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Abstract

If a point mass moves through a uniform gas cloud, at what rate does it accrete material? This is the question studied

by Bondi, Hoyle and Lyttleton. This paper draws together the work performed in this area since the problem was first

studied. Time has shown that, despite the simplifications made, Bondi, Hoyle and Lyttleton made quite accurate

predictions for the accretion rate. Bondi–Hoyle–Lyttleton accretion has found application in many fields of astronomy,

and these are also discussed.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In its purest form, Bondi–Hoyle–Lyttleton ac-

cretion concerns the supersonic motion of a point

mass through a gas cloud. The cloud is assumed

to be free of self-gravity, and to be uniform at

infinity. Gravity focuses material behind the point

mass, which can then accrete some of the gas.

This problem has found applications in many

areas of astronomy, and this paper is an attempt
to address the lack of a general review of the

subject.

I start with a short summary of the original

work of Bondi, Hoyle and Lyttleton, followed by

a discussion of the numerical simulations per-

formed. Some issues in Bondi–Hoyle–Lyttleton

accretion are discussed, before a brief summary

of the fields in which the geometry has proved
useful.
2. Basics

This section is somewhat pedagogical in nature,

containing a brief summary of the work of Bondi,

Hoyle and Lyttleton. Readers familiar with the
basic nature of Bondi–Hoyle–Lyttleton accretion

may wish to skip this section.
2.1. The analysis of Hoyle and Lyttleton

Hoyle and Lyttleton (1939) considered accre-

tion by a star moving at a steady speed through an

infinite gas cloud. The gravity of the star focuses

the flow into a wake which it then accretes. The

geometry is sketched in Fig. 1.

Hoyle and Lyttleton derived the accretion rate

in the following manner: Consider a streamline

with impact parameter f. If this follows a ballistic
orbit (it will if pressure effects are negligible),

then we can apply conventional orbit theory. We

have

€r � r _h2 ¼ �GM
r2

; ð1Þ

r2 _h ¼ fv1 ð2Þ

in the radial and polar directions, respectively.

Note that the second equation expresses the con-

servation of angular momentum. Setting h ¼ fv1
and making the usual substitution u ¼ r�1, we may

rewrite the first equation as

d2u

dh2
þ u ¼ GM

h2
: ð3Þ

The general solution is u ¼ A cos hþ B sin hþ C
for arbitrary constants A, B and C. Substitution of



Fig. 1. Sketch of the Bondi–Hoyle–Lyttleton accretion geometry.
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this general solution immediately shows that

C ¼ GM=h2. The values of A and B are fixed by the

boundary conditions that u ! 0 (that is, r ! 1)

as h ! p, and that

_r ¼ �h
du
dh

! �v1 as h ! p:

These will be satisfied by

u ¼ GM
h2

ð1þ cos hÞ � v1
h

sin h: ð4Þ

Now consider when the flow encounters the

h ¼ 0 axis. As a first approximation, the h velocity

will go to zero at this point. The radial velocity will

be v1 and the radius of the streamline will be given

by

1

r
¼ 2GM

h2
: ð5Þ

Assuming that material will be accreted if it is

bound to the star we have

1

2
v21 � GM

r
< 0

or

f < fHL ¼ 2GM
v21

; ð6Þ

which defines the critical impact parameter, known

as the Hoyle–Lyttleton radius. Material with an
impact parameter smaller than this value will be

accreted. The mass flux is therefore

_MHL ¼ pf2HLv1q1 ¼ 4pG2M2q1
v31

; ð7Þ

which is known as the Hoyle–Lyttleton accretion
rate.
2.2. Analytic solution

The Hoyle–Lyttleton analysis contains no fluid

effects, which makes it ripe for analytic solution.
This was performed by Bisnovatyi-Kogan et al.

(1979), who derived the following solution for the

flow field:

vr ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ 2GM

r
� f2v21

r2

s
; ð8Þ

vh ¼
fv1
r

; ð9Þ

r ¼ f2v21
GMð1þ cos hÞ þ fv21 sin h

; ð10Þ

q ¼ q1f
2

r sin hð2f� r sin hÞ : ð11Þ

The first three equations are fairly straightforward,

and follow (albeit tediously) from the orbit solu-

tion given above. The equation for the density is

rather less pleasant, and involves solving the

steady state gas continuity equation under condi-

tions of axial symmetry.
Eq. (4) may be rewritten into the form

r ¼ r0
1þ e cosðh� h0Þ

; ð12Þ

where e is the eccentricity of the orbit, r0 is the

semi-latus rectum, and h0 is the periastron angle.

These quantities may be expressed as

h0 ¼ tan�1 fv21
GM

� �
; ð13Þ

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2v41

G2M2

s
; ð14Þ



846 R. Edgar / New Astronomy Reviews 48 (2004) 843–859
r0 ¼
f2v21
GM

; ð15Þ

which may be useful as an alternative form to Eq.

(10).

Note that these equations do not follow mate-

rial down to the accretor. Accretion is assumed to

occur through an infinitely thin, infinite density

column on the h ¼ 0 axis. This is not physically

consistent with the ballistic assumption, since it
would not be possible to radiate away the thermal

energy released as the material loses its h velocity.

Even with a finite size for the accretion column, a

significant trapping of thermal energy would still

be expected. For now we shall neglect this effect.

