Up to this point, the rate of production
of ionizing photons is very high, of the order of 1055 photons s−1;
but since this phase lasts for �105 yr, the total output falls far short
of the requirement for reionizing the Universe. Similarly, the quasi-
star produces �1050 photons s−1 in the Lyman–Werner band, but can
keep the molecular hydrogen in its surroundings photodissociated
only for �105 yr. These estimates correspond to a spherical photo-
sphere at r∗, but we note that photospheric temperatures could be
even lower if the photosphere is strongly flattened by rotation.

The above estimates are valid only as long as T ∗ � 104 K, corre-
sponding to

M∗ < 4 × 106αv3
10

(
αBH

0.01

)−1/2
(

ε

0.1

)
M� (16)
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and

MBH < 9 × 105αv3
10

(
αBH

0.01

)−1(
ε

0.1

)
M�. (17)

For the fiducial parameters, the black hole mass at this stage is al-
most as large as that of the quasi-star; further growth can occur at the
Eddington limit of the black hole. However, we emphasize the un-
certainty in parameters such as αBH and α. (We use different fiducial
estimates of α and αBH because the latter represents viscous trans-
port of angular momentum while the former represents a removal
of gas from the inflow due to fragmentation and star formation).

At lower temperatures, the Planck mean opacity (which is rel-
evant for calculating the radiation force in LTE, and therefore the
Eddington limit) becomes very sensitive to temperature (Mayer &
Duschl 2005), increasing sharply at T ∗ � 104 K and then decreasing
to several orders of magnitude below the electron scattering opacity
as the temperature declines further. The sharp decrease in opacity
would affect the photosphere at an even earlier stage in the evolution
of the quasi-star.

Finally, we note the existence of an alternative evolutionary sce-
nario in which αBH is so small that feedback does not regulate the
structure of the quasi-star. If αBH is essentially zero (in practice,

10−6 when m∗ ∼ 105), then the centrifugal barrier forms a wall
within the quasi-star at r ∼ r BH. r ∗ is once again constant and the
temperature at rBH scales as M ∗/M1/2

BH . If this ratio increases with
time, following the initial collapse and prompt accretion phase,
then neutrino losses remain important within the sphere of influ-
ence of the black hole. We are then justified in assuming that self-
gravitational instabilities transport angular momentum effectively.
Provided that nearly all of the liberated binding energy is carried
away by neutrinos, we deduce that the black hole grows at such a rate
that M BH ∝ M2

∗ ∝ t2. Adopting T (r BH) = 109T 9 K as the threshold
for rapid neutrino cooling, we find that the black hole mass (in solar
units) grows according to

mBH ∼ 225α−2v−6
10 T −2

9

(
m∗
105

)2

∼ 9 × 104T −2
9

(
t

107 yr

)2

. (18)

This rate is not much smaller than the Eddington-limited rate, equa-
tion (13), in the presence of feedback. Given the convergence of
these two extreme estimates, we are reasonably confident that rapid
black hole growth up to masses ∼104–106 M� is possible under the
conditions postulated here.

The discussion in Sections 3–7 can be generalized to haloes with
T vir < 104 K. If molecular hydrogen cools the gas down to ∼200 K,
then runaway collapse without fragmentation could occur in haloes
with correspondingly low virial temperatures. The characteristic
infall speed is then v10 � 0.2, implying inflow rates of a few thou-
sandths of a solar mass per year. Nevertheless, a quasi-star with a
hot dense core will eventually develop, and will ultimately collapse
to form a black hole due to runaway neutrino cooling. The mass
of the prompt black hole is insensitive to v10, and therefore is still
�20 M�. However, the mass of the quasi-star at this stage scales
as v3

10; thus the quasi-star mass is only a few times that of the black
hole. Moreover, the black hole could not reach more than a few thou-
sand solar masses before the growth rate becomes sub-Eddington,
and limited by the inflow of gas into the quasi-star.

