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Anti-de Sitter spacetime in d + 1 dimensions

Anti-de Sitter spacetime is the maximally symmetric solution of the
vacuum Einstein equations

1
Rozﬁ - EgaﬁR + Agaﬁ =0,

with negative cosmological constant A < 0.
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Anti-de Sitter spacetime in d + 1 dimensions
Geometrically, AdSy1 is wrapped around hiperboloid

o S ey

embedded in flat, SO(d,2) invariant space

Q

ds* = — (aX%) + 3 (aX (dx¢t1)?
k=1

Parametrization

= 0\/1+ (tanx)® cost, X9t'=r1/1+ (tanx)’sint, XK=/ tanxn*

d
—co < t< 400, 0<x<m/2, Z(nk)zzl,
k=1

induces )

ds®> =

. [—dt2 +dx? 4 (sinx)? dszgd_l}
(cos x)
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Anti-de Sitter spacetime in d + 1 dimensions

Induced metric

2

ds? = —dt? + dx? + (sin x)? dQ%, .|,

(cos x)?

—o0o <t<+4o0, 0<x<7/2.

is the maximally symmetric solution of the vacuum Einstein equations
Rap — %gagR + Agap = 0 with negative cosmological constant A < 0:

A= —d(d—1)/(20?)

Conformal infinity x = 7/2 is the timelike hypersurface Z = R x S9!

with the boundary metric ds% = —dt? + ng.d,l
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Poincaré patch

X0 — X4 =02/u>0

X2 — 2
X =t/z :>X°+Xd:z(1+ 5 )
X = Exi/z z
induced metric:
4e? — —dt? + dX? + dz?

)

22
but in this talk we are concerned with global AdS:
EZ

5 [_dt2 + dx® + (sin x)? dQ%-.| ,

ds?® =
(cos x)
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Maximally symmetric solutions of vacuum Einstein's
equations and their stability

1
Rap — ERgag—H\gag =0.

A solution (of a dynamical system) is said to be stable if small
perturbations of it at t = 0 remain small for all later times

e A = 0: Minkowski (trivial, yet most important)
asymptotically stable (Christodoulou&Klainerman 1993),

e A > 0: de Sitter (important in cosmology - Nobel Prize 2011)
asymptotically stable (Friedrich 1986),

e A\ < 0: anti- de Sitter (most popular on arXiv due to AdS/CFT)
Stability of AdS seems unexplored
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Is AdS stable?

@ A solution (of a dynamical system) is said to be stable if small
perturbations of it at t = 0 remain small for all later times

@ The question of stability of AdS is open. Surprisingly, with almost
fifteen years of activity on AdS/CFT, this question has been rarely
asked (with a notable exception M. Anderson 2005)

@ In contrast, Minkowski (A = 0) and de Sitter spacetimes (A > 0) are
known to be stable (actually asymptotically stable) —
(Christodoulou&Klainerman 1993 and Friedrich 1986)

@ The key difference between these solutions and AdS: the main
mechanism of stability - dissipation of energy (dispersion in
Minkowski, expansion in de Sitter) - is absent in AdS because AdS is
effectively bounded (for no flux boundary conditions at Z it acts as a
perfect cavity)

@ Note that by positive energy theorems both Minkowski and AdS are
the unique ground states among asymptotically flat/AdS spacetimes
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Model

@ To deal with the problem of the stability of AdS we start with
spherical symmetry (effectually 1 + 1 dimensional problem)

@ Spherically symmetric vacuum solutions are static (Birkhoff's
theorem) = we need matter to generate dynamics

@ Simple matter model: massless scalar field ¢ in d+1 dimensions

Gop + Ngup = 87G (am dp) — ;gagﬁugbaygb) ,N=—d(d—1)/(20?)
g’V Vs =0

@ In the corresponding asymptotically flat (A = 0) model Christodoulou
proved the weak cosmic censorship (dispersion for small data and
collapse to a black hole for large data) and Choptuik discovered
critical phenomena at the threshold for black hole formation

@ Remark: For even d > 4 there is a way to bypass Birkhoff's theorem
(cohomogeneity-two Bianchi IX ansatz, Bizori, Chmaj, Schmidt 2005)
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@ Convenient parametrization of asymptotically AdS spacetimes

62
oo [—Ae*” dt2 + A" dx® + (sin x)? d2,_, |
X

ds® =

where A and § are functions of (¢, x).
o Auxiliary variables ® = ¢/ and M= A"1e%¢ (' =y, = d;)
e Field equations (using units where 87G = d — 1)

d—2 —|—2(sinx)2
(cos x) (sin x)
§' = — (cosx) (sinx) (¥ + M%) ,
1

(tanx)9™?

A =(1-A) — (cosx) (sinx) A (<D2 + ﬂ2) ;

¢ = (Ae*BI_I)/, Nn= [(tan x)91 Ae*‘sfb]/ .