2.3. The analysis of Bondi and Hoyle

Bondi and Hoyle (1944) extended the analysis

to include the accretion column (the wake fol-

lowing the point mass on the h ¼ 0 axis). We will

now follow their reasoning, and show that this

suggests that the accretion rate could be as little as

half the value suggested in Eq. (7). Fig. 2 sketches

the quantities we shall use.

From the orbit equations, we know that mate-
rial encounters the h ¼ 0 axis at

r ¼ f2v21
2GM

:

This means that the mass flux arriving in the dis-

tance r to r þ dr is given by
r

Fig. 2. Sketch of the geometry fo
2pfdfq1v1 ¼ 2pGMq1
v1

dr ¼ Kdr; ð16Þ

which defines K. Note that it is independent of r.
The transverse momentum flux in the same inter-

val is given by

Kvhðh ¼ 0Þ 1

2ps
;

which is the mass flux, multiplied by the transverse

velocity, divided over the approximate area of the

wake. Applying the orbit equations once more,
and noting that a momentum flux is the same as a

pressure, we find

Ps �
K
2ps

ffiffiffiffiffiffiffiffiffiffiffi
2GM
r

r
ð17Þ

as an estimate of the pressure in the wake. The

longitudinal pressure force is therefore

dðps2PsÞ ¼ K

ffiffiffiffiffiffiffiffi
GM
2

r
d

sffiffi
r

p
� �

:

Material will take a time of about r=v1 to fall

onto the accretor from the point it encounters the

axis. This means that we can use the accretion rate

to estimate the mass per unit length of the wake, m,
as

m � K
GM
v31

: ð18Þ

This makes the gravitational force per unit length
s

r the Bondi–Hoyle analysis.
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Fgrav ¼
GMmdr

r2
� K

G2M2

v31

dr
r2

:

For accreting material, we must have

r � GMv�2
1 . If we also assume that the wake is thin

(s � r) and roughly conical (ds=s � dr=r), then

taking the ratio of the pressure and gravitational

forces, we find that pressure force is much less than

the gravitational force. We can therefore neglect

the gas pressure in the wake.

The mass per unit length of the wake, m, was
introduced above. If we assume the mean velocity

in the wake is v, we can write two conservation

laws, for mass and momentum:

d

dr
ðmvÞ ¼ K; ð19Þ

d

dr
ðmv2Þ ¼ Kv1 � GMm

r2
: ð20Þ

Recall that Kv1 is the momentum supply into the

wake, since _r ¼ v1 on axis for all streamlines. We

can declutter these equations by introducing di-

mensionless variables for m, r and v:

v ¼ v1m; ð21Þ

r ¼ GM
v21

v; ð22Þ

m ¼ KGM
v31

l: ð23Þ

Note that v ¼ 2 corresponds to material arriving

from the streamline characterised by fHL. Substi-

tuting these definitions into Eqs. (19) and (20), we

obtain

d

dv
ðlmÞ ¼ 1; ð24Þ

d

dv
ðlm2Þ ¼ 1� lv�2: ð25Þ

We shall now analyse the behaviour of these

equations.

We can integrate Eq. (24) to yield

lm ¼ v� a ð26Þ
for some constant a. Since l is a scaled mass (and

hence always positive), we see that the scaled ve-

locity (m) changes sign when v ¼ a. That is, a is the

stagnation point. Material for v < a will accrete,
so knowing a will tell us the accretion rate (since

the accretion rate will be Kr0 where r0 is the value

of r corresponding to a). By writing lm2 ¼ lm � m,
we can use Eq. (26) to rewrite Eq. (25) as

m
dm
dv

¼ mð1� mÞ
v� a

� 1

v2
: ð27Þ

This has not obviously improved matters, but we

can now study the general behaviour of the func-

tion, without trying to solve it. First we need some

boundary conditions. These are as follows:

• m ! 1 as v ! 1
Which means that v ! v1 at large radii

• m ¼ 0 at v ¼ a
The stagnation point

• dm
dv

> 0 Everywhere

The velocity must be a monotonic function.
This is physically reasonable, if we are to avoid

unusual flow patterns.

The first two conditions can be satisfied for any

value of a. Fortunately, the third implies as re-

striction. The next set of manipulations may seem

a little obscure at first, but they do lead in the

desired direction.
Substitute n ¼ a�1v. Eq. (27) then reads

m
dm
dn

¼ mðm� 1Þ
n� 1

� 1

an2
: ð28Þ

Now, suppose the derivative is zero. This leads to
the condition

m2 � mþ 1

an2
ðx� 1Þ ¼ 0

or, one application of the quadratic roots formula

later:

m ¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� 1

an2
ðx� 1Þ

s
: ð29Þ

Since m ultimately represents a physical quantity

(the velocity), it is obviously desirable that it re-

main real. We therefore need to look at when the

discriminant can become zero. This is another

quadratic equation, leading to
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n ¼ 2

a
ð1�

ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
Þ;

which means that something must happen when

a ¼ 1. To determine this ‘something,’ it is best to

plot Eq. (29).
Fig. 4. Curves where dm=dn ¼ 0 for a > 1. In the region marked ‘a,’

regions.