8 E VO L U T I O N O F T H E B L AC K

H O L E P O P U L AT I O N

How large a population of black holes is likely to result from gravi-
tational instability of gas discs in high-redshift haloes? Given the

threshold of T vir > 104 K for efficient cooling, and therefore for
‘bars within bars’ instability, we can trace the co-evolution of the
black holes and their hosts. A T vir ∼ 104 K halo has a mass between
107 M� and 109 M� at redshift 6 < z < 20. The black hole forming
in such a host could grow at the super-Eddington rate given by
equation (13) until it reaches ∼106 M�, at which point its mass
would approach that of the quasi-star. Thereafter it could grow, by
Eddington-limited accretion (or the infall rate, if smaller), to an
even larger mass. However, the growth of the black hole can also be
terminated earlier by lack of fuel, i.e. by using up all the available
gas in the unstable disc (if f d is much smaller than unity) and/or if
star formation depletes the inflow. Therefore, we do not assume that
black holes grow rapidly to the maximum allowed mass. Indeed,
we will see below that our mechanism can provide the seeds for all
present-day SMBHs, even if its efficiency is quite low.

More massive haloes, with T vir � 104 K, are probably prone to
fragmentation and star formation, which would inhibit instability
and therefore the formation of a black hole by this process. Using
the Press–Schechter formalism (Sheth & Tormen 1999), we estimate
that the number density of haloes with virial temperature T vir > 2 ×
104 K (T vir > 5 × 104 K) is about 10 per cent (1 per cent) of the
density of haloes with 104 K < T vir < 2 × 104 K (104 K < T vir < 5 ×
104 K). More massive haloes make an even smaller contribution.
Since the contribution of haloes with T vir � 104 K is negligible,
we can estimate the black hole density by integrating over all host
haloes with T vir > 104 K.

Among all haloes with T vir > 104 K, only those with a low enough
spin parameter (given f d) will host a disc unstable to ‘bars within
bars’ instability. Assuming a seed black hole mass of 20 M�, we
plot the comoving mass density of black hole seeds in Fig. 2. The
mass density is small, but this process can nevertheless seed most
of the systems which will evolve into the local galaxies where
SMBHs have been found. For a given local halo, the extended Press–
Schechter formalism can be used to estimate the average number
of progenitors with T vir ∼ 104 K at z > 10. The probability of
black hole formation depends also on the amount of gas which con-
denses to form a disc (see Section 2). If the fraction of gas typically
ending up in the disc is f d ≈ 0.5, we find that this process needs

Figure 2. Lower panel: comoving density of 20 M� black hole seeds as
a function of redshift. Upper panel: comoving density of black holes, as-
suming continuous formation and growth of seeds to 106 M� according to
equation (13), starting from z = 20. Solid line: Mestel disc, dotted line:
rigid disc, dot–dashed line: exponential disc. The upper set of lines assumes
f d = 0.5, the lower set assumes f d = 0.1.
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to operate only until z � 18 in order to supply seeds to all present-
day haloes of Milky Way, or larger, size. If black hole formation
proceeded to z � 14, then all haloes with mass >1011 M� to-
day could have been seeded (see Barth, Greene & Ho 2005). If
f d was lower, the black hole formation process would have had
to continue for longer, in order to form seeds in the progenitors
of most local galaxies. These constraints would be eased by an
early generation of black hole seeds, formed in a small fraction of
haloes with T vir � 200 K, before H2 is photodissociated by the first
stars.

The process of seed formation can be widespread enough to ac-
count for subsequent SMBH evolution, even if the subsequent black
hole growth (Section 7) is inefficient in most high-redshift haloes.
We note, in fact, that black holes with masses well below ∼106 M�
are expected in local faint active galactic nuclei (Barth et al. 2005).
The growth of black hole seeds up to ∼104–106 M� cannot there-
fore happen in all high-redshift systems.

We can estimate the upper limit to the total black hole mass den-
sity predicted by our model by assuming continuous formation of
seed black holes, and adopting equation (13) to estimate their early
growth. We let black holes grow until either they have consumed all
the gas, or the infall of matter on to the black hole greatly decreases,
at M BH ≈ 106 M�. The comoving density of haloes is estimated
using the Sheth & Tormen (1999) halo mass function. The black
hole mass density shown in Fig. 2 must be compared to the density
that we observe at low z, i.e. ρBH(z = 0) ≈ 3–5 × 105 M� Mpc−3

(Aller & Richstone 2002; Yu & Tremaine 2002; Fabian & Iwasawa
1999; Elvis, Risaliti & Zamorani 2002; Marconi et al. 2004) and
ρBH(z = 3) ≈ 4–5 × 104 M� Mpc−3 (Merloni 2004). At z = 6,
a lower limit to the black hole density is obtained by integrating
the observed luminosity function, ρBH(z = 6) ≈ few × M� Mpc−3