@ AdS space: 9 =0, A=1, § =0; now we want to perturb AdS solving
the initial-boundary value problem for this system starting with some
small, smooth initial data (¢, ¢)j:—o
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Boundary conditions

@ We assume that initial data (¢, ¢)|t:0 are smooth
@ Smoothness at the center implies that near x = 0 (A irrelevant)

B(t,x) = fo(t) + O(x?), §(t,x) = O(x?), A(t,x) =1+ O(x?)
@ Smoothness at spatial infinity and conservation of the total mass M
imply that near x = 7/2 (using z = 7/2 — x)
o(t,x) = fuo(t) 27 + O (zd+2) . 6(t,x) = 6so(t) + O (z2d) ,
Alt,x) =1— (M/t92)z9 + O (zd+2)

Remark: There is no freedom in prescribing boundary data
@ Local well-posedness (Friedrich 1995, Holzegel&Smulevici 2011)
@ mass function and asymptotic mass:

m(t,x) = (1 — A(t,x)) (¢tanx)?"? (1 + tan? x)
w/2
M= lim m(t,x) :ed—2/ (AD? + AN?) (tanx)9 "1 dx

x—m/2
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Reminder: asymptotically flat (A = 0) self-gravitating
scalar field

o Christodoulou (1986-1993): dispersion for small data and collapse to
a black hole for large data (proof of the weak cosmic censorship)
e Consider a family of initial data ®(p) which interpolates between
dispersion and collapse (Choptuik 1993)
@ There exists a critical value of the parameter p* such that
> p < p* = dispersion
» p > p* = black hole

@ Universal behavior in the near-critical region |p — p*| < 1

» mpy ~ (p* — p)? with universal exponent ~y
> discretely self-similar attractor with universal period A

o Critical solution (p = p*) is a non-generic naked singularity
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Movie

@ numerical results to be presented are obtained for d = 3,
@ but qualitatively the same behaviour in any d > 3;

@ on the other hand the d = 2 case is very special
(Pretorius& Choptuik 2000, Jatmuzna in preparation)
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Critical behavior

Initial data: ®(0,x) =0,M(0,x) =« [exp( tanx)2:|
We fix 0 = 1/16 and vary ¢.
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BH size vs. amplitude

There is a decreasing sequence
of critical amplitudes &, for
which the evolution, after
making n reflections from the
AdS boundary, locally
asymptotes Choptuik’s
solution. In each small right
neighborhood of ¢,
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with v ~ 0.37. It seems that
Ilmn*)oo 6” — 0

mBH(&?) ~

Remark: The generic endstate of evolution is the Schwarzschild-AdS BH
of mass M (in accord with Holzegel&Smulevici 2011)
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Key evidence for instability
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Key evidence for instability
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Weakly nonlinear perturbations

@ We seek an approximate solution starting from small initial data

(6 )| _, = (F().2(x)

@ Perturbation series

¢ =cpr+p3+ ...
§ =20y + %04 + ...
1—-A=2A+ %A+ ...
where (¢1, ¢1) _, = (f() g(x)) and (), 9;) , = (0,0) for j > 1.

t=
@ Inserting this expansion into the field equations and collecting terms
of the same order in ¢, we obtain a hierarchy of linear equations
which can be solved order-by-order.
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First order
o Linearized equation (Ishibashi&Wald 2004)

1

g o1
o1+ Lo =0, tand—1x

Ox (ta nd=1x 8X>

The operator L is essentially self-adjoint on L2([0, 7/2), tan?"1x dx).
e Eigenvalues and eigenvectors of L are (j =0,1,...)
wjz =(d+2j)? e(x)= Nj(cosx)? de/2_1’d/2(cos2x)

= AdS is linearly stable

@ Linearized solution
o0
1(t,x) = Y ajcos(wjt + ;) gj(x)
j=0
where amplitudes a; and phases [3; are determined by the initial data.
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Second order (back-reaction on the metric)
d — 2+ 2sin’x

/
A, + -
SIN X COS X

Ay = sin x cos x (qb% + ¢’12>

8% = — sin x cos x ((ﬁ% + ¢’12>

x)9 T
(e, = (S [ (e + 6100 ) ()
0
Salt.x) = = [ (e, + (8,302 siny cosy dy
0

quadratic in ¢1!

It follows that ) /2

M= % / (él(t’y)2 =+ ¢/1(t7y)2) (tany)d—l dy + 0(64)

0
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Third order

o ¢3+ Loz =S(¢1,A2,02), (*)
where S :=2(Az + 02)d1 + (A2 + 02)P1 + (A5 + 65) .

o Let ¢3(t,x) = > fi(t) &j(x). Projecting Eq.(x) on the basis {¢;} we
obtain an infinite set of decoupled forced harmonic oscillators for the
generalized Fourier coefficients f;(t) := (e&j |¢3)

N ) _ .
fitwifi=5:=(el|S) and (f; 1) o 0
If S; has a part oscilating with a resonant frequency wj: coswjt or
sinw;t, it will give rise to a secular term ~ tsinw;t or ~ t cosw;t.