Fig. 3. Curves where dm=dn ¼ 0 for a < 1. In the regions marked ‘a,’

region.
Figs. 3 and 4 demarcate the regions where

dm=dn changes sign, as dictated by Eq. (29). These

are not possible solutions for m. However, any

suitable solution for m must remain within the re-

gion marked ‘a’ if it is to remain monotonic and
the derivative is greater than zero. It is less than zero in the ‘b’

the derivative is greater than zero. It is less than zero in the ‘b’
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increasing. This is only possible when a > 1. Un-

winding our rescaled variables, we see that an a
value of unity puts the stagnation point halfway

between the accretor and the original value of

Hoyle and Lyttleton. This in turn implies a mini-

mum accretion rate of 0:5 _MHL.
Again, I would like to remind the reader that

the flow has been assumed to remain isothermal

with negligible gas pressure throughout this dis-

cussion. This assumption is likely to be violated in

the wake, where densities will be high and radia-

tive heat loss inefficient. At the very least, thermal

effects should be important close to the stagnation

point in the wake. Horedt (2000) details an anal-
ysis similar to that given above, but with a pressure

term included. The value of a (which Horedt calls

x0) was found to lie between 0.6 and 3.5 for flows

which were supersonic at infinity and subject to

Newtonian physics (the polytropic and adiabatic

indices were also free parameters in this analysis).

Will the flow be stable? Bondi and Hoyle as-

serted that if a > 2 (note that a ¼ 2 gives the solu-
tion of Hoyle and Lyttleton), then the wake would

become unstable to perturbations which preserve

axial symmetry. However, later analysis by Cowie

(1977) suggested that the wake should be unstable,

regardless of the value of a. Subsequent numerical

simulations and analytic work have shown that

Bondi–Hoyle–Lyttleton flow is far from stable, and

we will discuss the subject in Section 4.2.

2.4. Connection to Bondi accretion

Bondi (1952) studied spherically symmetric ac-

cretion onto a point mass. The analysis shows (see

e.g. Frank et al. (2002)) that a Bondi radius may be

defined as

rB ¼ GM
c2s ðrBÞ

: ð30Þ

Flow outside this radius is subsonic and the den-

sity is almost uniform. Within it, the gas becomes

supersonic and moves towards a freefall solution.

The similarities between Eqs. (6) and 30) led Bondi

to propose an interpolation formula:

_M ¼ 2pG2M2q1

ðc2 þ v2 Þ3=2
: ð31Þ
1 1
This is often known as the Bondi–Hoyle accretion

rate. On the basis of their numerical calculations,

Shima et al. (1985) suggest that Eq. (31) should

acquire an extra factor of two, to become

_MBH ¼ 4pG2M2q1

ðc21 þ v21Þ
3=2

; ð32Þ

which then matches the original Hoyle–Lyttleton

rate as the sound speed becomes insignificant. The

corresponding fBH is formed by analogywithEq. (7).

Nomenclature in this field can be a little con-

fused. When papers refer to ‘Bondi–Hoyle accre-

tion rates,’ they may mean Eqs. (7), (31) or (32). In

this review, I shall refer to pressure-free flow as

‘Hoyle–Lyttleton’ accretion and use _MHL and fHL.
When there is gas pressure, I will talk about

‘Bondi–Hoyle accretion’ and use _MBH and fBH, in
the sense defined by Eq. (32). I shall use ‘Bondi–

Hoyle–Lyttleton’ accretion to refer to the problem

in general terms.
3. Numerical simulations

In the previous section, I outlined the basic

theory behind Bondi–Hoyle–Lyttleton accretion.

This lead to elegant predictions for the accretion

rate, as given by Eqs. (7) and (32). However,

reaching these equations required a lot of simpli-

fying assumptions, so necessitating further inves-

tigation. The intractability of the equations of fluid
dynamics requires a numerical approach to the

problem.

In a break with tradition, I shall start this sec-

tion with the answer, and then give more detailed

citations to examples.
3.1. Summary

Do the equations of Bisnovatyi-Kogan et al.

provide a good description of Bondi–Hoyle–Lyt-

tleton flow? The answer is ‘No.’

In the absence of other effects, three numbers

parameterise Bondi–Hoyle–Lyttleton flow:

• The Mach number, M.

• The size of the accretor, in units of fHL.

• The c value of the gas.
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Fig. 5 shows sample density contours for a flow

with M ¼ 1:4, an accretor radius of 0:1fHL and

c ¼ 5=3. This particular simulation was axisym-

metric. A bow shock has formed on the upstream

side. The corresponding velocity field is plotted in

Fig. 6. Downstream of the shock, material flows
almost radially onto the accretor, in marked con-

trast to the analytic solution of Eqs. (8)–(11).

But what of the accretion rate? Fig. 7 shows the

accretion rates obtained for three simulations.

Although the dimensionless parameters were kept

the same, the physical scales and grid resolution

varied. Figs. 5 and 6 were taken from run 2. The
Fig. 6. Velocity field corresponding to the densities shown in Fig. 5.

dotted line.

Fig. 5. Density contours for a sample Bondi–Hoyle–Lyttleton simulat

equation of state was adiabatic with c ¼ 5=3. The contours are logar

dicates fHL. The flow is incident from the left.
accretion rates achieved are quite close to the value

of _MHL predicted for the flow (this value is sub-

stantially larger than the corresponding _MBH).

Despite the simplifications made, the work of

Bondi, Hoyle and Lyttleton has been largely vin-

dicated. In the remainder of the section, I shall cite
places in the literature where further simulations of

Bondi–Hoyle–Lyttleton flow may be found.