(Fan et al. 2004). This density, however, includes only black holes
with masses �109 M�. To obtain a rough estimate of the total black
hole density at z = 6, we adopt the So�ltan (1982) argument. We ex-
trapolate the luminosity function up to z = 6, assuming the redshift
dependence given by Richards et al. (2005), integrate the emitted
quasar luminosity, and convert it into a black hole density by normal-
izing to the z = 0 SMBH density. We do not correct here for obscured
quasars, or assume a radiative efficiency, and therefore consider the
density that we find, ρBH(z = 6) ≈ 1–3 × 103 M� Mpc−3, more of
an indication than a robust estimate.

The densities shown in Fig. 2 must be regarded as upper limits to
the black hole density, as we have not included any effect that can
interrupt or disturb black hole formation and growth. We discuss in
the next section how the hierarchical framework for structure forma-
tion can modify this simple picture. We also recall that, eventually,
efficient star formation occurs in these haloes, competing for the
gas supply and possibly limiting the mass available for black hole
accretion.

9 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a scenario for the accumulation of gas in the
centres of dark matter haloes with T vir � 104 K, the initial collapse
of the gas to form seed black holes, and the subsequent early
growth of SMBHs. This mechanism can lead naturally to the super-
Eddington growth of black holes up to masses ∼106 M�, as early as
redshifts 10–20. Given additional growth to ∼109 M� at close to the
Eddington rate, the model can account for the population of quasars
observed at z ∼ 6 (Fan et al. 2004). Even without significant growth
after the formation phase, this mechanism could produce the seeds
for all SMBHs inferred to exist in the local Universe.

We argue that global self-gravity triggers the ‘bars within bars’
instability (Shlosman et al. 1989, 1990), under certain conditions,
as gas forms a rotationally supported thick disc in the centre of the
halo. On scales much smaller than the disc radius, and times shorter
than the free-fall time, quasi-steady inflow is a better representation
of the infall than a monolithic collapse. Local, or quasi-local sources
of ‘viscosity’, such as those due to magnetic fields, turbulence or
radiation drag, are not required to transport the angular momen-
tum that inhibits black hole formation. In metal-free haloes with
little molecular hydrogen, this behaviour is possible once the virial
temperature exceeds ∼104 K (Oh & Haiman 2002). Under these
conditions, gravitational instabilities can transport angular momen-
tum effectively from scales of several kpc down to scales initially as
small as ∼1 au, at a fraction of a solar mass per year (for a character-
istic infalling speed v0 ∼ 10 km s−1). We suggest that inflow is most
efficient in haloes where T vir does not exceed a few times 104 K,
since fragmentation of the infalling gas is unlikely to be efficient in
this case (Bromm & Loeb 2003). As the mass in the centre builds
up, global instabilities may be quenched in the inner regions, but
local gravitational instabilities could continue to drive a substantial
inflow, even if a certain amount of star formation occurs.

Instability occurs only where the halo spin parameter, λspin, falls
below a threshold value that depends on f d, the fraction of gas that
forms the disc. For f d � 0.5 the threshold is comparable to the
mean spin parameter predicted by simulations, and >20 per cent of
all T vir ∼ 104 K haloes should exhibit instability. Even a value of
f d as small as 0.1 leads to instability in �1 per cent of haloes and a
significant seed population of black holes.

In haloes with the low angular momentum required to trigger
black hole formation, the rapid infall of gas leads to a mass ac-
cumulation much larger than that expected in a mini-halo with an
average spin parameter. The formation of a ‘standard’ Pop III star
(Bromm et al. 1999; Abel et al. 2000; Bromm et al. 2002) is therefore
suppressed in favour of a massive ‘quasi-star’ (Section 4). We sug-
gest that the much smaller mini-haloes (with virial temperature well
below 104 K) that form the first stars are distinct from the haloes that
form the seeds of SMBHs, although the former may be precursors
of the latter. Photodissociation of molecular hydrogen, possibly by
a small population of Pop III stars, would suppress fragmentation of
the infalling gas. It is therefore possible that the formation of seed
black holes follows an earlier epoch of star formation, as the ‘quasi-
star’ itself is not a significant source of photodissociating photons
for long. The epoch of black hole formation must happen early
enough, however, that the Universe is not highly metal enriched –
later episodes of star formation would enrich the environments of
seed black holes.