@ S cubic in ¢1 = contains all frequencies | + w; + wp + w3|, where
wk € Q1 and ¢1(t, x) =, [wk € Q] akcos(wit + Bi) ex(x) ,
wg - odd integers = all frequencies in S potentially resonant!
Not all resonances survive the projection (ej |S). Some of those,
which do survive can be compensated with frequency shifts in ¢; and

are harmless for stability, but the others put stability in question!
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Example 1: single-mode data (¢, ¢)|—o = (< e, 0)
o First order ¢1(t, x) = cos(wot)ep(x), wo =3 (wj =342j)

o Third order ¢3(t,x) = X% f()ei(x),  (f 1‘5—)) =0 and
t—

fi + wif; = bjo cos(wot) + bj 3 cos(wst).

But b33 =0 (!) and only j = 0 is resonant.

The j = 0 resonance can be
easily removed by the

of {  two-scale method (slow-time
phase modulation) which gives
o ¢1 = cos((wo + L2362) t) eg(x).
1t 1 This suggests that there are
non-generic initial data which
may stay close to AdS solution

log[M2(t,0)]

-2

0 200 400 600 800 1000 1200
t
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Example 2: two-mode data (¢, ¢)|,—o = (¢ (& + €1), 0)
o First order ¢1(t, x) = cos(wot)ep(x) + cos(wit)er(x), wo =3, w1 =5
o Third order ¢3(t,x) =3 72 fi(t)ej(x),  (f, f)

6—1—(,0]26 = Z[wk S Q3]bj’k cos(wkt), where Q3 = {|:l:wo71:l:w071:|:w071|}

k
Here Q3 = {1,3,5,7,9,11, 13,15}, but the resonance (b;; # 0) only
if wj € {3, 5, 7}.
10° . . . . . . . wo — Wo + (87/7[')62,
e=1/8 w1 — wy + (413/7)€? shifts
| : 2:?;1/26”6 1 remove the resonances

wj = 3,5, but the resonance
wj = 7 cannot be removed.
Thus we get the secular term
c(t) ~ tsin(7t). We expect
this term to be a progenitor of
the onset of exponential

0 50 100 150 200 250 s00 3s0 400 instability.
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Conjectures
Our numerical and formal perturbative computations lead us to:

Conjecture 1

Anti-de Sitter space is unstable against the formation of a black hole
under arbitrarily small generic perturbations

Crucial ingredients: no dissipation, resonant frequencies.

Proof (and a precise formulation) is still left as a challenge.

Note that we do not claim that all perturbed solutions end up as black
holes.

Conjecture 2 'NR/HEP2

There are (non-linearly) stable periodic solutions in Einstein-AdS-massless
scalar field system. They form stability islands in the ocean of instability

Strong evidence (still not a proof) - tomorrow'’s lecture.
Analogous conjecture for vacuum Einstein's equations by
Dias,Horowitz&Santos (2011), Dias,Horowitz,Marolf&Santos (2012)

(existence of geons).
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Turbulence: transfer of energy from low to high frequencies
Let M; := (V'AT, &) and ®; := (VA®,¢). Then

w/2 o
M= / (AD? + AM?) (tan x)® dx = > Ej(t),
0 j=0

where E; := I'IJ2 + wj_2¢f can be interpreted as the j-mode energy.

104 : .
3 t=0 e=3 t=0
t=232"1/2 t=232"1/2
10° o 1=464'72 E HY t=464"7/2
. 1=696'1/2 105t te, 1=696'n/2
© 9202 | o 1-920*/
10 — fitE;=C/j fit
i~ 107 ui
6
- 10
10°
10-10 L L L L L 10-7 L
50 100 150 200 250 10 100
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Power-law scaling

3+

10° | .
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ui . fitEj= C/j0%
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Final remarks

o Weakly turbulent behavior seems to be common for (non-integrable)
nonlinear wave equations on bounded domains (e.g. NLS on torus,
Colliander&Keel, Staffilani, Takaoka& Tao 2008, Carles&Faou 2010)
and our work shows that Einstein’s equations are not an exception.

@ For Einstein’s equations the transfer of energy to high frequencies
cannot proceed forever because concentration of energy on smaller
and smaller scales inevitably leads to the formation of a black hole.

@ The role of negative cosmological constant is purely kinematical, that
is the only role of A is to confine the evolution in an effectively
bounded domain. Similar turbulent dynamics has been observed for
small perturbations of Minkowski in a box (Maliborski 2012)
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