3.2. Examples in the literature

Hunt (1971, 1979) computed numerical solu-

tions of Bondi–Hoyle–Lyttleton flow. The accre-
The approximate position of the bow shock is marked with a

ion. The flow had M ¼ 1:4, an accretor radius of 0:1fHL and the

ithmically spaced over a decade of density. The dotted line in-



Fig. 7. Accretion rates for plain Bondi–Hoyle–Lyttleton flow. The crossing time corresponds to fHL.
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tion rate suggested by Eq. (32) agreed well with

that observed, despite the flow pattern being ra-
ther different. Hunt studied flows which were not

very supersonic and were non-isothermal. A bow

shock formed upstream of the accretor. Upstream

of the shock, the flow pattern was very close to

the original ballistic approximation. Downstream,

the gas flowed almost radially towards the point

mass. A summary of early calculations of Bondi–

Hoyle–Lyttleton flow may be found in Shima
et al. (1985). The calculations in this paper are in

broad agreement with earlier work, but some

differences are noted and attributed to resolution

differences.

More recently, a series of calculations in three

dimensions have been performed by Ruffert in a

series of papers (Ruffert, 1994a,b, 1995, 1996;

Ruffert and Arnett, 1994). This series of papers
used a code based on nested grids, to permit high

resolution at minimal computational cost. Ruffert

(1994a) details the code, and presents simulations

of Bondi accretion (where the accretor is sta-

tionary). Bondi–Hoyle–Lyttleton flow was con-

sidered in Ruffert and Arnett (1994). The flow of

gas with M ¼ 3 and c ¼ 5=3 past an accretor of

varying sizes (0:01 < r=fBH < 10) was studied. For
accretors substantially smaller than fBH, the ac-

cretion rates obtained were in broad agreement

with theoretical predictions. The flow was found
to have quiescent and active phases, with smaller

accretors giving larger fluctuations. However,
these fluctuations were far less violent than the

‘flip-flop’ instability observed in 2D simulations

(see below). Ruffert (1994b) extended these sim-

ulations to cover a range of Mach numbers,

finding that higher Mach numbers tended to give

lower accretion rates (down to the original inter-

polation formula of Eq. (31). Ruffert studied the

flow of a gas with c ¼ 4=3 in the 1995 paper,
finding accretion rates comparable with the the-

oretical results. Small accretors and fast flows

were required before any instabilities appeared in

the flow. Nearly isothermal flow was considered

in Ruffert (1996). The accretion rates were slightly

higher than the theoretical values (except for the

smaller accretors), and the shock moved back to

become a tail shock. The oscillations in the flow
were less violent still.

The reason for the formation of the bow shock

is straightforward – the rising pressure in the flow.

As shown by Eq. (11), the flow is compressed as it

approaches the accretor. This compression will

increase the internal pressure of the flow, even-

tually causing a significant disruption. At this

point, the shock will form. This interpretation is
consistent with the behaviour observed in simu-

lations, where decreasing c moves the shock back

towards the accretor. However, the precise
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location of the shock does not seem to be a strong

function of the Mach number (cf. the papers of

Ruffert).
4. Issues in Bondi–Hoyle–Lyttleton flow

In this section I shall discuss some issues relat-

ing to Bondi–Hoyle–Lyttleton flow which are of

particular interest.

4.1. The drag force

The simple idealisation of Bondi–Hoyle–Lyt-
tleton flow cannot persist for long. The accretor is

not only increasing its mass – it is accumulating

momentum as well. Eventually, it should be ac-

celerated to being co-moving with the gas flow. A

full calculation is not straightforward, but di-

mensional considerations suggest

_Mv1 � M _v1 ¼ Fdrag: ð33Þ
Please note, that the � in this equation is very

approximate. However, Eq. (33) suggests that the

accreting body will be brought to rest with respect

to the flow on the mass doubling timescale. This is

obviously a problem if the accretor is to change its

mass appreciably. As we shall see later, this has led

to most research into Bondi–Hoyle–Lyttleton ac-
cretion being concentrated into the study of bi-

naries. In such cases, the momentum difference can

be ‘paid’ by a change in orbit.

The drag does not originate as a form of ‘wind’

resistance pressing directly on the accretor. This is

for two reasons.

• The momentum deposited by the accretion col-

umn will be far larger.

• Mathematically, the accretor is a point anyway.

Instead, the drag arises from the gravitational

focusing of material behind the accretor. Since

more material is present on the downstream side,

the gravitational attraction of the downstream side

is larger, 1 and exerts a drag force. Chandrasekhar

(1943) was the first to consider this problem –
1 This is ignoring the mathematical impossibility of an

infinite, uniform medium for the unperturbed case.
called ‘dynamical friction’ – for a collisionless

fluid. An extended (and more recent) discussion of

the problem is given by Binney and Tremaine

(1987). Dokuchaev (1964) discussed the problem

for a gaseous medium. The matter of drag is also

mentioned by Ruderman and Spiegel (1971), who
propose

Fdrag ¼ _Mv1 ln
bmax

bmin

� �
; ð34Þ

where bmin and bmax are cut-off radii for the grav-

itational force. Yabushita (1978) suggested that a

suitable value for the outer cut-off for a flow with

pressure would be the point where the pressure in

the wake became equal to the background pressure

(the inner cut-off radius is usually taken to be the
radius of the accretor itself).

Values for the drag force given by Shima et al.