The most important conclusion of our model is that the
‘quasi-star’ formed by the accumulating gas has a low-entropy,
gas pressure-dominated core surrounded by a radiation pressure-
dominated envelope. As matter piles on to the quasi-star, the core is
squeezed until its temperature approaches 109 K (typically when the
envelope mass reaches a few thousand M�). Cooling by thermal
neutrinos then leads to core collapse and the formation of a seed back
hole of ∼10–20 M�. This is a novel application of neutrino cooling,
which has been invoked previously in connection with hyperaccre-
tion on to neutron stars in supernovae (Colgate 1971; Chevalier
1989; Houck & Chevalier 1991) and common envelope binaries
(Chevalier 1993; Brown, Lee & Bethe 2000), and on to black holes
in gamma-ray bursts (Narayan, Paczyński & Piran 1992; Woosley
1993; Popham, Woosley & Fryer 1999; Narayan, Piran & Kumar
2001). It is difficult to set up the necessary conditions for efficient
neutrino cooling, since radiation pressure generally prevents the
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accretion rate from reaching the required level from below, unless
the viscosity parameter α is extremely small (Chevalier 1996). Pre-
vious models have circumvented this problem by invoking strong
radiation trapping in a steady-state (or slowly varying) accretion
flow. In our case the inflow sets up favourable conditions in a time-
dependent fashion by establishing a steep positive entropy gradient
in the quasi-star, with only mild radiation trapping.

The subsequent evolution of the black hole can be very fast, with
growth to more than a million solar masses possible in less than
a Salpeter time-scale. Even taking account of strong energy feed-
back driven by angular momentum transport, we conclude that black
holes can accrete at the Eddington rate for the quasi-star mass,
which exceeds the Eddington rate for the black hole by a factor of
M ∗/M BH. For steady infall on to the quasi-star, this corresponds to
a black hole mass increasing with time as M BH ∝ t2.

If black hole growth (equation 13) proceeded undisturbed in all
haloes satisfying the instability criterion with T vir > 104 K, then the
total mass density in SMBHs would become comparable to the local
one already at high redshift. However, a number of effects can limit
this initial phase of rapid growth. Limitations intrinsic to the halo
include the overall mass supply that participates in the infall, as well
as removal of matter from the inflow by star formation. Moreover,
the haloes and their embedded black holes do not grow in isolation.
Haloes susceptible to the ‘bars within bars’ instability represent
high peaks in the field of density fluctuations (Tegmark et al. 1997;
Madau et al. 2004). Therefore, they should experience an enhanced
number of major mergers with respect to ‘average’ haloes at the same
redshift. Halo major mergers can modify our basic results in two
ways. First, cosmological simulations show that the spin parameter
of a halo typically increases after a major merger (Vitvitska et al.
2002). On the other hand, the spin parameter decreases after a long
series of minor mergers. Major mergers, therefore, should delay the
triggering of instabilities, at least until a sufficient number of minor
mergers has lowered the spin parameter again. Secondly, a major
merger could destroy the coherence of the ‘bars within bars’ process.
By interfering with the infall of matter on to the quasi-star, a violent
encounter could hasten the depletion of the mass supply well before
the upper limits discussed above are reached. Such a disturbance is
unlikely to modify the interior structure of the existing quasi-star
or suddenly stop the growth of the black hole, however, since these
involve only the very core of the system.

Seeding of larger haloes by black hole mergers could also be
limited by the ‘gravitational rocket’ effect, the recoil due to the net
linear momentum carried away by gravitational waves in the coales-
cence of two black holes (Haiman 2004; Madau et al. 2004; Yoo &
Miralda-Escudé 2004). The recoil velocity still has large uncertain-
ties, but can easily exceed ∼100 km s−1, comparable to the escape
velocity from shallow halo potentials. Volonteri & Rees (2006)
estimate that up to 50 per cent of black holes merging in high-
redshift haloes can be ejected due to the gravitational rocket effect.

Despite these potential sources of inefficiency, the mechanism we
have outlined could be the principal route leading to SMBH forma-
tion in galactic nuclei. The main elements of the model – particularly
the cascading infall via ‘bars within bars’ instability, and the forma-
tion and evolution of the quasi-star with runaway neutrino cooling –
should be testable via numerical simulations. We hope that such
simulations can be undertaken shortly.