(1985); Shankar et al. (1993); Ruffert and Arnett

(1994) suggest that the drag force is no more than

a factor of ten larger than the crude estimate of

Eq. (33). The precise drag value has a tendency to

fluctuate anyway – Bondi–Hoyle–Lyttleton flow is

not stable.

4.2. Flow stability

Even in the axisymmetric case, there is no par-

ticular reason to believe that Bondi–Hoyle–Lyt-

tleton flow should be stable. The binding energy

test of Eq. (6) is made for gas flowing away from

the accretor. If this material is going to be ac-
creted, it needs to turn around somehow and fall

towards the point mass. This must happen in some

sort of accretion column, of the type first consid-

ered by Bondi and Hoyle (1944). As noted above,

the work of Cowie (1977) found that this wake

should be unstable. A ‘shock cone’ must surround

the wake, in which the flow loses its h velocity

before it encounters the axis (see also Wolfson,
1977a,b). The high densities expected for the wake

mean that this shock is likely to heat the gas. Gas

pressure could then be expected to drive oscilla-

tions close to the stagnation point. Bondi–Hoyle–

Lyttleton flow around small accretors has been

studied by Koide et al. (1991). This paper notes

that the ‘accreting body is so small that a part of

the accreting gas sometimes misses the target
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object and flows towards the upstream as a jet.’

This is obviously a rather unstable condition, and

leads to the accretion flow ‘sloshing’ back and

forth around the point mass. The accretion rate

fluctuates too, although the time averaged rate is

still close to the Bondi–Hoyle value.
When the condition of axisymmetry is relaxed,

even more instabilities become possible. Matsuda

et al. (1987); Fryxell and Taam (1988); Taam and

Fryxell (1988) performed 2D simulations of the

Bondi–Hoyle–Lyttleton geometry, with the con-

dition of axisymmetry relaxed, and a density and/

or velocity gradient imposed on the upstream flow.

All three papers found that a ‘flip-flop’ instability
resulted, with the wake oscillating back and forth

in a manner reminiscent of a von K�arm�an vortex

street. Matsuda et al. (1991) suggested that the

instability was intrinsic to the accretion flow, since

it was found to develop even under the conditions

first considered by Hoyle and Lyttleton (1939).

Another detailed study of the ‘flip-flop’ instability

for the 2D case for isothermal gas is that of Shima
et al. (1998). The code used was specifically de-

signed to conserve angular momentum and to

permit very high resolution in the inner portions of

the grid. They suggest that some of the resolution

dependence of the instability found by earlier work

was due to the use of codes which conserved linear

momentum, and caution against the results ob-

tained by such codes.
Such a spectacular instability naturally

prompted an intense theoretical investigation.

Soker (1990) extended the earlier work of Cowie

(1977) to include tangential oscillations. The

analysis is based on the assumption of a pressure

free flow, and the expressions derived for the

tangential behaviour also require the flow to be

2D and planar. The radial instability noted by
Cowie was found to be independent of the in-

coming material. Any radial oscillation in the

wake would grow, although the growth timescale

was much longer than the oscillation timescales.

The tangential modes (corresponding to the ‘flip-

flop’ instability) behaved in a similar manner.

Soker also predicted that the instability should be

milder in the 3D case. In Soker (1991), a nu-
merical study of the coupling between the radial

and tangential oscillations was made. The radial
modes, corresponding to large density and veloc-

ity fluctuations were excited far beyond the linear

regime, while the tangential oscillations remained

linear. While the mass accretion rate showed

corresponding fluctuations, the time averaged

accretion rate was similar (although smaller) than
the prediction of Eq. (7). Livio et al. (1991) added

a simple analysis of the shock cone surrounding

the wake seen in numerical simulations. Instabil-

ities were found in both the planar 2D and full

3D cases, although the authors note that the in-

stability should be milder in the 3D case (a point

also made by Soker (1990)).

The major weakness of all simulations of the
‘flip-flop’ instability mentioned so far is that they

fundamentally change the geometry of the prob-

lem. In order to simulate non-axisymmetric flow

in 2Ds, the flow has to be assumed to be planar.

This changes the shape of the accretor from a

sphere to a cylinder. The equations of fluid dy-

namics are non-linear, and are notorious for their

resolute refusal to yield to a proof of solution
uniqueness (Fefferman, 2000). There is therefore

no particular reason to expect the 2D planar

simulations to be characteristic of the true solu-

tion in 3D. The simulations of Ruffert suggest

that the ‘flip-flop’ instability is an artifact of 2D

planar flow.

Foglizzo and Ruffert (1997, 1999) attempted to

model the instabilities observed in the earlier nu-
merical work of Ruffert. The first of these papers

constructs stationary models, while the second

contains a stability analysis. The origin of the in-

stability was the bow shock generally seen in nu-

merical simulations. This produces entropy

gradients in the flow, which allows Rayleigh–

Taylor and Kelvin–Helmholtz instabilities to

grow. Foglizzo and Ruffert concluded that the
instability should be stronger if

• The shock is detached from the accretor (as is

the case for higher c values).
• The flow has a higher Mach number.

• The accretor is smaller.

They found that the instability should be non-

axisymmetric, and start at around h ¼ p=2 and
close to the accretor. Foglizzo and Tagger (2000)

describe the instability as ‘entropic–acoustic,’
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where entropy perturbations introduced by a

shock propagate back to the shock via

sound waves. These then trigger new entropy

perturbations.

4.3. Non-uniform boundary

Suppose the conditions at infinity are not uni-

form, but instead a density and/or velocity gradient

is present. This means that the flow within a cyl-

inder of radius fHL possesses angular momentum

about the accretor. How much of this reaches the

accretor?

Early calculations (Dodd and McCrea, 1952;
Illarionov and Sunyaev, 1975; Shapiro and

Lightman, 1976; Wang, 1981) suggested that

most of this angular momentum would accrete.

However, Davies and Pringle (1980) pointed out

that only material which had lost most of its

angular momentum would be able to settle onto a

small accretor. They developed a simple analytic

model for small density and velocity gradients (if
the gradients become large, then the flow ceases

to behave in the manner described by Bondi,

Hoyle and Lyttleton). Davies and Pringle found

that the mass accretion rate should be unaffected,

and there should be no accretion of angular

momentum.

Such confusion calls for numerical work.

Ruffert and Anzer (1995) presented a sample 3D
simulation of accretion under such conditions.

They found that about 70% of the angular mo-

mentum available (as calculated by Shapiro and

Lightman (1976)) would be accreted. Ruffert

(1997) extended this calculation with papers in

1997 (covering velocity gradients) and Ruffert

(1999) (studying density gradients). The mass ac-

cretion was not affected much, while the angular
momentum accretion rate varied between 0% and

70% of the value suggested by Shapiro and

Lightman (1976). Smaller accretors gave less sta-

ble flow, but none were as violently unstable as the

‘flip-flop’ instability observed in 2D planar simu-

lations. Ruffert noted that a very small accretor

will not be able to accrete all of the angular mo-

mentum within fHL, but was unable to test such a
case, due to the vast computational load involved

in such a simulation.
4.4. Radiation pressure

Where there is accretion, there will be an ac-

cretion luminosity. 2 Radiative feedback has the

potential to alter the Bondi–Hoyle–Lyttleton flow,
and a number of workers have studied this.

Most work has concentrated on the problem of

radiative feedback in X-ray binaries. This is a

fairly straightforward application, since the con-

stancy of the Thompson cross section makes the

transfer problem intrinsically grey.

Blondin et al. (1990) simulated a compact ob-

ject accreting an O star wind (forming an X-ray
binary). Radiative heating was included (it was

relevant to the radiation-driven wind), but the

radiation force of the X-rays was neglected. The

gas was assumed to be optically thin and in ioni-

sation equilibrium. The wake was found to be

unstable, oscillating back and forth. Despite these,

the accretion rates were broadly consistent with

that expected from a Bondi–Hoyle type analysis
(some modifications were necessary to allow for

the geometry of the binary). A later study of the

same problem was made by Taam et al. (1991).

This work included the effect of radiation pressure,

but the flow was still assumed to be optically thin

to electron scattering. Radiation pressure was then

negligible except in the wake. This paper contained

short section considering the accretion of an op-
tically thin gas subject to radiation pressure. This

led to the prediction that the flow would be un-

stable to oscillations if the accretion rate exceeded

one third of the Eddington Limit.

Kley et al. (1995) were interested in the appli-

cation of Bondi–Hoyle–Lyttleton accretion fol-

lowing a nova explosion in a binary. The radiation

field was simulated using flux limited diffusion, and
analytic approximations to opacity values. Their

simulations had quite a complicated model for the

accretor, including an envelope. Radiation pres-

sure was found to be critical to simulating the flow

(heating was included in all calculations, but the

radiation pressure was omitted from some). For

hot, optically thick flow, including radiation

pressure made the flow subsonic and substantially
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reduced the drag. However, the accretion rate was

found to be low (much less than the predictions of

Bondi–Hoyle theory) in all cases.

4.5. Relativity

If the accreting object is a neutron star or a

black hole, relativistic effects are likely to become

important. However, relativistic hydrodynamics is

generally recognised to be a non-trivial problem,

and relatively little work has been done on Bondi–

Hoyle–Lyttleton accretion for relativistic flows.

An early study by Petrich et al. (1989) found

broad agreement between the Newtonian and rel-
ativistic cases. Font and Ib�a~nez (1998b) performed

axisymmetric calculations in a Schwarzschild

metric. The passage of time gave more powerful

computers, enabling simulations to be run with

higher resolution than Petrich et al. Most of the

accretion rates found were similar to the Newto-

nian estimates, but some were an order of magni-

tude or so higher. No signs of instability were
found. Font and Ib�a~nez (1998a) relaxed the as-

sumption of axisymmetry, but still found the flow

to be steady. However, the authors note that they

were unable to push the simulation parameters

very far.

Font et al. (1999) simulated Bondi–Hoyle–

Lyttleton flow onto a rotating (Kerr) black hole.

Two forms of the metric were used, to differentiate
between numerical and physical effects. They

found that rotational effects were confined to a

region close to the hole. Their flows remained

steady.
5. Applications

The Bondi–Hoyle–Lyttleton scenario has been

applied to a variety of problems in the years since

its introduction. I will now discuss some examples

of these. Each of these problems could be the

subject of a review article by themselves (and often

have been), so I am not able to discuss the issues

involved in great depth. However, I hope that this

will provide a reasonable sample of the wide range
of areas where the Bondi–Hoyle–Lyttleton model

has proven useful.
5.1. Binary systems

The problem of accretion in a binary system

seems to be the most popular application of the

Bondi–Hoyle–Lyttleton analysis. As noted above,
the inevitable drag force simply causes the orbit to

change. The gas supply can either be from a stellar

wind, or from common envelope (CE) evolution.