AC K N OW L E D G M E N T S

This work was supported in part by NASA Beyond Einstein Foun-
dation Science grant NNG05G192G, NSF grant AST-0307502, and

the University of Colorado Council on Research and Creative Work.
MCB thanks the Institute of Astronomy and the Master and Fellows
of Trinity College, Cambridge, for their hospitality.

R E F E R E N C E S

Abel T., Bryan G., Norman M., 2000, ApJ, 540, 39
Aller M. C., Richstone D., 2002, AJ, 124, 3035
Barth A. J., Greene J. E., Ho L. C., 2005, ApJ, 619, L151
Blandford R. D., Begelman M. C., 1999, MNRAS, 303, L1
Blandford R. D., Begelman M. C., 2004, MNRAS, 349, 68
Bondi H., 1952, MNRAS, 112, 195
Bromm V., Loeb A., 2003, ApJ, 596, 34
Bromm V., Coppi P. S., Larson R. B., 1999, ApJ, 527, L5
Bromm V., Coppi P. S., Larson R. B., 2002, ApJ, 564, 23
Brown G. E., Lee C.-H., Bethe H. A., 2000, ApJ, 541, 918
Bullock J. S., Dekel A., Kolatt T. S., Kravtsov A. V., Klypin A. A., Porciani

C., Primack J. R., 2001, ApJ, 555, 240
Carr B. J., Bond J. R., Arnett W. D., 1984, ApJ, 277, 445
Chevalier R. A., 1989, ApJ, 346, 847
Chevalier R. A., 1993, ApJ, 411, L33
Chevalier R. A., 1996, ApJ, 459, 322
Christodoulou D. M., Shlosman I., Tohline J. E., 1995, ApJ, 443, 563
Cole S., Lacey C., 1996, MNRAS, 281, 716
Colgate S. A., 1971, ApJ, 163, 221
Colgate S. A., Cen R., Li H., Currier N., Warren M. S., 2003, ApJ, 598, L7
Dutta S. I., Ratkovic S., Prakash M., 2004, Phys. Rev. D, 69, 023005
Efstathiou G., Lake G., Negroponte J., 1982, MNRAS, 199, 1069
Eisenstein D. J., Loeb A., 1995, ApJ, 443, 11
Elvis M., Risaliti G., Zamorani G., 2002, ApJ, 565, L75
Englmaier P., Shlosman I., 2004, ApJ, 617, L115
Fabian A. C., Iwasawa K., 1999, MNRAS, 303, 34
Fall S. M., Efstathiou G., 1980, MNRAS, 193, 189
Fan X. et al., 2004, AJ, 128, 515
Gammie C. F., 2001, ApJ, 553, 174
Gruzinov A., 1998, unpublished manuscript, preprint (astro-ph/9809265)
Haehnelt M. G., Rees M. J., 1993, MNRAS, 263, 168
Haiman Z., 2004, ApJ, 613, 36
Haiman Z., Abel T., Rees M. J., 2000, ApJ, 534, 11
Houck J. C., Chevalier R. A., 1991, ApJ, 376, 234
Itoh N., Adachi T., Nakagawa M., Kohyama Y., Munakata H., 1989, ApJ,

339, 354
Koers H. B. J., Wijers R. A. M. J., 2005, MNRAS, 364, 934
Koushiappas S. M., Bullock J. S., Dekel A., 2004, MNRAS, 354, 292
Larson R. B., 1969, MNRAS, 145, 271
Larson R. B., 1998, MNRAS, 301, 569
Loeb A., Rasio F. A., 1994, ApJ, 432, 52
Machacek M. E., Bryan G. L., Abel T., 2001, ApJ, 548, 509
Madau P., Rees M. J., Volonteri M., Haardt F., Oh S. P., 2004, ApJ, 606, 484
Marconi A., Risaliti G., Gilli R., Hunt L. K., Maiolino R., Salvati M., 2004,

MNRAS, 351, 169
Mayer M., Duschl W. J., 2005, MNRAS, 358, 614
Merloni A., 2004, MNRAS, 353, 1035
Mestel L., 1963, MNRAS, 126, 553
Mineshige S., Umemura M., 1997, ApJ, 480, 167
Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 295, 319
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