Wind accretion seems to be one of the most

popular applications of the Bondi–Hoyle–Lyttle-

ton geometry. However, there are a number of

potential complications. For the Bondi–Hoyle–

Lyttleton solution to be valid, accretion must be
driven by a wind, rather than by Roche lobe

overflow. The work of Petterson (1978) warns that

the presence of Roche lobe overflow will substan-

tially complicate matters, and that allowance must

be made for the possibility when comparing theory

with observations. The orbital motion of the bi-

nary can also cause problems – see Theuns and

Jorissen (1993); Theuns et al. (1996) for a discus-
sion. These papers studied accretion rate in a bi-

nary, where the wind speed was comparable to the

orbital velocity. Consequently, the flow pattern

was substantially different from that envisaged by

Bondi, Hoyle and Lyttleton. Theuns et al. (1996)

found that the accretion rate for a binary is de-

creased by a factor of about ten compared to the

prediction of Eq. (32). They attribute this differ-
ence to the disrupting effect of the orbital motion.

Moving to higher mass ratios, Struck et al. (2004)

modelled wind accretion onto substellar compan-

ions of Mira variables. They found that the mean

accretion rates were generally similar to those

predicted by Bondi, Hoyle and Lyttleton. How-

ever, the flow was highly variable – both due to

instabilities in the accretion flow and the intrinsic
variability of the star. The ultimate ‘wind’ is that

produced by an explosion. In this case, the very

high velocities involved tend to make fBH compa-

rable to the size of the accreting body. The work of

Kley et al. (1995) has already been mentioned.

However, the problem had been studied before –

MacDonald (1980) estimated accretion rates using

modified a Bondi–Hoyle–Lyttleton formula.
Jackson (1975) used the predictions of Bondi–

Hoyle–Lyttleton theory to derive the system pa-

rameters of Cen X-3. Similar work was performed
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by Eadie et al. (1975), Pounds et al. (1975) and

Lamers et al. (1976). By considering the accretion

of a high velocity wind by neutron stars, Pfahl

et al. (2002) concluded that most of the low lu-

minosity, hard X-ray sources known in our Galaxy

could be powered by such systems. Modified
Bondi–Hoyle–Lyttleton accretion has also been

used to study cases where a giant star’s wind is

being accreted by a main sequence star. Some

examples are the work of Chapman (1981) and

Che-Bohnenstengel and Reimers (1986). The

Bondi–Hoyle–Lyttleton geometry is a useful first

approximation to wind accretion in binary sys-

tems. However, unless the wind speed is much
greater than the orbital velocity, the accretion

rates can deviate significantly from the simple

predictions.

At the extreme end of the mass ratio scale, Bon-

di–Hoyle–Lyttleton accretion has even been used to

estimate accretion rates onto a planet embedded in a

disc (Nelson and Benz, 2003). Although the situa-

tion simulated was not entirely appropriate to the
original analysis, Nelson and Benz point out that it

represents a maximum possible accretion rate. This

rate turns out to be extremely high, showing the

need for higher resolution simulations of planetary

accretion flows.

Common Envelope (CE) evolution occurs when

two stellar cores become embedded in a large gas

envelope. Such an envelope is typically produced
when one of the members of the binary system

swells as it leaves the main sequence. For a more

detailed discussion of CE evolution itself see, e.g.

Iben and Livio, 1993. In such cases, accretion rates

are critical for determining the detailed evolution

of the system. In computing accretion rates,

modified Bondi–Hoyle–Lyttleton formulæ are of-

ten used e.g. Taam and Bodenheimer, 1989 – see
also the review by Taam and Sandquist (2000).

5.2. Protostellar clusters

Bondi–Hoyle–Lyttleton flow is also likely to be

applicable to regions of star formation. Although

single stars will be stopped by the drag force, real

stars are generally thought to form in clusters.
Protostars and gas are trapped inside a gravita-

tional well, and orbit within it. The drag will then
simply cause a change in orbit – as is the case for

X-ray binaries. Indeed, the approximation is likely

to be better for protostars in a protocluster. This is

because the orbital motion of the protostars is the

‘source’ of the wind, rather than a wind from a

companion. As a result, the geometry is simpler
(since the orbital motion does not have to be ad-

ded to the wind velocity). Furthermore, non-iner-

tial forces (coriolis and centrifugal) are likely to be

far less significant.

Bonnell et al. (2001) performed a thorough

study of accretion in a protocluster. They simu-

lated the evolution of a gas cloud containing many

small point masses (representing protostars). The
point masses grew by accreting the gas. When the

gas dominated the mass of the cluster, Bonnell

et al. found that the accretion was best described

by tidal lobe overflow (examining whether mate-

rial was bound to the cluster or the star). However,

as the mass in stars grew, Bondi–Hoyle–Lyttleton

accretion became the more significant mechanism.

The transition occurred first for the most massive
stars which had sunk into the cluster core. How-

ever, massive stars are very luminous and Edgar

and Clarke (2004) showed that radiative feedback

can disrupt the Bondi–Hoyle–Lyttleton flow once

stellar masses exceed 10M� (this is obviously

dependent on the prevailing conditions in the

protocluster).

Unfortunately, direct observations of this pro-
cess are not available. Protoclusters contain large

quantities of dusty gas, which greatly obscure re-

gions of interest. Furthermore, the expected lu-

minosities are lower, and the emission wavelengths

less distinctive than those of X-ray binaries.

5.3. Galaxy clusters

Galaxies orbiting in a cluster are another can-

didate for Bondi–Hoyle–Lyttleton accretion. One

immediate complication is the high temperature of

the intergalactic medium (IGM). The IGM is

typically hot enough to emit X-rays, and hence the

galactic motions will usually be subsonic. Ruder-

man and Spiegel (1971) suggested that the IGM

might be heated (at least in part) by the accretion
shocks inherent to Bondi–Hoyle–Lyttleton accre-

tion. Galaxies are also rather porous objects, and
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contain their own gas. In a study of M86, Rang-

arajan et al. (1995) concluded that the ‘plume’

observed was probably the result of ram-pressure

stripping of material from the galaxy itself. Stevens

et al. (1999) simulated galaxies under such condi-

tions, and concluded that ‘‘the ram-pressure
stripped tail will usually be the most visible fea-

ture.’’ This paper also contains a list of observed

wakes.

De Young et al. (1980) observed M87, and

found evidence for subsonic Bondi–Hoyle–Lyttle-

ton flow. However, higher resolution observations

by Owen et al. (2000) suggest that this simple

picture is not sufficient. In particular, the active
nucleus of M87 drives an outflow. A filament has

been observed trailing Abell 1795 both in the

optical (Cowie et al., 1983) and in X-rays (Fabian

et al., 2001). It has been proposed (Sakelliou et al.,

1996) that this filament is an accretion wake, but

Fabian et al. (2001) note that the gas cooling times

aren’t quite right for this simple approximation to

be completely valid. Sakelliou (2000) constructed a
simple theoretical model of a Bondi–Hoyle–Lyt-

tleton wake behind a galaxy. Wakes were expected

to extend for up to 20 kpc. The wakes would form

behind slow moving, massive galaxies in low

temperature clusters.

5.4. Other applications

The original application of Bondi–Hoyle–Lyt-

tleton accretion was to the flow of the interstellar

medium past the Sun. Sikivie and Wick (2002)

apply a similar analysis to the flow of dark matter

past the Sun. They suggest that annual variations

in WIMP detections may be partially attributable

to the focusing of the flow by the Sun.

Bondi–Hoyle–Lyttleton accretion was invoked
by Kamp and Paunzen (2002) to explain the un-

usual chemical abundances of k-Bootis type stars.

These stars have metal abundances typical of the

interstellar medium (that is, metal-poor). Kamp

and Paunzen suggest that radiation pressure on

dust grains (which contain most of the metals)

prevents the accretion of the heavier elements,

while gas accretes in a Bondi–Hoyle–Lyttleton
fashion. Moving to higher energies, accretion onto

neutron stars moving through gas clouds has been
proposed as a mechanism for producing X-ray

sources in the Galaxy (Ostriker et al., 1970) and in

globular clusters (Pfahl and Rappaport, 2001).

However with neutron stars, magnetic fields can

cause significant complications – see, e.g. Toropina

et al., 2001.
Maeda et al. (2002) studied the central portions

of our Galaxy with the Chandra X-ray observa-

tory. Finding evidence for recent activity, they

suggest that this could have been powered by the

central black hole accreting material from an ex-

panding supernova shock. This would be a tran-

sient example of Bondi–Hoyle-Lyttleton accretion.

The potential luminosity from this is rather high
(comparable with the Eddington Limit). However,

there is a complication due to the thermal pressure

of the ambient gas, which could reduce the in-

ferred luminosity substantially.
6. Summary

In their original analyses, Bondi, Hoyle and

Lyttleton made many simplifications. Despite

these, the broad picture they present seems to be

correct. Numerical studies have been made of the

purely hydrodynamic problem, and of cases where

extra physical processes are relevant. Bondi–

Hoyle–Lyttleton accretion has also been used to

explain phenomena in a variety of astronomical
contexts.

Of course, the original Bondi–Hoyle–Lyttleton

results cannot be applied without some thought.

Numerical studies have shown that the flow pat-

tern is more complicated than that originally en-

visaged. Meanwhile, real systems are always more

complicated than theoretical ones. Bondi–Hoyle–

Lyttleton accretion should be regarded as a refer-
ence model – it is unlikely to explain any system in

detail, but it can serve as a useful basis for classi-

fying behaviours. It can be applied as a test model

on systems of all scales – from binary stars up to

galaxies in clusters.

There are many future avenues for research. As

well as improving simulations of accretion in bi-

naries, studies need to be made on Bondi–Hoyle–
Lyttleton accretion for flows where the accretor is

orders of magnitude smaller than the accretion
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radius. Previous numerical work has hinted at

lurking instabilities, but sufficient computing re-

sources have yet to be brought to bear. Extra

physical processes are also candidates for inclu-

sion, especially radiative feedback. Radiative

feedback is likely to be relevant in the context of
both X-ray binaries and star formation simula-

tions, and could alter the flow pattern significantly.

On the observational side, better observations of

systems previously modelled with a simple Bondi–

Hoyle–Lyttleton analysis will show deviations,

which can then be used to enhance our under-

standing of them.

Time has not eroded the usefulness of the
Bondi–Hoyle–Lyttleton accretion geometry. It

provides a simple framework for examining and

refining theory and observation.
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